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Critical Behavior
in Multifurcation Phenomena and Invariant Circles

in Area-Preserving Maps

Sang-Yoon Kim

Abstract; In the phase spase 0f generic area-preserving maps
periodic,quasi-periodic and stochastic orbits coexist and
interact . We study two phenomena related to periodic and
quasi-periodic orbits among the three kxinds of orbits.

The first phenomenon is the infinitely nested
structure of islands which play the role of *trap’. We
show that at the accumulation point islands of all classes
exist and they have a self-similar structure asymptotically
for 1/n-bifurcation, with n=3 to 6. It i8 also observed that
the pattern of periodic orbits repeats itseif asynptotically
from one bifurcation'to the next one for even n and to-every
other one for odd n. Indeed, even more limiting self-similar
behavior exists near the accumulation point. When we rescale
not only dynamical variables but also the parameter with appro-
priate rescaling facctors , the pattern of periocdic orbits

also exhibits the limiting gelf-gimilar behavior.

¥We also study the asymptotically self-similar
structure by a simple approximate renormalization method.

By the method, we obtained the accumulation point, the

pifurcation ratio, the scaling factors and the universal
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residue values. These values agree well with the values

obtained by following multifurcation-sequences. Furthermnore,
we obtained an approximate universal map of i/n-bifurcation,
with n=3 to 6. In this way , we>show approximately that the

limiting self-similar behavior 18 universal.

The second phenomenon we studied is the break-up
of invariant circles which play the role of ’'dam’ under
a rough perturﬁtion . We show numerically that a noble
invariant circle persists below a critical parameter wvalue in
a C2-nap. Therefofe, the invariant circle plays the role of
complete barrier to the transport of stochastic orbits below
the critical parameter value. Furthermore, we also observed
that the critical behavior of the invariant circle is the same
as that in analytic map; within numerical accuracy. Therefore,

they seem to be in the same universality class
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Introduction

The phase space of generic i-parameter families of

area-preserving maps 18 divided into regular components

and stochastica pmponents, each measure of which depends on
the parameter: Iﬁ this way, the phase space has a very
intricate structure : periodic , quasi-periodic and stochastic
orbits coexist and interact. Therefore, in order to study the =
long-time behavior of orbits, one should .study the whole phase
space, for a given parameter valué. on thé d;he; hand, in
dissipative systems , only studying attractors and their basins
in the.phase space suffices, for a given parameter value. In
this thesis, I consider conservative systems. -

To see the roles of orbits in the phase space,as an
example, let us consider a periodic area-preserving radial
twist map Te with zero net flux , e.g. a simplified Fermri

accleration map ( Liebermann and Lichtenberg,1972), the

separatrix map and the standard map (Chirikov,19738) :

L
I

In + e-f(en)

T 3 (1)

41 = O * 2n-v'(1n+1) .

Here © is an angle variable, f a periodic function in o
with zero average over 6, vi(I)# O, € a parameter which
denotes the strength of perturbtion . The meaning of I depends
on the system. I sketch a typical phase flow of the separatrix
map in the figure 1 ( to see in some details, refer to § 1.4 ).
This separafrix map describes'the motion near a hroken

separatrix. It is also worth while to note that generically a

separatrix in an integrable system is broken by arbitrarily
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small perturbations ( Robinson,1970, Arnold,1i87¢). In the
separatrix map, the dynamical variable I denotes the degree
of relative deviation from the unperturbed separatrix ( I=0 ).
That is, as the magnitude of I increases, the degree of rela-
tive deviation increases. Here, the region in Which I>0 is the
rotational one and the region in which I<0 the vibrational one.
As shown in the figure 1, near the broken separatrix, a
stochastic layer with two boundary invariant circles is formed.
Inside the stochastic layer, no rotational invariant circles
exist. On the other hand, outside the stochastic layer, invar-
iant circles and islands are interleaved, and thin stochastic
layers are formed near unstable orbits.

For the sake of convenience, let us restrict our atten-
tion to- the stochastic layer near the broken separatrix,
since it 1s sufficient to do so because our present aim is to
see the roles of orbits. The stochastic layer consists of two
parts. The central part has no islands, and in this part many
unstable periodic orbits denoted by x in the figure 1 are
embedded in this part. On the other hand, the peripheral part
near the boundary circles has large islands. Inside this
stochastic layer , apparently area-filling stochastic orbits
denoted by wavy arrows wander about. In this way, the stocha-
stic layer bounded by two boundary circles consists of islands,
unstable periodic orbits and stochastic orbits.

Now, let us see the roles of orbits which coexist and
intergct in the stochastic layer. HNear the central part, many

unstable orbits are embedded and they play the role of

1x



'scatter’. Therefore, a stochastic orbit has an exponentially
decaying short-term correlation in this region ( Chirikov, 1879,
Rechester and White, 1980 ). Sometime, the stochastic orbit
approaches the region near the boundary circle ih whicﬁ large
islands exigt. In this region, the stochastic orbit has a long-
time correlation, .s8ince islands play the role of ' trap '’
( Channcn and Lebowitz, 1980, Karney, 1983, Chrikov and
Shepelyansky, 1984 ). Also, one should notice that the stochastic
orhbit can not penetrate the boundary circles. Therefore, the
invariant circle play the role of ’dam’.

In the manner described above, periocdic,quasi-periodic
and stochastic orbits coexist and interact. In this thesis
we study fwo phenémena related to periodic and quasi- periodic
orbits among the three kinds of orbits.

The first phenomenon is the infinitely nested strucfure
of 1slands Which play the role of * trap /. To study the
phase flow near an island in a generalized area-preserving
map T, 1t is generally sufficient to study the phase flow in
a quadratic map 6btained by keeping the terms to the second
order in Taylor-expansion of T about the stable periodic point
( Henon, 1969, Helleman,1983, Karney,19882). In this case, the
quadratic map exhibits nearly the zame phase flow near an
island as that in the original map, and since the quadratic
map is the nontrivial simplest map we can save computing time
in numerical study and reduce numerical error. Many authors
{ Henon, 19569, DeVogelaere, 1958, Hellemaﬁ,lQBO, Karney, 13883 )

studied various gquadratic maps. However, general quadratic



maps can be related one another by appropriate coordinate
changes ( Henon, 1969, Lee,1983 ). Therefore, we can choose a
quadratic map without loss of generality. In this thesis, we
choose the DeVogelaere quadratic map, since the map 18 repre-
sented in terms of symmetry coordinate {( see (1.1.3.4) ).
Thus& in § 2.3 and § 2.4, we study the infipitely nested
structure of islands which makélgjstochastiéhprbit have a
long-time correlation in the DeVogelae;é qﬁadratic map.

Thé second phenomenon we;ggudied is the break-up of?f
invariant circles which play tge role of *dam’ under rough
perturbations . The persistence of an invariaﬁt circle depends
on the quality and strength of perturbtion and the robustness
of the invariant cifcle. In fact, Moser(1973) shows that a
sufficiently robust invariant circle persists under a suffi-
ciently small and smooth perturbtion. The sufficient smooth-
ness is now Cr( r>3 ). In § 2.5, we study the persistence of
an inyariant circle whose rotation number is Golden-Mean
under a C2—perturbtion. The Golden-Mean invariant circle 1is
expected to be the most robust in some sense ( Greene, 13879 ).
But, since the smoothness of perturbation 1is CQ, the persist-
ence of the i1nvariant circle is not guaranteed by ﬁoser’s
twist theorem. In this case, following Greene’s residue
criterion (1979) and Mather’s criterion( Mackéy et al, 1984),
we study the persistence of the Golden-Mean circle in a gen-
eralized standard map of class—CQ. Generalized standard maps
can be obtained in the following way. We first locate the

fixed points of a generalized radial twist map TE (1) 1n which



v 1s a nonliner function of I. Secondly, keep the linear term

NN
in I in Taylor-expansion of TE in I ahout a fixed point ( I,

Then, we can obtain a generalized standard map T(K):

Tl =T+ RK(e,T)-P(O)
T(K): A _ (2)
e .

i
(¢
+
4y

n+1 n n+1

This generalized standard map exﬁibits nearlly the same
phase flow as that in the original map near an fixed point
in the I-direction. Therefore, studying the generalized
standard map T(K) alone, we can see the phase flow near
fixed points in a generalized radial twist map TE. In this -
gsense, T(K) may be called the generalized standard map.
Therefore, instead 6f studying the generalized radial twist
map Te’ we study in 8§ 2.5 the persistence of the Golden-Mean
invariant circle 1n a generalized standard map (2) with some
f(8) of class-C>.

This thesis consists of three chapters . CHAPTER 1 is
devoted to an introduction to area-preserving maps and a
review of the background which is relevant to this thesis
In § 1.1, we describe how an area-preserving map can bhe
obtained from a conservative flow, and introduce.area-
preserving maps and reversiblé maps. In the remaining sections
( i.e., from § 1.2 to § 1.4 ), We devote a section to each of
periodic, quasi-periodic and stochastic orbits which coexist
and interact in area-~preserving maps. CHAPTER 2 contains the
major part of this thesis . § 2.1 is the introduction to two

phenomena we studied. In § 2.2, we describe generic bifurca-
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tions 1n reversible area- preserving maps in some details.

This is because the relation between symmetric periodic orbits
and.symmetry half-lines 1s very important in understanding the
critical behavior in multifurcation phenomena and invariant
circles. In § 2.3 and 8 2.4,we show that near the accumulation
point, the infinitely nested islands have a universally self-
similar structure, empirically and by some approximate renor-
malization method in each section respectively. In § 2.5, we
sho& that the Golden-Mean invariant circle in a C2-map persists
below a critical parameter value and it has the same critical

behavior . as that in analytic maps. Finally, in the CHAPTER 3,

we summarize and discuss our work

X111l



CHAPTER 1: Introduction to area-preserving maps

A dynamical system 18 simply a time evolution defined
by an ordinary differential equation :

dxs/dt = f(x), where x and f are n-vectors.
Such dynamical systems can be used to model many systems in
physics, chemistry, biology and other areas ( Lichtenberg
and Liebermann, 1982).

In this thesis, I consider only coservative systems 1in

which volumes are preserved under evolution:
v.f = 0 .

Then orbits in cohservative systems cannot be asymptotically
stable, and thus the limit set under evolution , for a con-
servative system, is the whole space. On the other hand, in
dissipative»(or volume-~contracting) systems there is attra-
tion, and thus the long-time behaviors of all orbits in its
basin are reduced to those of the orbits on the attractor.
Long-time behavior in conservative systems is of par-
ticular 1mportance for questions of stability and confine-
ment, on the one hand , and instability and transport on the
other hand. Historically, the interest in long -time behavior
in conservative systems began with the question of the stabil-
ity of the solar system. The problem of stability for long
times i8 now one of considerable practical significance in the
design of intersecting storage rings and magnetic fusion

device, where charged particles are required to remain trapped



for mahy millions of revolutions. On the other hand,
instability and transport is also of considerable importance
to many applications, including_calculations of particle loss
from accelerators and plasmas and wave heating rates 1in
plasmas, and the fundamental problems in statistical physics.

Physically, the ﬁost important class of conservative
systems is the class of Hamiltonian systems. The simplest
nontrivial Hamiltonian systems are all autonomous Hamiltonian
systems with 2 degrees of freedom, and equivalently all
pefiodically time-dependent Hamiltonian systems with 1 degree
of freedom which are called systems with 1% degrees of free-
dom, since all autonomous Hamiltonian systems with 1 degree
of freedom are integrable. These simplest nontrivial Hamil -~
tonian systems exhibit many of the features of Hamiltonian
systems with higher degrees of freedom, though there are
some phenomena only possible in systems with higher degrees
of freedom, such as Arnold diffusion and the Krein crunch.
So, I wiil devote my attention to Hamiltonian systems with
1% or 2 degrees of freedomn.

The study of continuous time systems can often be redu-
ced to that of discrete time systems (or maps) by consider-
ing the return map on a surface of section. In the case qf
a Hamiltonian system with 1% or 2 degrees of freedom, the
return map is a two dimensional area-preserving map. In § 1.1,
how a Hamiltonian flow can be reduced to an area-preserving
map on aasurface of section 18 described, andrarea-preserving

maps and reversible maps are introduced. There are three



important types of orbits in area-preserving maps. They are
periodic orbits, quasiperiodic orbits which densely fill an
invariant circle or a Cantor set, and stochastic orbits which
are very sensitive to i1nitial conditions and appear to be
area-filling. In the remaning sections, we devote a section

. to each of the three xinds of orbits.

§ 1.1 Maps

In § 1.1.1, I review how a Hamiltonian system with 1% or
2 degrees of freedom can be reduced to a two dimensional
area-preserving map. In the next two subsections, I introduce
two important class of maps, area-preserving twist maps and
reversible maps.

§ 1.1.1 Area-preserving maps

Let us consider a two degree of freedom system with

Hamiltonian H(ql, pl, qz, p2). The Hamilton’s equations
are;
al—— » - T o= »
1 apl 1 aql
5 _ 8H b _ aH (1.1.1.1)
- T » - - —
2 ap2 2 qu

Since this system is autonomous, H is a constant of motion:

[

H(ql,pl.qz,pz) = E = const. (1.1.1.2)



So, for a given total enerqgy E, the flow is essentially
three dimensional. This enables us to construct a global
or lopal surface of section and an associated return map
which is often called Poincare’s map.

Suppose that two of the variables, say q2 and p2,

can be expessed as action-angle coordinates (I,©):
I = I(q2,p2) » 0 = e(q20p2)_ ’

a, = QQ(O,I) R P, = P2(6,I) »

where Q2 and P2 are 2n periodic in 6.

Then the Hamiltonian H(ql,p1,q2,p2) becomes;
H(q,,p,,Q, (e,1I),P_(6,I))= Hiq,p,®,1)= E , (1.1.1.3)

where we drop the subscripts on q1 and pl.
Suppose that 9H/81 # 0 in some region D of phase spaéef
Then (1.1.1.3) can be inverted in D to solve for I in terms

of q,p,® and E;

I = L{(q,p,o:E) . (1.1.1.4)

We write q =dq/de, p’= dp,sde, so that

q’=qs6 = 22 , 88 Lo, - - BE  BH

3q s*f (1.1.1.5)

Differentiating (1.1.1.2) implictly, using (1.1.1.4), gives

aH 8H aL _ . aH 8H 8L

aq *aTse - » 3t 3B C O o (1.1.1.6)



and thus, using (1.1.1.6), (1.1.1.5) becomes;
ﬁ,
+ _ _ 8L{q,p,6:E)
= 3p

: (q,p,9)e D =< 'al . (1.1.1.7

- _ 8L{q,p,8:E)
= 5q

p

We call the Qﬁ—periodic i1-degree of freedom systen
(1.1.1.7) the reduced Hamiltonian system. Such a system
exists on each energy surface H=E, and in each region D of
phase space, in which our assunmption 3H/3I # 0 is wvalid.
The reduced Hamiltonian systen (1.1.1.7) is essentially
equivalent to a periodically time-dependent system with 1
degree of freedom. So, 1t i1s sufficient to consider only
the reduced Hamiltonian.

We takxe a surface of section;
i 1
L(E;,8,) = {(q,p,8)e D x 8 | €=0,€8 8§ ; E=E, 1} .

Then the flow (1.1.1.7) induces a map associated with this
surface of section, called the return map or Poincare’s map,
defined by following the flow until the return to the surface

of section. That 1s, the Poincare map P: I—L is given by
P(Xs )=X(Xs, G +211) ,

where we write x={(q,p) and x(xo,e) is the flow with an initial
condition (xo, eo). Thus we obtain a two dimensional map P.
Fal ra)
Given a sclution (g{(e),p{(8)), let us linearize the equa-

Fal a)
tion of motion (2.1.1i.7) about {g{(e),p{(e)) :



N fal
g = q + 8q , p=p+8p

Then the linearized equations are;

d 5q | 5q
35 = A(O) (1.1.1.8)
5p | 5p ’
[ _ 8L _ 8L ]
84qs8p ap?
A(O)=
8L a*L
Fal N
i aql apaq ‘(q’p)

The general solution of the iinearized equations are:

§q(e)

= ¢, X_(8) + c_X_(8©) ’ {1.1.1.9)
6g(e) +1 22

where xl and x2 are two linearly independent solutions and

ui(e)
xi(e)= '
v.{©)
i
We write X(©) = (xl(e),xz(e)). Then (1.1.1.9) becomes:
5gq(e) 01 5q(0)
= X(®) = X(e)x*o)
&p(©) g c2 6p{0)

Without loss of generality, one can choose an independent

pair of solutions xl(e) and x2(e), such that



Then,

5q(©6) 6q(0)

= X(8).

Ep(8) 5p(0)

The linearized Poincare map DP is:

6q(2m) 6q(0)
= DP.

6qg(2m) Bp(0)

Then, by (1.1.1.10),

, ul(zn)
DP = X(2n) =
vl(zn)
ul(o) 1
where =
vl(O) 0

The Wronskian determinant of two solutioné x

of (1.1.1.8) is given by

u_(8e) u_(e)
wee)y =| 2 2

vl(e) V2(9)

u2(2n)

v2(2n)

. u_(0)
and 2

v2(0)

(1.1.1.10)

d x
, an



Since d¥W/de = Tr A(e)-¥,
W(e) = W(O).exp(f Tr A(@)-de )
0

By (1.1.1.8), TrA(e) = 0 for all ©. Thus W(®)=w(0)=1.
Therefore, det DP = W(2n) = 1. Since det DP=1i, the Poin-
care map is area-preserving.
I illustrate the Poincare map for a periodically kxicked
rotator governed by a Hamiltonian H:
0o
H= Ho (I) + eV(e)-z 5(t-2)
4=-00

o0 o0

= Ho(I) + € z z Vm cos 2n(me-4t) ’

i=-00 m=1

v(e) = v(-e) , V(B) = V(e+1)

The perturbation represents a ’'kick’ per unit time. By
constructing a surface of section at t=0 (mod 1) in the

(I, ©, t)-space, the Poincare time-1 map T can be obtained:

In In+1= In+ EF(en)

T — (1.1.1.11)
en : 6n+1= en+,w(1n+1)

F(e) = -V/(e) and @ = HJ(I).



§ 1.1.2. Twist maps

A particularly important class of area-preserving maps
is the class of area-preserving twist maps. An area-preser-
ving twist map T is an area-preserving map that has rota-
tional shear: there exist coordinates (e, I), © an angle

variable such that

— has constant sign , (1.1.2.1)

where (e’,I’

) = T(6,1I) and det (DT)=1 in these coordinates.
Since © ig an angle variable, the map T is a periodic amp
in the plane;
(e’,17) = T(e,I) — (87+2m, I7) = T(e+2m,I)

Then T can be represented on a cylinder. For example, near
an elliptic fixed point a map typically has twist.

It turns out that any area-preserving twist map can be
expressed as a generating function, and conversely (Mackay et
al, 1884). If an area-preserving map (x',p’) = T(x,p) sati-

sfies the twist condition :

V4 .
g-;-¢ o for all (x,p) , C(1.1.2.2)

then there exist a generating function L(x,x') such that



7/

p = - 8L(x,x”)/ 8x p’= aL(x,x”),s ax’ . (1.1.2.3)

Note from (1.1.2.2) and (1.1.2.3) that
2. 7
8°Lsoxax” # 0 . (1.1.2.4)
Conversely, if the generating function L(x,x') satisfies the
condition (1.1.2.4), then the relations (1.1.2.3) can be
inverted to generate a map T: (x,p)—%(x',p').

The Jacobian matrix for the map T is :

et S
L L
DT = 12 12 (1.1.2.5)
Lo Lol _ L22 ’
12 L, L,

where the subscript 1 denote the derivative with respect
to the ith argument. Since det DT=1, T is8 an area-preserving
map. However, T is not necessarily periodic. Therefore the
twist condition (1.1.2.2) is the generalization of (1.1.2.1)
to non-periodic maps.

In this thesis, I devote my attention to area-preserving
twist maps that gatisfy the twist condition (1.1.2.2), and
if the maps are periodic maps, I restrict my attention to
maps with zero calabi invariant. To explain calabi invariants,
firstly, it is8 necessary to define the flux across a closed
curve . The flux across a closed curve C in the plane is the
area occupied by all the phase points mapped from the interior
R of C to the exterior in one iteration of a map T (Mackay et
al, 1984). Let C’/=T(C) and R’=T(R) be the image of C and R, so

that R’ is the interior of C’. Then ,

10
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flux across C = Ar(R’-R) = Ar(R-R'), where Ar(uU)
represents an area of U, and R’“-R and R-R”are shaded regions
in the figure 1.1.2.1. IT a map T is a periodic map in the
plane, then the map can be represented on a cylinder. Oon
the cylinder,eé%h ro{ational circle C divides the cylindrical
phase space into two infinite parts. l.et R be the region
below the circle C and R’ the region below the circle c’/=T(C).
S8ince the regions are infinite, in general

Ar(R7-R)-Ar(R-R”7) # 0 .

‘Therefore; generally the upward and downward fluxes are not
the same and thus the net flux is not zero , in general. By
considering the area of the finite region between any two
rotational circleg, it is easy to see that the net flux 1is
independent of C. This net flux is known as the Calabi
invariant. So, a periodic map T with zero Calabi invariant is
a map with zero net flux. It L(x,x') generates a periodic
area-preserving twist map, then L(x+1, x'+1) generates the
same map, where 2nx 18 an angle variable. So, they can
differ only by a constant. In fact the constant is just
the net flux. To see this, let us take any curve C joining
(x,x”?) to (x+1,x7+1). Then, it defines a rotational circle p(x)
and its image pl(x') on the cylinder by the relations (1.1.2.3).
Then the net flux is the difference in areas under p(x) and

p’(x’) :

12



net flux

f p'(x’)dx'— f pi(x) dx

i

I aL(x,x')/ax' dx’ + aL(x,x’)/ax dx

]

f dL(x,x”)
C

L(x+1,x'+1)—L(x,x'). , (1.1.2.6)

For example, the generating function L(e,e’) for the
periodic area-preserving twist map T of the periodically
xicked rotator(i1.1.1.11) in which Ho(I)=I*/2 and V(©)= cos2n®
is: |

L(e,0”)=1,/2(6-6")2 ~eV(0) , (1.1.2.7)

where the map T is called the standard map or Taylor-Chirikov
map.

Orbits in an area-preserving twist map T can be obtained
by a staticnary action principle. It x,x',x" are three

successive points of X on an orbit, then

3
— HAx,x'HL(xﬂx"H: p’ - p’ (1.1.2.8)
oXx
= 0 , from (1.1.2.3)
and conversely. Let A(X) be L(x,x). Then the stationary

points of A{x}) are the fixed point of the map T. For integer
r and 8 with r+1 < 8 let (xt(rétés)} be an arbitrary sequence
of real wvalues of x subject to fixed initial xr and final Xy
From(1.1.2.8), this sequence defines an orbit segment if and

only if the action

8-1
Ars = E L‘(Xt’}(fu}-l)
t=vr

13



is stationary with respect to arbitrary variations of the

intermediate x holding the initial X and final Xg fixed.

!
An infinite sequence defines an orhit if and only if every
finite segment has stationary action.

'Aubry(lseg) has some exanple in solid-state physics
corresponding to the standard map(1.1.2.7). He studied the
discrete Frenkel-Kontorova model. The model consiasts of a
one~dimensional chain of elastically coupled atoms i at
abscissa u; which is subject to a periodic potential with

period 2a and amplitude a. Its energy 1is:

na.

3y = Tiitu. -u )?+X(1-cos —L
w((ui}) = E[Q(ui+1 ui) +2(1 cos — )], (1.1.2.9)

He studied the absolute minimum of the energy when the atomic

mean distance

u..-u_ . s
2 = lim

N-N’300 N-N

is fixed by boundary conditions.
The ground-state {(u; ) necessarily satisfies

ma.

A . i
aqa/au.l = Qui— u. -u. + — 81in - = o) (1.1.2.10)

which corresponds to the map of a dynamical system with the
discrete time 1. So, the energy ¢ plays the role of the
action in a dynamical system and orbits in the dynamical
system correspond to stationary configurations of atoms.

By defining the conjugate variable of u;
I; =u; -u; 4 and €; =u; (mod 2a)

14



(1.1.2.10) becomes

noe.

AN . 1
. = 1.4 — —_— . = O, .
I1+1 11 2a s1in a ' e1+1 91+;1+1

This is just the standard map (1.1.2.7).

g 1.1.3 Reversihle maps

A dynamical system is reversible if it is conjugate to
its time-reverse by a coordinate change whose square is the
identity(called an involution)(Moser,1973).

Let us consider a first order system:

x = £(x) ., (1.1.3.1)

where x and f are n-vectors. Then the system is reversible

if there exists a coordinate change S of Rn s such that

S*= I(identity)
and (1.1.3.2)

-P{x)=8.-F(S.x%).

So, if X,(t)is a solution of (1.1.3.1), then X, (t)=S.-x, (~-t)
is also a solution of (1.1.3.1). For example, reversing

all the velocities of a potential systme;
X = v , v = - v.U(x)

reverses the flow.

A map T is said to have symmetry 8 if S is an orienta-

tion-reversing involution :

15



Det(DS) = -1 ,

S*=(T.S)*=I(identity) , (1.1.3.3)

where DS is the Jacobian matrix of S.

Then T?! = 8T8 is the inverse of T, and thus T is conjugate
to its inverse‘by an orientation-reversing involution S.

That is, if {((x;, ¥y; ), 1i€Z) 18 an orbit of T, then

{ S(x;,Y:;),1 € Z ) is an orbit of T'. So, possession of a
symmetry S8 is equivalent to reverservilitf in continuous
systems(1.1.3.2). It S is a symmetry for T, then so0 are Tms,
me€e Z , since Tm-S-Tm = 8. In particular, TS 18 called a
complementary symmetry, since T can be factorized into the
product (TS)-.S of two involutions.

The set of the fixed points of symmetries 1s used to
locate symmetric orbits as will be seen later. Usually, the
notation Fix(S) is used to denote the fixed points of the
symmetry 8, and hereafter I use this notation. A fixed point
of an orientation-reversing involution S has a neighborhood
in which there exist coordinates(X,Y), called the symmetry

coordinates, such that
S(X,Y) = (X,-Y) . (1.1.3.4)

Therefore, the fixed points form a curve called the symmetry
line. This was shown by Finn(i974.) If x i8 a fixed point
n - . . 2n
of S, then T (x) is the fixed point of T 'S:
S.X = X => T2n S(Tn-x) = Tn-x

So, Fix(T2"s) = TP.Fix(S). Similarly, Fix(T2"* .g9) = T™.Fix(T

16



Therefore, a family of synmmetries {TmS, meZ) separates into

two half-families (T2"8) and (T "*lg

Y.
I give some examples of reversible maps which are also

area-preserving twist maps. They are given bhelow.

The general DeVogelaere map T(13858);

H
"
<X
| USRS |
.
<
\ \
| i

-Y + F(X) ]

X - £(X*) (1.1.3.5)

can be factorized into the product (TS).S of two involutions:

M

7
TS :[ £ }—a[ X'= ¥ + £04) ] (1.1.3.6)

vi= X - £(X")

For this maﬁ, coordinates (X,Y) are symmetry coordinates

for S- symmetry and symmetry lines Fix(8) and Fix(TS) are:
Fix(S): ¥Y=0, Fix(TS): Y= X-P(X) . (1.1.3.7)

since det DT=1 and 8&X7/8Y=-1 for all (X,Y), T is an area-
preserving twist map. The generating function L(X,X') for

the map T is:

L(X,X7) = X.X7 - F(X) - F(x) , (1.1.3.8)

where F (X) = £(X)

Particularly, the quadratic Devogelaere map 1n which f(X)=

p:X-{1-p)X* has been extensively studied by Greene et al (1381

17



The McHMillan map T(1971):

) X X -y + 2f(x)
T: — (1.1.3.9)

’
>4 Y x

H

i

is also a reversible map, since it can be factorized into
p

the product (TS).-S of two involutions:

X ., X = X
S: — ’
y Yy = -y + 2f(x) ’
(1.1.3.10)
x x’ =
TS: — , =7
y y =X
So, two symmetry lines Fix(S) and Fix(TS) are;
Fix(8): y = f(x), Fix(TS): y = x . (1.1.3.11)
Since det DT = 1 and Bx'/ay = -1 for all (x,y), the McHMillan

map T is8 an area-preserving twist map. The generating function

L(x,x’) for this map T is:
L(x,x”) = x-x7 - xeF(x) (1.1.3.12)

where F/(x) = f(x)
¥hen f(x)= %.(1-ax* ), T is called Henon's guadratic map
(1862), and when f(x)=cx + X*, T is called Helleman's
standard guadratic map(1980). In fact, the McHillan map
is equivalent to the DeVogelaere map by an area—presefving

coordinate change:

(1.1.3.13)
Y + f(Y)

<
1l

18



The standard or Taylor - Chirikov map T (Chirikov, 1979)

is:
V4
y y =y + f(x)
To _)
x x’ =x +y’ » (1.1.3.14)
f(xX) = -k s8in X.

The standard map T is doubly reversible, since it has two

independent symmetries S; and S,

y' =y o+ £(x) y’s
s,.[ Ts,;[

f V4

X = =X > ‘x:—x.’.y ,

y' = -y - £(x) y’= -y (1.1.3.15)
S*‘[ TS;:[

f V4

x = X . , x’= x - y

Since the standard map is doubly periodic in x and y, one
can_regard the map as acting on the torus.

Then the syﬁmetry lines are:

Fix(s8,): x =0, m , Fix(TS, ):x= y/2, Y/2+n,
Fix(S;): y= -f(x)r/2 , -f(x)/2 + 1, {1.1.3.16)

Fix(TS,): y = 0

Note that the standard map can also be put into the

generalized DeVogelaere form (1.1.3.5) by an area-preserving

coordinate change:

X = x A
[ (1.1.3.17)

Y -y + X - f£(x)
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§ 1.2 Periodic orbits

In this section, I discuss periodic orbits in reversible
area~preserving twist maps with Zzero net flux.

In 8 1.2.;, I‘discuss the linear stability and the Poin-
care index of fixed points in area-preserving maps. In § 1.2.2,
for area-preserving twist maps with zero net flux, periodic
orbits are definrd in the action representétionn and their
stability are considered in the action representation. Then
I discuss the Poincare -~ Birkxhoff theorem which proves the
existence of many periodic orbits which are called Birkhoff
orbits. In § 1.2.3. symmetric periodic orbits are defined in
reversible maps. I describe their connection with symmetry
linés and the dominant symmetry for Birkhoff orbits. In the
final subsection(8 1.2.4), I discuss bifurcation of periodic

orbits in reversible area-preserving maps, which means the

branching of periodic orbits as a parameter is varied.
§ 1.2.1 Stability of periodic orbits

A point x is said to be a fixed point of a map T if <
T.-x = x. A point x is said to be periodic if it is a fixed
point of some iterate of T. The smallest positive integer n
such that T'x = x is called its period, and its orbit is
called a periodic orbit of period n. Periodic orbits are
important because they govern the behavior in a neighborhood.

The type of the nearby behavior is given almost completely
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by the eigenvalues of the linearization of a map Tn about
the periodic orbit. Since a periodic point of period n of
a map T can be considered as a fixed point of Tn, I will
consider only fixed points without loss of genera}ity.

A fixed point x of a map T 18 said to be Liapunov
stable if every neighborhood U has a subneighborhood,

such that

™w cu , Ykxezt, (1.2.1.1)

“where 2+ is the non-negative integers.
Also, a fixed point x of a map T is said to be asymptotically
stable 1f it has a neighborhood U, such that

T(U) C U, n TF(U) = (x) : (1.2.1.2)

k20
It x 18 asymptotically stable,then it is called an attractor
with its baéin U. aAn attracting fixed point 1is Liapuﬁov
stable, but not necessarily vice versa. & fTixed point 1is
said_to be unstable if it is not Liapunov stable.

The linear stability analysis of a fixed point is to
examine the stability of the linearization of a map T (i.e.
the derivative map DT, also called the Jacobian matrix) at
the fixed point. Its stability is called the linear stability
of the fixed point. This is given by the eigenvalues of DT,
which are called the multipliers of the fixed point.

The Jacobian matrix DT can be put into its Jordan normal

form by a similarity transformation (Hefing, 18963):
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B,
B,
B; (1.2.1.3)

where the B, ate Jordan blocks of the form:
J

A, 1

J
A, 1
J .

B. = . (1.2.1.4)
J . v
. 1
A ’
5 j 4
where A, is an eigenvalue of the Jacobian matrix DT. If all
J

the multipliers of the fixed point are inside fhe unit circle, .
then the fixed poiht is asymptotically stable under DT. Only
if there is some multipliers outside the unit circle, it is
unstable under DT, In fact, in these two cases, the fixed
point always has the same stability under T as that under DT.
Thus, in these two cases, the multipliers are sufficient to
determine the stability under T. In the remaining cases,
there are some nmultipliers on the unit circle and the others
inside the unit circles. If DT has a nontrivial Jordan block
(i.e. of order greater than 1) with eigenvalue on the unit
circle, then the fixed point is unstable under DT, and always,
unstable under T. If all the eigenvalues on the unit circle
have diagonal Jordan blocks (i.e. of order 1), then the fixed
point is stable under DT. But tﬁe stability under T is not
given by multipliers. $So, in this case, nonlinear analysis

is required to determine the stability under T.
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I restrict my attention to the stability of fixed points
in two-dimensional area-preserving maps. In these maps, the
fixed points cannot be asymptotically stable, since the area
i8 preserved under evolution.

The Jacobian matric M of a periodic orbit of period n

(i.e. the derivative map DTn ) in a 2-dim. area-preserving

map T is:
n-1
N N
M = ll DT (x;, ¥:) (1.2.1.5)
i =0
A A . .
where ( (xX;,y;}), 1 = 0,..., n-1} is a periodic orbit of

period n, and DT 18 the derivative map of a8 map T. The multi-

pliers A are the roots of

A -Tr M:x + Det M = 0 , (1.2.1.6)
where Det M = 1.
Area-preservation implies that Det HM=1, and thus the product
of the multipliers of a periodic orbit must be 1. Together
with reality of M, this restricts them to be a reciprocal pair
of reals, or a complex conjugate pair on the unit circle. The

multipliers are;

Tr M

5 ((TrM)* /4 - 1);é . (1.2.1.7)

A =

Thus, the linear stability of a periodic orbit is determined
by the trace of the Jacobian matrix(i.e. TrM) or some derived

quantity called the residue(Greene, 1979) defined by:

R = (2-TrM) /4 . (1.2.1.8)
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IT TrM32 or R<0O, then the multipliers are a reciprocal pair
of positive reals with one multiplier greater than 1.
In this case, the periodic orbit is linearly unstable, and
also unstable under T. IT | TrM | <2 or 0 <R <1, then the
multipliers are a complex conjugateipair on the unit circle.
In this case, the periodic orbit is linearly stable. In fact,
this periodic orbit is typically stable, apart from the cases
§=3/4, 1/2 corresponding to 1/3~- , 1/4- resonance. The case
of 1/3-resonance is unstable, and the case of 1,/4-resonance
can be stable or unstable. These follow from a normal form
analysis and Moser’'s twist theorem (Moser, 1973),and I will
discuss these in § 1.2.4. If TrM <-2 or R>»1 , then the
multipliers are a reciprocal pair of negative reals with
one multiplier less thaﬂ--l. In this case, the periodic
orbit is linearly unstable, and also unstable. In the remain-
ing cases, TrM is 2 or -2, and R is 0 or 1. In these cases,
the periodic orbit is linearly stable or unstable according
as its jordan normal form is diagonal or not, and when it is
linearly unstable, it is also unstable. In fact, even when
the Jordan normal form is diagonal the periodic orbit is
typically unstahle (Mackay, 1982).

The quadratic form:

v = -Cx* +(A-D)xy +By? (1.2.1.9)

1s invariant under the Jacobian matrix M of a periodic orbit

(Greene, 1968):

H:[A B] det M = 1
14
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The quadratic invariant curve is an ellipse or hyperbola

according as & is positive or negative;
a =1 - (TrM/2)* = 4R(1-R) . ' (1.2.1.10)

If 0 <R <1, then the invariant curve is an ellipse. In this
case, the multipliers A can be written as exp(tix) and the
regsidue R is sin‘(m/?). Then, tangent orbits én fhe invariant
ellipse rotate about the periodic orbit with the éverage
angle « per period. So, the periodic orbit is called an‘
elliptic orbit. The orientation 6 for the invariant ellipse

is given by :
tan 26 = (D-A)/(B+C) . (1.2.1.11)

The ratio of the major, p+, to the minor, ¢ , semiaxes can

be also obtained by :

2
[ 2(p 79 ) }_ R(1-R)
2

1+(p_/9+) (1.2.1.12)

If R<O or R>1, then the invariant curve is an hyperbola.
Then tangent orbits on the invariant hyperbola diverge expo-
nentially from the periodic orbits. When R<0 the multipliers
are positive, and thus the periodic orbit is called an
ordinary (or regular) hyperbolic orbit, while when R > 1

the periodic orbit is called an inversion hyperbolic orbit

{ or a hyperbholic orbit with reflection ) because the
multipliers are negétive. The angle Yy between the asymptotes

of this invariant hyperbola is given by:
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tan®* Yy = 16.R-(R~1)/(B-C)?. (1.2.1.13)

I A defined in (1.2.1.10) i8 zero, then R is 0 or 1.
In this case A=D, and B or C is zero. If one of B and C
is not zero, then the invariant curves are a set of parallel
lines:
y=constant or x=constant .

In this case, there is a line of fixed points or period-2

orbits of M according as R is O or 1 :
Yy =0 or X =0

Except the line of fixed points or period-2 orbits of M ,
tangent orbits bn an invariant straight line diverge linearly
from the periodic orbit. If both B and € are zero, all the
points in the tangent space are the fixed points or period-2
points of M according as R 1s 0 or 1. In this case the
periodic orbit is linearly stable. When R=0 the multipliers
are a pair at 1'and the periodic orbit is called an ordinary
{or regular)parabolic orbit, while when R=1 the pericdic orbit
is called an inversion parabolic orbit (or a parabolic orbit
with reflection) because the multipliers are a pair at -1.
All the céses aré sketched in figure 1.2.1.1 for a linear
area-preserving map.

If a fixed point has no multipliers equal to +1,then the
fixed point is isolated:it has a neighborhood in which there
are no other fixed points(Mackay,1982). Similarly, periodic
orbits with no multipliers equal to +1 are isolated from

periodic orbits of the same period, or a submultiple.
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Therefore, a periodic orbit which is not ordinary parabolic
is an isolated periodic orbit. For an isolated fixed point,
a topological index of a fixed point, called the Poincare
index, can be defined (Arnold and Avez, 1968). For a map T
on a plane, consider a vector field v such that the field
vector v(x) at x is the vector connecting x with its image

T(x):

vix) = T(X) - x . | (1.2.1.14)

A point at which the field vector vanishes is8 called a singu-
lar point of the vector field. A fixed point X of a map T 1is

a singular point of the vector field defined by (1.2.1.14).
Note that the compbnents of the field have no singularities

at a singular point. The term ‘*singular point’ stems from the
fact that the directions of the field vectors change near such
a singular point, ingeneral, discontinuously.

The index of a closed curve C which does not go through any
singular points of the field is defined as the number of times
that the field vector at x encircles 0 as x traverses C , and
the sign of the index is positive or negative according as the
encirclement and traversal are in the same or opposite direc-
tion. The index of a closed curve does not change under con-
tinuous transformation of the closed curve, as long as the
curve does not pass through any singular points. The direction
of the field vector changes continuously away from the singular

proints. Therefore the number of encirclements also depends

continuously on the curve, and must be constant, being an
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integer. So, the index of a closed curve containing no fixed
points is zero, provided that the closed curve can be shrunk
to a point. This 1s because it can be shrunk to a curve small
enough that the directions of field vectors are restricted to
some angle, 8o that no encirclements are possible. Similarly,
the index of a curve does not change under continuous trans-
formation of the vector field or the map, as long as there are
no fixed points of the map on the curve. The index of an
isolated fixed point is the index of any closed curve surround-
ing it and no other fixed points. The 1ndex of a closed curve
is the sum of the index of each fixed péint contained in the‘
closed curve. In area-preserving maps, the 1ndex of a fixed
- point is +1 or -1 éccording as the residue R of the fixed point
is greater or less than 0 (Arnod and Avez, 1968).

In an area-preserving map T, the linear stability 1in
one direction of time implies the same stability in the other
direction(Arnold, 1878). This can be seen easily as follows

The derivative map DT of T satisfies :

(DT)t-J-DT

H

J o,

(1.2.1.15)
;| o -1
1 o1,

where the superscript t denotes the transpose of a matrix.

Then, the characteristic polynomial p{(x) of DT is reflexive:
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P(X) Det (DT - AI)

Det(DT? - AI) (1.2.1.186)

A% Det(DT - 2?.1) ,

where I is the identity matrix.
, .
Thus, if an periodic orbit is stable under T, the periodic
orbit is also stable under T?*. Recall that the Liapunov sta-

bility is defined only in the case of the forward direction

of time ( see(1.2.1.1) )
§ 1.2.2 Periodic orbits in twist maps

In this subsection, I consider an periodic area-pre-
serving twist map T with zero net flux. Then, there exists
a generating function L(x,x') for T which satisfies the twist

condition(1.1.2.2) or (1.1.2.4)and has zero Calabi invariant
8*Lsaxax’ < 0, Lix,x’) = L(x+1, x“+1) (1.2.2.1)

Here, 2nx denotes an angle variable.
Consider generalized paths, such that

xi+q= x1+ P for some integer p,q . (1.2.2.2)

They are called periodic paths of type(p,q).
Orbits satisfying(1.2.2.2) are cailed periodic orbits of type
(p,q) and are given by the stationary action principle;a path

of type(p,q) gives an orbit of type(p,q)if its action

q-1
A = § L(xy, X, ) (1.2.2.3)
i=0
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is stationary with respect to variations keeping

xq=x0+p
If the generafing function L satisfies (1.2.2.1), then the
action of periodic paths of type(p,q) is bounded below, and
thus there is a minimizing periodic orbit of type (p,q)
(Aubry 1983, Mather 13882). There can be more than one mini-
mizing orhit. This can be seen easily as follows. Translat-
ing one minimizing orbit by an integer in time or space or
both gives another minimizing orbit. Since the net flux 1is
zero, these minimizing orbits have the same action; This
implies existence of saddle points with one downward direc-
tion of the action (1.2.2.3) between the minima(Aubry 1983,
Mather 1982). ,They are called minimax periodic orbits.
Therefore,thére are two types of periodic orbit of type(p,q):
one is minimizing periodic orbit,and the other is a minimax
periodic orbit.

Madkay and Meiss(1983) have examined the stability of
periodic orbits in the action representation. By the

stationary action principle, an orbit satisfies (1.1.2.8):

L;(xi_ xi) + Li(xi, X. ) = 0,

1’ i+1
where the subscript i denotes the derivative with respect

to ith argument. Then, the tahgent orbits {(g;) satisfy :

Lo %590 X30085 4
+ [L22(x1_1, xi) + Lll(xi’ xi+1)] Ci . (1.2.2.5)
+ Lll(Xi,Xi+1) ci = 0 .
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If a periodic orbit of period q has the multipliers X, then

there exists a tangent orbit satisfying

§i+q = A gi . | (1.2.2.6)

Then

y Co = N tq (1.2.2.7)

1]
>
(Al
»

cC[‘+-1

Combining (1.2.2.7) with (1.2.2.5), a system of equations to
solve is:

M(x). § =0 (1.2.2.8)

where ¢ 18 the column vector {(g;} and M a q x q matrix
(Mij,léi,3£q } with entries, such that

for q > 2 ,

My i1 Do qr %50
Mig 7 Lopg_qnXy) + Ly 055 X500
My ier™ Daor X040 Mg = MLy (X a%y)
q1‘ A L12(x . XQ+1) ,
for q = 2,
L,,(0,1) + L (1, 2) A L, (0,1)+L, (1,2)

M())= .
L21(1,2) + A L12(2, 3) L22(1,2) + L11(2,3)

for q = 1,

I

-1
M(X) L_.(0, 1) + L11(1,2) + A L21(0,1) + A L12(1.2)

22

To have a non-trivial solution for ¢ ,

32



Det M()) =0 ’ (1.2.2.9)

where for g=1 Det M(A) means M(A).

After a expansion of Det M(A), one finds :

-1 |
Det M(A)=Det M(1)-(x + A - 2). !l (-L, _(X., X. .)).
i =0 12 7717 7141
Since the residue R of the periodic orhit is (2-ix-A"1)/4

defined in (1.2.1.8), the residue R becomes:

q-1
= - 1 T «- -t
R = - ;Det M(1).( 1—0( Lo tx; 5 X5, ) (1.2.2.10)

Note that M(1) is tﬁe matrix of the second variations of the
action in the space of periodic paths of type(p,q). Thus, the
multipliers of a periodic orbit of period q are related to
the second variations of the action about the periodic

orbit. Under the twist condition (8*L/3x8x’<0), the denomi-
nator of(1.2.2.10) is negative. So,at a minimum of the action
all the eigenvalues of M(1i) are positive, and thus R < 0.

At a minimax with one downward direction, all the eigenvalues
except one are positive and thus R>0. So, minimizing periodic
orbits have negative residues, while minimaximilizing periodic
orbits have positive residues.

Birxhoff(13927)showed that every periodic afea-preserving
map with zero net flux has at least two periodic orbits of
type (p,qifor each rational p/q in aﬁ appropriate interval
which is8 often called the range of twist and these orbits are
called Birxhoff orbits. This is called the Poincare-Birkhoff
theorem. For example, a map near an elliptic fixed point with

multipliers eila typically has twist, and the range of twist
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is betwéen 0 and x/2n. So, in this range of twist there exist
at least two periodic orbits of type (p,q) for each rational
p/q. Arnold and Avez(1968) have proved the Poincare-Birkhoff

theorem only for maps close enough to an integrable twist map:

-
—
il

I + €ef(I,e)

6 + 2nx(I) + €g{(I,0) ’

o
o
H

where x“(I)< O , Det (DT€)= 1, ¥ and g are 2n-Periodic in 6,
f(0,0)= 0 = g(0,0) and thus (0,0) is the fixed point of Te'
Here 6 is an angle variable. Even though their proof is
restricted to T_ with sufficiently small €, it is easy to
understand, and thus I reproduce it. Consider an invariant
circle I' of T on which x{(I)= m/n, where T is the integrable
twist map when € = 0. Théh, every point on I is a fixed point
of T". Also, consider two invariant circles r¥ and r” of T
between which the invariant circle I' lies,. Oon F+, o> m/N

and on I' , x< m/n. Then, under the map Tn, every point on

rt rotates counterclockxwise, every point on ' clockwise, and
every point on I' remains unchanged. These relative twists are
preserved for T? if € is small enough. So, on each radius

6 = constant, there exist a point 1I{6,e¢) whose angular coordinat

© 1s unchanged under Tz, These radially mapped points make up

a curve FE . Applying Tt to FE gives another curve TI;-I"€

Since T? is area-preserving, and FE and T?-r‘E enclose the fixed
point (0,0), FE and Tz-r‘€ must intersect each other. Ignoring
the degenerate case in which Tz-r‘E colncides with FE , there

must be even number of intersections. It is helpful to see
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figure 1.2.2.1. Each intersection point is a fixed point of TE‘
Examining the nearby flows about a fixed point under T? , one
finds that half of all the intersection points are elliptic,
the other half ordinary hyperbolic , and elliptic and ordinary
hyperbolic points alternate (see figure 1.2.2.1). Consider an
elliptic fixed point x : T X = X. The ofbit of x under Te is

n.
{x, T X,+.+, T
€ €

x}. Then, all points of the orhit of x are
fixed points of T2° Hence, the set of elliptic fixed points
splits into orbits consisting of distinct n points. Let kX be
the number of such orbits. Then,there are k.n elliptic fixed
points and also there are k-n ordinary hyperbolic points,
because the number of ordinary hyperbolic fixed points is
"the same as that of elliptic fixed points.

LLet F be the difference in actions between the mini-

mizing and minimax periodic orbits:

F =a . . - A . . (1.2.2.11)
minimax min

Then, F can be interpreted as the area that is transported
between the minimizing and minimax periodic orbits per
iteration (Mackay et al. 1984). This can be seen easily as
follows . Join up the gap between two neighbofing minimizing
points by any curve C passing through the minimax point

lying between the two neighboring minimizing point(see Figure

1.2.2.2). Let us describe the chosen curve € by a function
po(xo). Then, one can close the image gaps with the image of
C . The images pt(xt) of C , with t=1 to n, form a partial

barrier with one turnstile in the chosen gap. Thus, one can
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blame all the transport on the chosen gap (see Figure 1.2.2.2),

.

The flux through the turnstile is:

cn Co _ _
F = I P, dxn - I P, dxo {(1.2.2.12)
n
gL - 8L
Fa (xn_l, xn) dxn +I IV I (xO ' Xy )dxO
n : 0
It xt-1’ xt and xt+1 afe three successive points on an orbhit,
then
oL ) N
3% (xt-l’ xt) + A% (xt,xt+1) =0
t t
n-1
) 3L
S0, Z f'dxt(éi—‘xt-1’xt’ tax (X o0 Xpyq M) =0
t=1 t t

Add this in (1.2.2.12). Then,

0]
H

n-1
f aa  , A = z Lix, , X, , ) (1.2.2.13)
t=0

L T - A _.
minimax mnin

Lad
[e}



Figuke 1.2.2.] : Brrkhoff orbits for
amn akea—-F!-e.se}-ving. ‘waﬁf map Te CIOSE;

+0 amn m-f:eg}-aue ‘II:W:‘S‘& ‘i‘naF. & JEﬂoxL_'eS

amn e”iF‘al:;‘c Poi‘ml: a‘ndl X o#—é‘i‘na)-)/ hypel-bohc
fom‘%:,
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§ 1.2.3 Symmetric periodic orbits in reversible maps

Reversibility implies that if ((x;,¥y:)) is an orbit of
a reversible map T with symmetry S (see §1.1.3), then the
reflection (s(x;,y:)) of the orbit by S is an orbit of its
time reversal T'. A symmetric orbit is an orbit that is
invariant under 8 : an orbit that is its own time reversal.

Firstly, I discuss the stability of symmetric periodic
orbits in a reversible map T. A symmetric fixed point cannot
be asymptotically stable, because if U were a neighborhood
of the symmetric fixed point x, satisfying (1.2.1.2)(i.e.
a basin of attractiqn), then SU would be a neighborhood of

‘x, hence
-3 'Y '
ko s.t%t. T U C sU for k> k, , (1.2.3.1)
. K
and applying TS to (1.2.3.1),

™ U c sU for x> ko (1.2.3.2)

which is a contradiction to the fact that T]lc U contracts
asymptotically to {(x}. Also, like the case in area-preser-
ving maps,the multipliers of the symmetric fixed points come
in reciprocal péirs (Devaney, 1876). This can be seen easily
as follows. The derivative map DT(x) of a symmetric fixed

point x 1is
DT{(x) = DTS(x)-DS(x) , (1.2.3.3)

because T = (TS).8 and S:X = X
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Since S*= 1 = (TS)?, DS(x) and DTS(x) are linear involutions.
So, for a symmetric fixed point x the derivative map DT(x)

is a linear feversible map. Then, the characteristic poly-
nomial of DT(x) is reflexive;

o

P(X) Det(ﬁT(x) - A1)

I

Det(DT™? (x)-xI)

‘ (1.2.3.4)
= A* Det(DT(x) - A I)/Det(DT(x)).

Therefore, if A is an eigenvalue of DT(k), then A™ is also

an eigenvalue, except in the case » = *i. Special consider-
ation is required in the case A = %1 . Since linear involu-
tions have determinants #1, Det(DT(x)is 1 or -1. Therefore
the multiplicity of eigenvalue -1 must be even or odd
according as Det(DT(x)) is 1 or -1. Then the multiplicity

of eigenvalue +1 is determined by elimination, depending on
Det(DT(x)) and the parity of the dimension of the phase space.
Also, by (1.2.3.4), the linear stability of a symmetric fixed
point in one direction of time is the same as that in the
other direction.

All the periodic orbits in reversible maps are not
symmetric(see él.é.q). Periodic orbits which are not symmetric
are called unsymmetric periodic orbits. If x is a unsymmetric
fixed point of a reversible map with symmetrf S, then Sx is a
fixed point of T, where 8Sx # Xx. The characteristic polynomial

P(Xx)of the unsymmetric fixed point is;

P(X) Det(DT(x) - xI)

I

(1.2.3.5)

A* Det(DT(Sx) - 71! I)/Det(DTSx).
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Therefore, if DT(x)has an eigenvalue X, then DT(Sx) has an
eigenvalue 1. Note that for an unsymmetric fixed point, the
stability in one direction is not the same as that in the
other direction, in general, because generally the derivative
map DT(x) is not a linear involution. But, if T is also area-

preserving, then (1.2.3.5) hecomes;

P(A)

Det(DT(x) - XI) '
(1.2.3.6)

Det(DT(Sx) - AI)

Hence, in this case, x and Sx have the same eigenvalue.
Secondly, I describhe the connections between symmetric

periodic orbits and symmetry lines. IT x is a point of a

symmnetric orbit of a reversible map T with symmetry S, theh

there exists some n such that

S.x = T -x (1.2.3.7)

If n is even, then

S.T -X =T x |, v (1.2.3.8)

and thus the orbit has a point T°/%x on Fix(S), the

symmetry line of S (see § 1.1.3). If n is odd, then

n+1 n+1

TS.T x =T 2 x , (1.2.3.9)

n+l

and thus the orbit has a point T 2 Xx on Fix(T8), the
symmetry line of TS. Conversely, a periodic orbit with a
point x on scome symmetry, €.49. Fix(8), is symmetric: since

S.%x = X, s % = T°F x for any x, and thus the periodic
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orbit is invariant under S. aAn intersection point of two
symmetry lines, Fix(T™S) and Fix(T'S), is a fixed point of
T® ™ and thus its orbit is a symmetric periodic orbit.
Conversely, a pbint of a periodic orbit of period q on Fix
(TmS) is an intersection point with Fix(Tm+KqS) for any k € Z.
Therefore, the intersection point of the symmetry lines,
Fix(Tm+qu) for all x, is a periodic point of period q.

If a periodic point x of even period 2n lies on Fix(S),
then T'x also lies on Fix(S) by (1.2.3.8). Similarly, if a
periodic point x of odd pefiod (2n+1) or (2n-1), then Tnx-lies
on Fix (ST) or fix (TS). Conversely, if x lies on Fix(S) and
T"x lies on Fix(TS), or Fix(ST) or Fix(TS), then x is a
periodic point, with period 2n, 2n+1, 2n-1, respectively,
where 2n, 2n+1i and 2—1,¥1n soﬁe cases, may be multiples of
the period. Therefore, given a complementary pair of
symmetries, a periodic orbit of even period has two points on
one symmetry line and none on the other, and a periodic orbit
of odd period has one on each symmetry line.  These relations
between symmetric periodic orbits and symmetry lines can be
used usefully in locating symmetric periodic orbits:
a symmetric periodic point can be evaluated by gding only
halfway round the orbit.

Finally, I discuss the dominant half-line for Birkhoff
orbits (see 81.2.2) in reversible area-preserving maps.
For example, I consider the standard map (1.1.3.14). For the

standard map T with a symmetry S,, T can be represented on a

torus, because T is doubly periodic in x and y (see (1.1.3,15)).
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There are two symmetry half-lines for S, and TS,, respectively:

Fix(S;): x = 0, @, Fix(TS,): X = y/2, y/2+n

.

Therefore, there are four half-lines. A remarkable, but not
mathematically understood, observation is that periodic
orbits of type(p,q) with positive residues have one point on
the half-~line x=0 (Shenker and Kadanoff, 1982). So, this
half-line is called the dominant half-line, and the other
three half-lines are called subdominant half-lines. Futher-
more, on the line x=m, there is a poinp with positive or
negative residue according as g is even or odd. On the line
x= y/2, one finds a point with positive or negative residue
according as p isveven or odd, and on the line X=y/2+n there
is a point with positive or negative residue according as
both p and g are odd or not. This is ;llustrated in figure
1.2.3.1 and tabulated in table 1.2.3.1. If a point %, of a
Birxhoff orbit of type(p,q) lies on the initial line, then
the half-way point round the orbit lies on the final line
(see table 1.2.3.1). Here, the half-way point is Tnxo when
q is 2n or 2n-1 . In this way, Birkhoff orbits and symmetry
half-lines are related. These relations are very helpful in

locating the Birkhoff orbits of type(p,q).
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Figuw-e L2..38.1 * The relations between

Birkhoff orbiks and symmethy lines. O
denotes a. mimmaximizing. Birkhoff oHbik:
of ype-Cp.F) and X o mrimiging. Bu-khoff-

orbit of 'Eyya-—-(,?,%-) .




-+ -

p/a R R |
initial line final line initial line final line
odd/even - x=0 X="n X=y/2 x:y/2+n’
odd/odd X =0 X=y/2+1 X=T X=y/s2
even/odd X =0 X=y/2 X=1 X=y/2+m

Table 1.2.3.1: Syanmetry-lines for Birkhoff orbits of type
(p,q). R+ and R denotes positive and negative residue,

respectively.
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§ 1.2.4 Bifurcations of periodic orbits

In this subsection, I discuss generic bifurcations 1in
reversible area~preserving maps with one parameter and
anomalous bifurcations in the standard map. Bifurcations
mean the branching of periodic orbits as a parameter is
varied.

Meyer(1970) and Rimmer{(1974) have obtained the generic
results for bifurcations in area-preserving maps and rever-
"8ible area-preserving maps, respectively. It may be nece-

ssary to state the meaning of the genericity in dynamical

systems used by mathematicans beéause the meaning of the
genericity used by mathemathicans is weaker than that uséd
by physicists(Abraham and Marsden 1978, Wightman 1981).

What the adjective 'typical’ should be deflned to mean is
required to study what actually happens in 'typical’ Hamil-
tonians(or maps). Physicists usually mean by the adjective
*typical’ that the exceptional set is a small uninteresting
set. One notion of 'small’ is measure zero with respect to
some measure . However , there is no natural measure to put
on the family of Hamiltonian systemé ( Wightman, 1981). On
the other hand , there is a natural topology in the space of
Hamiltonian systems, so called the Whitney topology(Abraham
and Marsden 1978, Wightman 1981): two Hamiltonian systems on
the phase space M are close in thé Cr Whitney topology if
all the derivatives of two Hamiltonians up to order r are

uniformly close over all M. A small set in a topological
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gpace is a nowhere dense set: the complement of the closure
of the small set 1s a dense open set. Therefore, if the set
of the exceptional points in the space of Hamlltonian systems
is a nowhere dense set, then the set of the non-exceptional
points is an open dense set. Thus, every point in the space
of Hamiltonian systems has a non-exceptional point in its
every néighborhood. But, in fadt, a much weéker notion is
useful iﬁ mathematics because for example the theorems ahout
generic bifurcations make a statement about all bifurcations
of all periodic orbits in Hamiltonian systems. In a weaker
sense, the exceptional set is a meager set: a countable
intersection of open dense sets, which is called a residual
set. To sum up , Mathemathicans use the adjective 'generic’
in a topological seﬁse , ot in a measure-theoretical sense.
Therefore, a proof that a property of a system is generic
does not establish necessarily that probably , a randomly
chosen system has the property in a measure~theoretical sense.
However , the proof establishes that systems whose Hamiltonians
are sufficientl& close to the system have the property.
Firstly, following Meyer(1870), I discuss generic bifur-
catlons in area-preserving maps. Let I be an interval and
T: R* x I 2 R* a 1-parameter family of area-preserving maps.

Then, for each € € I, T€= T is area-preserving.

R* x (€)
Let (Xg,€0) be a fixed point of T ;

T(Xe,€0) = T_ (Xo) = Xo , Xo€ R
o

If the multipliers of the fixed point are not +1, then there

47



exist neighborhoods U and V, Xo€ U C R* and €, V C I, and

a function f: ¥V 3 U, such that f(e, )= X, and ((f(€),€); € € V)
é U x V is the fixed point set of T in U x V. This results
from the implict function theorem (Apostol, 1973). Thus, a
map TE which has a parameter value € sufficiently_close to €4
has a unique fixed x in U. So, 1f a fixed poin{ does not

have multipliers +1, then it persists under sufficiently
small per{urbations. Therefore, the only time that a periodic
orbit could be created or destroyed or collide with another
periodic orbit of the same period or a submultiple is when

it has a multiplier +1. Also, note that if a fixed point of
TE has multipliers equal to>ei2nim/n , then 1t 1s also a
fixed point of Tgband has multipliers +1 under DTE, where

m and n are coprime integers n>t, and 0 £ m/n £ 1/2. Therefore,
when the multipliers of a fixed point are ei?nim/n , M/N-
bifurcations could occur. But I discuss only generic m/n
bifurcations in generic area-preserving maps. So, all
area-preserving maps are not considered, but a subset of all
area-preserving maps which 1s a set of generic area-preserving
maps 18 considered. An area-preserving map 1s called a
generic area-preserving map if each periodic poiht in the map

T2n¢
e

is either elliptic with multipliers (of;irrational

number), hyperbolic, extremal, transition or n-bifurcation
point with multipliers et?ntm/n. The definitions of extremal,
transition and n-bifurcation point will he given below.

Let us consider generic 1/2-bifurcation of a fixed point.

a fixed point with multipliers -1 of T€ 1is called a transitic:
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point if there exist coordines (X,¥y} such that

~X4AY+EX +- -

H
m

< X

| SO ——

—

<X
N

I It

~y+ax? +hxy+cex+dx® +- - - ,

where c#0 , a* + 2f#0 ; f=d + ae + ab/2.
Note that without loss of generality, 1t 1is possible to keep
a fixed point with multipliers -1 at (0,0) because the fixed
point with multiplier -1 persist under sufficlently small

perturbations, So, for a sufficiently small €

, (0,0) is

a fixed point of Te' The derivative map of T€ at (0,0) is

-1 1

DT_(0,0) =| __ )

Note that the first order effect on the diagonal terms of
DTE(O,O) does not appear in evaluating the trace of DTE(O,O).
So, it would appear to be necessary to calculate them to
higher order. But, to avoid this one can use the area-preser-
ving condition, as follows (Mackay,1882). This problem occurs
often in analyzing generic m/n-bifurcations. Let M be a linear

area-preserving map:

A B

C D

Then,

(TrM)*?

]

(a + D)2
4 4+ 4BC + (A

D)?

W¥hen TrM is close to +2 or -2
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Tr¥ = +2(a + BC/2 + (A-D)*/8 + ---) . (1.2.4.1)

So we can use the off-diagonal terms 1n evaluating the trace.

Then, the trace of DTE(O,O) is
Tr = ~-2.~- c€ + O(€?) ,

where I drop DTE(O,O) in TrDTE(O,O) and hereafter I will drop
3‘
it for my convenience. Let c-(a*+2f)< 0 and then consider

the case when €>0 ( if c-(a*+2f)> 0, then consider the case

when €<0 ). Maxe the substitutions:

Then,
X%= = X + u-(Y + eX?*) + o(u?)
W ¥Yi= - ¥ 4+ aX® + u(cX + bXY + dX3®) + o(u?)
The derivative map of Tu at (0,0) is :

-1 V8

DT, =} e -1

Then, by using the trick (1.2.4.1), the trace of DTu 1s:
Tr = -2-cu*® = -2-ce

Therefore, the fixed point 18 an inversion hyperbolic or an
elliptic point according as c.-€ is positive or negative.
AN
I.et us (X,Y) be period-2 points of Tu' Then, they are

fixed points of TL :
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X7/ =X-2u(Y-aX? /2)+6(u?)

T2 ¢
Bl v’’_voou(cX + aXY+fX? )+o(u?)

So, the period-2 points of Tu are:

X = :9:(—:>c/»(a‘+2f));é , ¥ = -ac/(a? +2f)
In the original coordiﬁate system (X,yY), they are
Q = te;é (—:’c/(a\;‘+2f));é , § = -gac/(a* +2f)
Using the trick (1.2.4.1), one finds
TrDTL = 2 - 8uc+6(u*) = 2 - 8€’c

Then, the period-2 point is elliptic or ordinary hyperbolic
according as ¢ 1is positive or negative. Therefore, in typil-
cal area-preserving maps,two types of generic 1/2-bifurcation
occur accorﬁing as c is positive or negative; These two cases

are sketched, as follows.

<>0
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In this and futufe sketches, solid line indicates elliptic,
dashed line inversion hyperbolic, and dotted line ordinary
hYperbolic; and x n denétes that the period of a bifurcated
orbit from a mother orbit is the period of the mother orbit
times n.

LLet us consider higher order bifurcations from a fixed

point of T€ whose multipliers are et2nzm/n {nx3). Then,

‘there exist canonical coordinates (I,®) (Meyer, 1970), such

that 2

n.—
2
e’= o +2n m/m + € x{(e)/n + E Bi(e)/n-Ii
i=1
n-2

+ y(e)/n.cos no-1I 2 ., f(I,e,e),

1= 1 + 2.¥(e)sn-sin ne-1""2 + g(I,e,¢€),

j
a'f .

—(®6,0,0)=0, Jy =0, 1, 2,.... n-1,
ap’
J

o
——3(6,0,0) = 0, J =0, 1, 2,..., n+1,
ap?

(21)§é cos O, y= (21)& sin® . (1.2.4.2)

b
n

This 1s called a normal form of TE . A fixed point is called
a n-bifurcation point if x and Yy are not zero wheh n=3,o,Y
and gty are not zero when n=4, and «, 8 and Yy are not zero
when n35, where x = x(0), 8= B, (0) and y=Y(0).

Let us consider the case when n=3. Make the substitution

in (1.2.4.2): I = €*r. Then, T_ becomes ;

2

r’=r +2!€|-§-sin3e r= +0(e?),

= ]€e|s.cos 3€>=r*é + o(e?)

’ 24 Y
= .1/ €+ —
e & + 2n-1/3+ 3 + 3
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N N
L.Let us {(r,6)be period-3 points of Te' Then they are fixed

points of Ti :

r(3)= r + 2 le]-Y-sin3e-r§ +0(€?),

(3) Y

e = 8 4+ €:X +]€].-y.-co830.r° + O(e*)

Let x-¥>0 (otherwise, «y <0). Then, the period-3 pecints are:

N AN
sin 38 = 0 , cos 36«1"é = - T%—-

~«<|R

Fal N
if €> 0, then 36 = {(2x+1)n, otherwise 36 = 2xn, k=0,1,2, and

Fad N
?ﬁ = xX/Y . In the original system (I,8), Iﬁz |e]-r£ =lexs/vl.
Using the trick (1.2.4.1), the trace of DTZ is :
TrDTi = 2 + 3€a
Therefore, the period-3 points are ordinary hyperbolic. So,

we get a 1/3-bifurcation diagram like:

Note that often one sees that the period-3 points are born
by a tangent bifurcation which will be explained below (e.qg.

see §2.2), but this is outside the range of local analysis.
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So, a typical 1/3-bifurcation diagram is:

Let us consider the case when n=4. Make the substitution

-

in (1.2.4.2) ; I=€er . Then TE becomes
E-Y
r/=r + 2-%-e-sinqe-r’+0(e‘),
e’ = e + 2“-% + %(u+9r)+ % YCos46.r+0(€?)

N
Let (©,r) be period-4 points of T_. Then they are fixed

points of TE :

r(Q) r + 2€.Yy-8in4e r* +0(e?) R

(4)

e © + €E(X+Br) + €-Y-COS406.r + O(€?)

H

A system of equations to solve to obtain fixed points of

4y
T is
€

N n A n
x + (B + Ycosid® )-r = 0O , s81nh 48 = O
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In the original coordinate system (I,®), they are:

A A ; A
ex + (p+ycosd4e).I = 0, sin 46 = 0O

when {(Bl>|yl, if € > 0, then there is no fixed point

since I< 0, which is a contradiction to the fact I>0, other-

wise
[a) o
. Xeo€
Bty ’
N . . . N N
46 = 2kn or (2k+1)n according as the sign in I 1is + or
k=0,1, 2, 3.

When |Bi<ivl, if €y > O, then

a € A -
I =| e I and 46 = (2k+1)n, otherwise
N xX€ N
I =l | and 46 = 2Xn
B+Y

The stability of period-4 points are given by
L Ia)
TrDTE = 2-Bexy cosi46

Let x>0 (otherwise, «<0). Then, When {(Bi>|Yv|, 1if

€Yy>0, then the period-4 points are elliptic or ordinary
hyperbolic according as 48 = 2knm or (2k+1)n, otherwise vice
versa. ¥When |Bi<|yl, if €y > 0, then the period-4

points are ordiary hyperbolic, otherwise vice versa.
Therefore, the former case (]|B8l>]|Y|) is like % ~-bifurcation
case (nas), while the latter case is like 1,3 - bifurcation

case. The two ctases are sxetched, as follows
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gl > 1% 1g1< 1Yl

Note that likxe the 1,3-bifurcation, when |[B|<iY] , period
-4 points are often born by tangent bifurcation.

When nas, TE becomes:

’ -1 2Y /2

n
r=71vr + € -—H-sin(ne)(er) /2

TR 2l

H

e‘’= © + 2n-m/n + e-% + e-g-r + ﬁ(ei)

The period-n points are fixed points of T?:

2 /2

r = r + e“-27-sin(ne)(er)n/ +c7(€r1 )

e(n)= 8 + €(x+Br) + G(eg )

N I
The n-periodic points(e, r) of Te are given by a system of

equations:

fa) N
sin(ne) = 0 , x + Br = 0

In the original coordinate system, this system of equations ar

N Fa) N
gsin{(neé) =0 , I = - €.ct/P
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l.et x>0 (otherwise, let x<O0 ). Then, i1f ge>0, then there are

N
no n-periodic points because I < 0, otherwise

ra) (v 4 - N
I = |e§ j » MO = 2Kn Oor (2K +1)n
X =0,1,2,...,n-1 " .

Using the trick (1.2.4.1), one'finds
. laY
TrDT2 = 2 + 2n-l€-a/Bln/2-YB'cog ne .

So, if y8>0, then periodic n-points are ordinary hyperbolic
ra) .
or elliptic according as né = 2kn or (2k+1)m, otherwise vice

versa. The m/n-bifurcation(nasS)diagram is sketched below.

¥When n=1, a fixed point is called an extremal point
if it satisfies some conditions (for details, see HMeyer(i19870)).

Only 1 sketch two generic O/i-hifurcations, as follows.

>0 ¢
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Note that in the second case in the sketches, two fixed
points which are elliptic are ordinary hyperbolic respec-
tively pop up when €>0. This 18 called a tangent bifurcation.
Secondly, following Rimmer(1974),I discuss generic
bifurcétions of symmetric fixed points in reversible area-
preserving maps. The main differences between generic bifur-
cations in area-preserving maps and those in reversible area-
preserving maps come in the case of nmultipliers +1,where there
are two typical cases. One case is the same as that in area-

preserving maps. The other case is sketched below.

M .
:  |®o;
Xl e . 0X

.' ..
SELO

[

(-]

@

As shown in the skxetches, in this case, two further families
of unsymmetric points are produced from the mother orbit.
Except this case, all periodic orbits produced by generic
bifurcations of a symmetric periodic orbits are also symmetric.
Finally, follwing Mackay(1982), I discuss nongeneric
anomalous bifurcations in the standard map (1.1.3.14). Various
authors(Benettin et al, 1980,Schmidt and Bialek,1982,Greene,
Karney, and Bak and Jensen referred to by Mackay, 1982) have
reported anomalous bifurcations of periodic orbits in the

standard map. Note that the map T:(X,¥)3(X’7,¥7) studied by
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Benettin et al can be transformed into the standard map by

some coordinate change;

Their observations in the standard map can be summarized as
follows. The fixed point at (0,0) and period-2 orbit at(o,n),
(n, ) have generic m/n-bifurcations at multipliers ei2n£m/n ,
when n is even, but anomalous double m/n-bifurcation when n
is odd: when n 1s odd, two families of periodic orbits whose
periods are n times as long as the period of the mother orbit
are born. The multipliers of the daughters of period an even
multiple of that of the mother orbit, +1 at birth, travel
round the unit ciréle, pass through each other at -1,continue
to go round the unit circle to +1,and split along the positive
real line, as a parameter is varied. During this change of
multipliers,‘generic or anomalous double m/n-bifurcations
occur: when the multipliers are et?nim/n , generic m/n-
bifurcations occur when m is even, but anomalous double m/n-
bifurcations when m is odd. When the multipliers go through
+1, a generic bifurcation occur; two further families of
periodic orbits of the samevperiod as that of the mother are
born.

These anomalous bifurcations in the standard map may be
explained as follows. The standard map T is doubly periodic

in (x,yY), and thus the map can be considered to be acting on

a torus. Furthermore, the map has an inversion symmetry:
/

T = U.T.-U , Ui x" = -x, ¥y =-Y%
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Then, identifying points on a torus which are related by U,

one can consider the map to be acting on a sphere with four
corners{see figure 1.2.4.1). The four corners are fixed
points under U. Recall that the standard map has two
‘reversible symffetry S, and S, (see (1.1.3.15)), S;= US, and

TS, = U(TS, ). So, on a sphere with four corners, two symmetries,
S, and S; are reduced to one symmetry.

If (T .¥ x€T (a torus), neZ) is an orbit, then (UT x,
neZ) is also an orbit. An U-symmetric orbit is an invariant
orbit under U. LLet x be an U-symmetric point. Then U-£=me,
for some m. So, T2m-x = x, and thus an U-symmetric orbit
must be periodic. Let p be the period. Then, without loss
of generality, 0£h<p. If m 1s zero, then U.x = x, X on
a torus. S0, in this case, the orbit is composed of sone
fixed points of U. This orbit is calledva strongly symmetric
orbit (Mackay, 1982). If m is not zero, then 2m must be a
multiple of p. Since O0O<m<p, m=p/2, p even. In this case,
the orbit is called a weakly symmetric orbhit (Mackay, 1982).
In the siandard map acting on a torus, the period-1 orbits
and périod—? orbit at(0,n),(n,n) are strongly symmetric orbit.
When the ﬁultipliers of these strongly symmetric orbits are
e?nim/n' if n 1is even, then generic m/n—bifurcations nay
occur, otherwise anomalous double m/n-bifurcations. This 1is
because a periodic orbit of even period could be a weakly
symmetric orbit, on the other hand a periodic orbit of odd

period can not be a weakly symmetric orbit and a pair of
/

unsymmetric orbits exists. Assume that all the orbits of even
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period born from the strongly symmetric orbits are weakly
symmetric. If x is a weakly symmetric point of period even

P72,

p, then x is also a fixed point of U- Note that TP can

be factorized into a product;

™ = q.q , q = u.T P72

If the residue R of x as a fixed point of @ is8 sin (nw), then

the residue R’ as a fixed point of TP is :

/

R = 4 R(1-R) = sin*(2nw)

Aséﬁme that R increases monotonically as a parameter is
increased and generic bifurcations occurs when w=mn/n. Then
R', 0 at birth, increases to +1 and decreaées to 0. Note
that if there 1is a beriodic orbhit of period even p 1in @, then
a pair. of periodic orbits of period pr/2 exist in Tp. Thus,

. U
when the multipliers of x in TP are e <Nt®/D

, 1f m is even,
then generic ms/n-bifurcations occur, otherwise double m/n-

bifurcation. So, the inversion symmetry U ig responsible

for anomalous bifurcation .
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 Figwe l.2.4] 1 A sphere with 4{oul
made by rdentification of ponts
zvus pelated by U. Dashed

L

lines are om the back of the four-
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g 1, 3 Quasi-Periodic orbits

In this section, I discuss quasi-periodic orbits in
periodic area-preserving twist maps with zero net flux,
namely, those which lie on invariant circles or cantori.

In §8 1.3.1 , in periodic maps rotation numbers of orbits
are defined. Then, I discuss the stationary action principle
for quasi-periodic orbits whose rotation numhers are irra-
tional. LLike the case of periodic orbits (see §1,2.2), mini-
mizing quasi-periodic orbits exist in the range of twist.

The closure of a'‘minimizing quasi—periédic orbit may be a
circle or a cantorus. In the case of a cantorus,the projection
of the cantorus on the angle coordinate is the complement of’
a dense set of gaps and a minimaximizing quasi-periodic orbit
homoclinic to the cantorus lies in the gaps. When it is an
invariant circle, all the orbits below the invariant circle
are confined, and thus there is no flux through 1t. On the
other hand, when it is a cantorus, there is flux through the
gaps. The flux depends upon closed curves which close all

the gaps. The more important closed curves 1s the closed
curves through which the flux is minimum. These closed curves
are those which pass through the cantorus and the minimax-
imizing orbit, and the flux is given by the difference in the
actions between a minimizing orbit and the minimax orbit.
Finally, I discuss the Moser'’s twist theorem which guarantees
persistence of invariant circles with sufficiehtly irrational
rotation numbers in the integfable twist map under sufficient-

ly small and smooth perturbations
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In‘é 1.3.2 , I discuss when extended chaos occurs by
various .criteria.

The first is Greene'’'s residue criterion which connects
the existence of an invariant circle with the stabilities of
nearhy Birkhof: periodic orbits. The second'ia Chirikxov's
resonance overlap criterion which connects the existence of
an invariant circle with the widths of nearby resonances.
The criteria of Greene and Chirikov are not mathemathically
proved, but their criteria give us practical ways to see
whether or not an invariant circle exists. In particular,
Greene's residue criterion is now the best practical criter-
ion. The third is a theorem of Mather which gives the nece-
ssary and sufficieﬁt condition for existence of an invariant
circle 1in terms of the difference in the actions of nearby
Birxhoff orbits. Finally I discuss the cone-crossing criter-

ion for nonexistence of all the rotational invariant circles.
g 1. 3. 1 Invariant circles and Cantori

. s - 1 . .
In this subsection, I consider C~ periodic area-preser-

ving twist map T with zero net flux whose generating function

is L(x,x”):

(x7, p7) = T(x,p) 3 (x? + 1, p“Hy= T(x +1, p),

8*L/8xax <0 , Lix+1, x“+1) = L (x,x”’). (1.3.1.1)

Equivalently, the map T can be represented on a cyliﬁder,

where 2nx 1is an angle variable.
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One can define rotation number v for some orbit of a
periodic map T. Let (Xo,, po) be a point in the plane. Then,
its orbit {(xn,pn)=Tn(x°,p°), neZ) is said to have rotation

number v 3

v = 0im Cxg=xy7 ) 7/ e-27 ),
20-07300

if the 1imit exists and does not depend upon the way by which
(f-8") goes to infinity. Aubry(1983) and Mather(1982) has shown
that every minimizing orbits have rotation number, 'and conver-
sely, for every v in the range of twist, there exist a mini-
mizing orbit. When a minimaximizing orbit that is the companion
of a minimizing orbit éxists, it has the same rotation number.
In the previous séction, I discussed minimizing and minimaxi-
zing periodic orbits whose rotation numbers are rational. In
this section, I discuss minimizing and minimaximizing quasi-
periodic orbits whose rotation numbers are irrational. A quasiQ
periodic orbit is dense on a circle or a Cantor set. ¥hen the
closure of a quasi-periodic orbit is a circle, we call it an
invariant circle and its companion, i.e. a minimaximizing orbit,
does not exist. On the other hand, when the closure is a Cantor
set, we call it a cantorus and there exigts a minimaximizing
orbit homoclinic to the cantorus .

There are two types of invariant circles. If an invariant
circlevencircles the cylinder, then the invariant circle 1is
called a rotational invariant circle, otperwise a vibrational
invariant circle. Particularly, rotational invariant circles

are more important because they are necessary for confinement,
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by a corollary of Birkhoff’s theorem(Mackay and Percival,lsas):

Theorem(Birkhoff): For the above class of maps, the
bounda}y of any open invariant set homeomorphic to the cylindeyp
and containing all points below some level (p=some constant)
and none above some other level, is the graph ((x, f(x)):x € Sty
of some continuous function f: §* 3 R. Particularly, it is
a rotational invariant circle.

There are three important corollaries of this theoren
(Mackay and Percival, 1985). |

The first is Confinement Corollary:
if the orbits 6f all points below some level P_ remain below
some other level p+, then there exist a rotational circle
between P_ and p;.

The second is Circle Corollary:
every rotational invariant circle is the graph of some con-
tinuous function f; S* 3 R.
Then, every rotational circle intersects each vertical line
(Xx=some constant) only once.

The third is Lipschitz Corollary:
the function f(x) in Birkhoff’s theorem is Lipschitz.

A function f: R 3 R is said to be Lipschitz if the slopes:

P(x, )-P(x, ) ’
S(X1 ;X1 ) = x: _x‘ 2 ’ x! # xl

are uniformly bounded, i.e.
D% s.t. D7z S(x,,x,) < p*

Such a range of slopes is called a Lipschitz cone. The domain
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of f in Birkhoff’s theorem is 8* to its covering space R, i.e.
do not take mod 1 in x. So, though f(x) is not necessary
differentiable, 1t 18 at least Lipschitz. These theorem and
corollaries will be used in the next subsection for the dis-
cussion of the nonexistence of all the rotational invariant
circles.

Lixe the case of periodic orbits(see §.1. 2. 2), there
are a couple of stationary action principles for quasi-
periodic orbits(Percival, 1979, Mather, 1982, Aubry, 1983):
one was 1introduced by Percival and devqloped by Mather, and
the other was 1ntroduced by Aubry.

Firstly, I diséuss the first one(Percival, 1979, Hather,
1982). Let V be the set of all increasing functions @:RoR
such that w(é+1):w(e)+1 and v is the rotation number of a
quasi-periodic orbit under consideration. For ¢ € YV' Maﬁher
defined an action for ¢ :

1 . '
ALe) = [ de-LC ele), wlesv) )
o
where L is the generating function for a map under consider-
ation and proved existence of a minimizing ¢(8). Then, 1t
follows that the minimizing ¢(6) satisfies the-following
Euler-~Lagrange equation.

Mather defined :

Y4

V(ip, ©) =2 [L(x,x’) + L(x”,x"")1

ax”’

evaluated at

x = @l(e - v), x’= ¢loe), x 7 =ple +v)
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Then, the minimizing ¢(6) satisfies the Euler-Lagrange

euqationi
Vip, 6) = 0 for all e € R

This give§ risg to an invariant set parametrized by 6:
X = @(6), p = ~-L,{(p(6), 9(6+v)),

where subscript 1 denotes the derivative with respect to the
first argument, and x and p are dynamical variables 1n the map
T. It may be an invariant circle or a Cantor set according
as @(©®) 1is continuous or discontinuous. When @(0)is discon-
tinuous, it has two determinations wt(e): w+ and ¢ are the
right continuous and the left continuos determination of
the same discontinous ¢(8). In other words,
- - +
lim ¢ (B+€)= ¢ (©) ,
€0
€>0
and
- + -
lim ¢ (8+€)= ¢ (©)

€0
€<0

It wi 1s discontinucous at 6,, then wi is also discontinuous
for ©=6,+ h.v +k, where h and k are integers. S0, the set
of discontinuity poilnts 1s dense on the real line. In fact,

i . .
¢® can be written as a sum of step functions:

wt(e) = E a'-Yi(e - 6.) ,
i i
1
t . . . + +
where at ©; ¢~ is discontinuous, Y (x)= 0 for x<O0, Y (x)=1

for x>0, Y+(O):1, Y (0)=0, and a; is the amplitude of the
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step function located at 6; (Aubry, 13883).
-.Secondly, Aubry(1883) introduced a similar stationary
action principle. Let {x;,1i€Z) be an infinite sequence.

Then, the action for this.sequence is:

00
A = E L(xi, Xi+1)
i1=-00
If an infinite sequence {x;, 1€Z} is a minimizing orbit, then

for any sequence (§;, 1i€Z} s.t. there exists N’< N with §; =0

for i>N and 1<N', the action variation:
N

54 = E [LOXg #8530 X5 0485,y = ROy, x5 0]

i=N"-1

is positive or zero and its has a rotation number v, and
conversely. _The élosure of this minimizing orbit may be an
invariant circle or a Cantor set.

When the invariant set is a Cantor set, there exists a
minimaximizing quasi-periodic orbit homoclinic to the Cantor
set, 1.e. one which converges torthe Cantor set as tath
{Mather, 1982, Aubry, 1983). The projection of a Cantor set
on the angle coordinate is the complement of a dense set of
gaps. All the gaps fall into families: if G is a gap, then
any gap TnG(neZ) belongs to the same family. The quasi-

periodic orbit homoclinic to the Cantor set is minimaximizing

in the following sense(Mackey, 1982). Given a Cantor set,
choose one gap. Write xﬁ and xr for the orhbits of the
endpoints of the chosen gap. For any seguence X satisfying:
x? L X £ xr ,
1 1 1
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the difference in actions befween X and xn s

0
i 1+1
F(ﬁ)— 2 [L(xi, xi+i)—L(xi, X3 )1
1=-00
is convergent and non-negative. Consider a set:
x, ={x 1 F(x) £ a , and x% and x” lie in the same con-
nected component}) and let a in~ inf{a; a is a possible value
which X, can have). This infimum is attained. Then, any
X for which F(x) = Anin is an orbit homoclinic to the orbits

of the endpoints of the chosen gap. Mather defined
F(v)=max{a_._ 3, (1.3.1.2)
: min

taking over all gaps.
This maximum is attalned. Then, Mather showed that the Cantor
set lies on an invariant circle iff F(v)=0. In other words,
it does not lie on an invariant circle iff there is some gap
for which amin is positive. One can include the case where
¢(©) 18 continuous. In this case, F(v)=0. So, there is an
invariant circle of irrational rotation number v iff F(v)=o0.
Choose a family and one particular gap(l,, ro,) of the
fTamily. Then amin Qan he interpreted as the flux through
that family of gaps in the Cantor set when only one quasi-
periodic orbit exist hetween 51 and ir (Mackay et al, 1883).
Define the stable set C'(x, p) and the unstable set C (x,p)
of points (x',p') s.t. the distance between Tn(x',p')ana Tn(x,p)
goes to zero as n- om, respeé&ively. Since the widths of the

forward and the backward image gaps, i.e. Tn(a chosen gap),

neZ, go to zero as n3 *®, hoth endpoints of the chosen gap
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have the same C+ and C . Also, the minimax quasi-periodic
orbit belongs to both sets, since it is homoclinic to the
Cantor set. Then, one can close the forward image gaps‘with
the images of C+ and the backward image gaps with the image
of C° and form a partial barrier with one turnstile in the
chosen gap. Thus, one can blame all the transport on the
chosen gap (see figure 1.3.1.1),

Let us describe €' and C~ by functions p'(x,)and p (X, ).
Then, the flux throuqh the turnstile is:

F‘Co

dXe [ P (Xe)=P (X )]
‘1,
nco
aL - )9
= dxo [ 5’;9()(_1, Xo)+ -é;(-o(xo ,X;)] N
‘1,

nd r ] b on orhit
If xt-l’ xt a xt+1 are three successive points an bit,

then
aL aL - B
ax, ZKio1r Xe) toax, X o Xgeq )70
t t
Then,
'\Co _ +
dxe [P (X0 )-p (Xg)]
Jno
rC 00
= da , A = z L(xt—l' Xt)
| t=~00

S0, the difference in actions between minimizing and mini-~
maximizing quasi-~-periodic orbit is just the flux through the
gaps of the chosen family in the Cantorus. If there is more
than one family of gaps, then the total flux through the

‘Cantorus is given by the sum of each flux through each family.
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Hence, the quantity(1.3.1.2) defined by Mather corresponds to
the maximum flux among the fluxes through the gaps of families
when only one minimax quasi-periodic orbit exists between x

r
and x

Finally, I discuss persistence of sufficiently irrational
invariant circles in integrable twist maps under sufficiently
small and smooth perturbations.

First, I introduce some terminology. v is called a dio-

phantine number (Niven, 1863) if
3 T v
c>0, T s.t. | v - g | > crq pP,q € Z, q>0 .

A numher v is said to have Liouville exponent T if

3 | v o- P P > c/qT Vp,q e Z , q>»0

Let LET be the set of numbers with Liouville exponent T. Then,

P4
LET < LET/ , for T < ¥« .

Niven(1i863) showed that
LET=¢ for T < 2

For 1 » 2, it is easy to show that the measure of LET goes
to one as ¢ 9 0. Give ¢ and 1T, one deletes the closed
intervals of length 2-c/q® centered at each rational p/q.
The union of all points in these deleted interwvals 1is the

conmplement of LET . The total measure of deleted intervals

0 - :
is less than ¢ ({(2cs/q*):q . Then, for T > 2, the total
q=1
measure of deleted intervals goes to zero as c 3 0. Here we
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assume that 0 £ v < 1 and it is sufficient.

There is a theorem,so called Moser’s twist theorem, which
gives some answers about questions of persistence of invariant
circles :

Theorem (Moser, 1973); All the invariant circles of
Liouville exponent ¥ in any integrable Cr twist map persist
qnder sufficiently small cr perturbations (r > 2v-i) .

Here, an integrable twist map is:
I

T —) v £ 0 . (1.3.1.3)
o e =06 + v(I) ’

-
-
1}

It may be necessary to see the meaning of persistence in more
detail. Consider the uniform rotation of rotation number v

. Vi Y 1
on a circle; T : r=r , t'=t +r , r=v, t e 87.

Then, an invariant circle of ratation number v in

the perturbed map TE: (I,6) - (I',e') has the form:

I(t) r + u(t)

o(t)

t + v(t)

Moser showed that u(t)and v(t) are at least ct. Then, the
motion on the invariant circle of rotation number v 18 at

1 . . B, .
least C -conjugate to uniform rotation on a circle;

a C1 coordinate change U;(r,t)— (I, ) ,

r =v s.t. T(,:U“-TE-U

An invariant circle is said to he zmooth if the motion on it
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is differentiably conjugate to uniform rotation on & circle.
The number of derivatives of u and v depends on the Liouville
exponent Tt of a Diophantine rotation numher and the smoothness
of the perturbed Cr-map. .For example, Herman (referred to by
Mackay, 1982) gets invariant circles with v = 2 for Cr, r>3,
which are Cr-l-conjﬁgate to uniform rotation. In the analytic
case, Gallavotti(referred to by Mackay, 1982) showed that
invariant circles are Cw-conjugate to uniform rotation. On the
other hand , in the case of cantori , the functions u and v are

discontinuous.
US 1. 3. 2 Transition‘to extended chaos

Just after the last rotational invariant circle is broken
into a cantorus, no confinement exists, and thus extended chaos
occurs. I discuss when extended chaos occurs by varioﬁs cri-
teria. The first and the second criterion to be discussed are
Greene’s residue criterion and Chirikov'’s overlap criterion.
They connected the existence of invariant circles with some
property of nearby periodic orbits.

Practically, 1t is necessary to approximate an irrational
rotation number v by an infinite sequence of rational approxi-
mants (pn/qn), and thus one can approximate the irrational
invariant circle by a nearby periodic orbit of rotation number
pn/qn . As n increases , one can approx}mate it better.

Any irrational number has a unique infinite continued

fraction representation (Niven, 18963);
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vV = m_ o+
0 1
m1+ —
2
= [ mo ,ml 'm2 ""] »
+ . +
mo e Z , xn.1 € Z , for 1 € Z
The rational approximant rn of v is:
rn =p/qn=[m0 bml PR mn] »
pn = mnpn—l + pn_2 ’ p_2 =0, p_1 =1,
= = = 0 .
5 B9n-1 Y up » A T 1 Ay

These rational approximants are alternatively greater and less

than v and converge to v :

& wen r r r

ro < r2 < rq < < 5 < 3 < N ’
lim r2n = VvV = lim r2n+1

n-o0 n-300

This continued fraction expansion is the best approximation
in the sense that pﬁ/qn ig the number which minimize |qv-pl

over all rationals p/q with the same or smaller denominator.
In a weak sense, pn /qn is the closest number to v among all
the rationals with the same or smaller denominators.

It is obsefved that given a periodic orbit, nearby in-
variant circles and nearby longer periodic orbits are strongly
perturbed due to the separatrix splitting of the perturbing
periodic orbit. The separatrix splitting will be discussed
in the next section. In perturbation theory, this effect
appears to be a problem of small denominators, where the deno-

minator is a measure of distance between the perturbing
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periodic orbit and a nearby orbit. Let the rotation number of
the perturbing periodic orbit be ps/q whose continued fraction

expansion 18 [ m_ ,m_ ,=-.., mn ]. Then,[mo , M

0 1 1 n ’'Pn+1

approaches to p/q as mn+1% w0 . Thus, the magnitude of m;
indicates the degree of isolation from the perturbing periodic
orbit. In this sense, the most irrational number has m; = 1
for all 1 ; v = [(1, )m 1 = (1+{5 )/2. This number is called
the Golden HMean which has the largest possible value for C
(when the Liouville exponent t = 2) of 1/J5 (Niven, 19863, see
the previous section). 8o, one expects that the Golden-Mean
invariant circle may be the last invariant circle to be
destroyed as a parameter 1is waried.

Greene(1979) studied the Golden-Mean invariant circle in

the standard map(1.1.3.14), He connected the existence of a

invariant circle with the linear stability of nearby Birkhoff

orbits.
Numerically, he observed the three cases:

1) subcritical case: Ri 5 0, and it appears as if the Birkhoff
island chain of type—(pn, qn) converges to a smooth in-
variant circle of rotation number v,

2) Critical case Ri are eventually bounded away from O
and tw, and it appeérs as 1f the Birxhoff island chain
of type- (pn ,qn ) converges to a non-smooth invariant
circle of rotation number v,

*

3) supercritical case: Rn - o0 , and it appears as if there

is no invariant circle of rotation number v ,

where Ri is the residue defined in (1.2.1.8) of minimaximizing
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and minimizing Birkhoff orbits of type-(pn,qn) and pn/qn
is the nth rational approximant of irrational rotation number
v in the continued fraction expansion.

He obtained the critical parameter value:

k = 0.9716+- - - .
c
Algso, at this critical value,

+ -
= . .ae = = 0.255...
Rn 0.250 R Rn

So;the Golden-Mean invariant circle appears to be on the edge
of disappearance when the residues of nearby minimaximizing
Birkhoff orbits are roughly 1/4. In other words, when nearby
minimaximizing Birkhoff orbits bifurcate out orbits of period
" six times longer than that of a mother orbit, the Golden-Mean
invariant .circle appears to be about to be broken. Just after
the cirtical value, nearby minimaximizing Birkhoff orbits of
higher periods becomes abruptly unstable, and thus the in-
variant circle appears to be destroyed. Based upbn his nume-
rical results, Greene’s residue criterion is that one could
replace ' and it appears as if ' in the above three cases by
‘which implies that’. That is, Greene'’s residue criterion
assumes that invariant circles exist if nearby minimaximizing
Birxhoff corbits are stable and théy do not exist i1f nearby
minimaximizing Birkhdff orbits are unstable.

Chirikov (1979) connected the existence of invariant
circles with the widths of island chains. HisAresonance over -
lap criterion is8 that if two island chains overlap, then it

is unlikely that there is any invariant circle between then.
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He applied his criterion to the standard map. Following hism,
I reproduce his results, and then one can compare his result
with Greene’s result in the standard map.

LLet us consider a Hamiltonian;
o0
H= I*/2 + €.cos?2ne. z 5(t-4)

0] L4=-00
= I*/2 + E-E cos 2n(e-4t) , (1.3.2,1)
o L= 00
where E 6(t-&) =1 + 2 E cos 2mnAat .
4=-00 =1

Here the perturbation represents a ‘kxick’ per unit time.
By constructing a surface of section at t=0 (mod 1) in the

(I, e, t)-space, the standard map can be obtained:

In’ In+1 In + 5% sin 2nen
T —

e e e + I
n n+1 n n+1 ’

1

kK = (2m)?e€

In the Hamiltonian (1.3.2.1), only integer resonances
appear : 6 = f(integer). So, let us consider the overlap
between integer resonances. Under a sufficiently small per-
tufbation, one can obtain the set of first approximation
resonances: Ia = 8 . Note that all these integer resonances
are identical except a integer-shift in I. So, it is suffi-
cient to consider only one integer resonance, e.g. & = O.

The resonant Hamiltonian governing the phase flow near the

d-resonance is:

H1 = I*/2 + € cos 2n(e-4t) . (1.3.2.2)
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Transformation to new canonical variables(p,¥) by means of

a generating function:

F = —(I—Il)-(v+1t)
Yields

H1 = p*/2 + € cos 2nv

p = -8Fs8v , © = -8F/81l

‘Note that H1 reduces to the pendulum Hamiltonian. S0 the
half-width of the L-resonance is the distance from the reson-
ance center to the separatrix. So, the half-width of a integer

resonance 1is

511=2{E .

On the other hand, the resonance-spacing between nearby

integer resconances is:

Define the stochasticity parameter:

sum of half-widths of two resonances

resonance spacing between two resonances

In this case, 8 = 4J€ . ¥When the stochasticity parameter is 1,
one can expect that there is no rotational invariant circles
due to the resonance overlap. S0, the critical parameter

value 1is:

= (e} ) o = 2 2 = .
€. 1/16 r c (2n) €. m /4
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In the same approximation, the resonant Hamiltonian can
be used to calculate the residue of the resonance center. The

linearized equation about the resonance center 1is:

c =2, ’}:(2]‘[)1.6-(,,

N N
c:e—e,?:I-I,

N N
where (6 , I) 18 the resonance center.

The solution for the time displacement operator M(t)satisfying

g(t) £(0)
= H(t)
nit) n(0)
i8:
N 1 . N
cos wt = 81n wt
M(t)= w
2 " P ’
- W 81in wt cos wt
N
where & = (2n)*e = kx

In the time-1 Poincare map,the residue of the resonance center

is :
R = (2-TrHM(1))/4
Fa)
= 8in* w/2
x K/4%
So, at the critical value obtained by Chrikov , the residue
is
R = n*,/16 .
This wvalue 18 larger than that obtained by Greene. The reason

can be seen by expressing the stochasticity parameter in terms

of the residue of the resonance center:
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2 4
= = — 4R
S = K o -

At the critical case, the residue of the resonance center
obtained by Greene is roughly 1/4. So, S « 2/3
In other words, Greene’s residue criterion says that when
the stochasticity parameter is 2/3, there are no rotational
invariant circles between the two resonances. This is called
the *two-thi.ds’ rule. On the other hand, in the Chirikov’s
criterion, 8=1. So, Chirikov’s resonance overlap criterion
gives the order of magnitude. But one can improve the critical
value, taking account of higher order resonances.

Assuming € to be small, we take H, = I*/2 as the unper-
turbed Hamiltonian and introduce a canonical transformation
(I,®)a (I, ®)such as to ‘'kill’ the perturbation of order .

Let us look for a generating function of the usual form:

F(I,e)=T.e + €.% (I,0,t) , (1.3.2.3)

I =T +e¢d , ©=2906+ € Oy ,

H=H+ ¢ - J

where the subscript denotes the partial derivative with
respect to the subscript.
Substituting (1.3.2.3) into (1.3.2.2), we obtain the

condition for *kxilling’ the perturbation of order ¢ :

0

I. + Qt + 2 cos 2n(e-At) = o . {1.3.2.4)
4=~

Then, the solution & for (1.3.2.4) ig:

8in 2n(e6-4t)
2m(a-1) '

T (e, T,t) = Z
)
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and the new Hamiltonian H is :

H=T2,2 + €*/2 E cos 2n(6—1t)-c2§ 2n(6-mt)
(4-T)- (m-T)

P
2]

In the new coordinates(e, I), H

H=T2,2 + € /2 E cos 2n(e-£t) cos 2n(e-mt)

$om (2-T). (m-T)
sin2n(26-(4+m)tl.sin2n(6-nt)
3
res2 E (2-T)(m-T). 2n(n-T)2
4,m,n
l.*

+ O(€ ) . (1.3.2.5)

Here, it makes sense to retain the terms of order €?, since

‘the next canonical transformation to ‘kill’the terms of order

a

€* also kill the terms of order €’ and thus the order of the

perturbation will be eq . Note that the perturbation of order

€” has terms resulting in half-integer resonances:frz r + %

for any integer r. Characteristice of a half-integer resonan-

ces are determined by the sum:;

_ 1 -
u = 2 (I-r B (a-rpmy - O
1+m=2r+1

Note that the sum U is independent of r. So, all half-integer
resonances are 1dentical except a integer-shift in I and thus
it is sufficient to consider only a half-integer resonance,
e.g. r=0. For r=0, the resonant Hamiltonian governing the

phase flow near k-resonance is

2

H =T1I*,/2 - €* cos 2mn(20-t) .

e

Applying the technique used in the case of integer resonance,
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one car obtain the half-width of a half-integer resonance:

= MM« € .

811+§
Now, one can improve the critical parameter value, taking
account of {he overlap between a integer resonance and a
nearby half-integer resonance. In this case, the stochasti-

City parameter is:
8 = 2.(2y€ + me) .

So, the critical parameter value 1is:
€, =0.03686 , kK, =1.46 .

Note that the perturbation of order €® in (1.3.2.5) has terms
resulting in 3rd order resonance. Chirikov also calculated the
width of 3rd order resonances, and taking account of the over-
lap of a half-integer resonance and a nearby 3rd order reson-

ance, he obtained more improved value;

€ = 0.03423, k_ = 1.35 .
Cc (o]

A necessary and.sufficient condition for existence of
an invariant circles with irrational rotation number has been
proved by Mather(referred to by Mackay, 1982) . I restrict my
consideration to the case that given a rational p/q, there
exist only one pair of Birxhoff periodic orbits of type-(p,q).
For example, the standard map belongs to this case. For an
irrational v, some quantity F(v) is defined in (1.3.1.2).

For rationals, define F(p/q) to be the difference in actions
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between the two minimizing and minimaximizing Birkhoff orbits

of type-(p,q):

F(psq) = Aminimax - fnin

In this case, F(p/q) can be interpreted as the flux(see 8§1.2.).
Mather showed that F(v) is continuous in v at irrationals.
Thus, it follows that given a sequence of rationals P /qn -
v (irrational), there exists an invariant circle of rotation
number v iff F(pn/qn) 34 0. Hence, in both the subcritical
and the critical cases, F(pn/qn)% 0 and in the supercritical
case, F(pn/qn ) converges to some positive value. Mather also
showed that F(v) depends continuously on perturbations of the
map at irrationalé{ So, just above the critical wvalue, F(v)
is very smali. So, pratically, it is difficult to calculate
the critical parameter wvalue by means of Mather’s criterion.
Finallf, I discuss the Cone-Crossing criterion de&eloped
by Mackay and Percival(i1985). Let T be a C1 areé-preserving

twist map with zero net flux and DT the tangent map of T:

(T, DT).(X,v) = (T(X), DTX-(V))

X =(x, p), v =(86x , &p) .

Then, the Lipschitz corollary described in 8 1.3.1 gives a
criterion for nonexistence of rotational invariant circles

in T. A rotational invariant circle separates the cylinder
into two invariant components. S0, if one finds a tangent
orbit of a base orbit Tn(X) for which v sometimes lies above
the Lipschitz cone and sometimes helow it(see figure 1.3.2.1),

then the base orbit does not lie on a rotational circle.
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This 1is called the cone-crossing criterion.

Let ((x; , p; ), n € Z ) and ((x; R p;), n e€Z ) be any

two diffefent orbits on a rotational invariant circle. Then,

since the orientation is preserved on the invariant circle, one

has :

»
N

< X or x! > x* for all n
n n n n

In other words,

X’ X’
0 ¢ =22 < m ,
Xy =X,

where (x,, p,) and (x;, p,) are any two different points on
the invariant circle and (x',p')= T(x,p). To use this
orientation-preserving condition, it is more convenient to

change to (x;z)coordinates:
zZ(x,p) = m, -T(x,p) , where m, : S8' x R 4 s

is the projection onto the first coordinate.
Then, in the new coordinates, the orientation preserving

condition is:

Z; "z;
o P 0 X X
< Xz —%5 < r X1 # X2,

for points (x, , z,) and (x; , Zzz) on a rotational invariant
circle. Note that this confines the slopes of rotational
circles to a right angle and aleo this is independent of the
map. So, in the (x, z) - coordinates, the orientation-
preserﬁing condition becomes the cone-condition : the upper
cone constant is o and the lower one zZero. Since the cone-

condition is obtained, the cone-crossing Criterion can be
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stated explictly as follows.  If (8xt) are the‘5x-components
of a tanéent orbit to an base orbit (Xt)’
with sxo £ 0 .,

Ex 0]
1 > ’

sxn £ 0 for some n>» 1 ,

then the base orbit (Xt) does not lie on a rotational invari-
ant circle.

For example, let us apply this criterion to a map T:

P =p + FP(x)
T in (x,p) coordinates ,
i x/ = x + p'
(1.3.2.4)
r ’
z = g(z)-x
T ' in (x,z)coordinates
| x7 =z
When f(x)= - 5% sin2nx, then the map is the standard map.

The b6x-components of a tangent orbit to a base orbit ((x ),

1'%
t € Z ) satisfies :

V4
sxt+1 =g (xt) sxt - sxt_1
So, choosing 6x, =0 y B6X,> 0O , one gets
P4
EX; = g (X, ).5b6x, .

So, if g'(x,) £ 0, then &x;, £ 0 ,
and thus there are no rotational circles crossing the vertical
line x = x%,. Recall that every rotational invriant circle must

cross each vertical line. Therefore, there are no invariant

Circles if
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n = min g7(x) £ 0
x

In the standard map ,

and thus there are no

it Ix] 2 2

invariant circles ,

One can obtain more improved results, applying the cri-

terion with n>2. But
by improving the cone
a tangent vector v at
on the tangent ve&tor

D’ at X’ :

one can save having to take n too large
condition. Note that the direction of
X gives a slope and the derivative DT

induces an operator on slopes D at X 3

X = (x,2), v = (62 , 6x), D = gz/86x ,

(T, DT)(X, v) = (

vi= (827, sx’) ,

S0, in the map (1.3.2.

V4

D’= g’(z) - 1/D

X/, v, x’= (x’,z"),

4

D’= 827/ Bx’

4),

Let some Lipschitz cone constants be Di and Di :

y X1 # X .

Then D° can be obtained as follows

+
It 2222 ., p , then
Xl —X; +
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s z V4
21 _"%2 . D’ , where
’ V4 +
xl -xl

V4 V4
D+ = max (g (z) - 1/D+) = H - 1/D+ ,
z
M = max g/(z) .
z

Note that D:< D+ . 8o, if one iterates this infinite times,

then D+ goes to the limit value:

D, = M - /D, .

Then, the upper cone constant Di is the largest root of the

above equation:
n:_ =u/2+lu‘/q-1

Similarly, the lower cone constant Di iz the smallest root
of a equation:

D_ = min (g”(z) - 1/D_ )
Z

So, D° = M/2 - JH‘/Q -1

Now, let us apply the cone-crossing criterion withh the
improved cone-condition. Choosing 6x = 1 , 6z = D: , one gets;

I'4

- g’ - °
D'= g (z) 1/D+

If min D7 is less than Di » then there are no rotational invari-
z .

ant circles crossing the vertical line x=zZ, , at which D’ is

minimum. That is, if m < M - JH’-q , then there are no rota-

tional invariant circles crossing the line x = Z, and thus none
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at all. So, there are no rotational ilnvariant circles if
Ixl > 4/3.

One can obtain more improved results, applying the cone-
crossing criterion with higher n. Mackay and Percival(1985)
showed, applying the criterion with higher n, that the stan-
dard map has no rotational invariant circles if |k| 2 63/64.
This value is very close to the critical value obtained by

Greene.

91



8 1. 4, Stochastic layers

A integrable twist map (1.3.1.3), e.g. the standard map
(1.1.3.14) for x=0, has rational invariant circles, the orbits
on them are periodic and the residues of the periodic orbits
are zero. But generically, the residues of all periodic
orbits in an area-preserving twist map with zero net flux are
nonzero and thus they are isolated from points of the same
period. For example, for nonzero k in the standard map, it is
observed that there exist no rational invariant circles.

For .sufficiently small x in the standard map, there exist
a pair of stable and unstable periodic orbits of all possible
rational rotation number by Poincare - Birkxhoff theorem (see
8§ 1.2). At any unstable periodic point H, four invariant
curves meet(see figure 1.4.1). Two of these are contracting
curves H+, and the other two are dilating curres H“. The
orbits on the contracting curve converge to the unstable point
H under the forward iterations of the map, while the orbits
on the dilating curve converge to H under the backward itera-
tions of the map.

The only way to get a rational invariant circle with no
periodic points of residue zero is by jolning a dilating
curve of an unstable periodic point to a contracting curve of
a8 nearby unstable periodic point smoothly, i.e. saddle con-
nection, and then there exists a separatrix(see figure 1.4.2).
But generically, there are no saddle connections (Robinson,

1870). They can be broken by arbitrarily small perturbations
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giving transeverse intersection of the dilating curve and the
contracting curve (see figure 1.4.3).>This phenomenon 1is
called the separatrix splitting(Arnold,1978). The intersection
points are called homoclinic points, since the orbits of
homoclinic points converge to the unstable periodic orbit
under both the forward and the backward ite}ations of the map.
So,homoclinic orbits have the same rotation number as that of
the unstable orbit. But they are not periodic.Like the case
of a periodic and a quasi—periodic orbit, there are two types
of homoclinic orbits. One is a mininiz;ng homoclinic orbit
and the other a minimaximizing orbit{Mackay et al 1984). The
limit of minimizing orbits of rotation number v, as v -3 m/n
monotonically from above or below, gives a minimizing
homoclinic ofbit of rotation number =m/n. In the same way that
there is a minimax point hetween the two endpoints of a gap in
a minimiziné Cantor set(see 1. 3. 1), there is a minimax
homoclinic point beitween any two minimizing homoclinic point.
Like the case of a cantorus(see § 1.3.1),the difference in the
actions between a minimizing homoclinic orbit and a minimaxi-
mizing homoclinic orbit can be interpreted as the fiux through
a brokxen separatrix (see figure 1.4.4) .

IT a separtrix exist like the case of a pendulum ,then
the separatrix separates the rotation region from the wvibra-
tion region completely. But, due to a separatrix splitting,
generically there exists a flux through the broken separatrix.
In other words, points near the broken separatrix wander from

the rotation region to the vibration region and vice versa.
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Thus , a stochastic layer is formed near the broken separatrix
(Chirikov, 1979).

Following Chirikov(1979), let us estimate the size of a
stochastic layer around the broken separatrix. ' He considered
a pendulum as a model of nonlinear resonance, under a periodic

parametric perturbation described by a Hamiltonian:

H(p,p,t) = Ho(p,p) + €-V(op, 1), (1.4.1)
Ho = p*/2 - W*cosp , V = w,* cosgp.cost ,
T = Q-t + ¥, , where 0 and v, are the perturbation

frequency and the initial phase, respectively. By constructing
a surface of section at o = 0 , he obtained the separatrix
map describing the motion of system(1.4.1) near the separatrix

when 0 /w, 18 very large. The separatrix map is :

W =W - € 81n T, ’

) (1.4.2)
o= To + XN dn (32/|w’])

’

N
£ = 4nex® e ™2 s\ zaq se. .

Here, w 18 the quantity to indicate the degree of relative

deviation of H, from the unperturbed separatrix energy Wo? 3

w (Ho—woz )/Woz

. _ N

The fixed points of the separatrix map(1.4.2) (w ,8) are:
fa) N

lw] = 32.exp(-2nn/x) , © =0 ormn .

The residues defined in (1.2.1.8) of these fixed points are:

9N N
R = §-A.c0o80 /(4.w)
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Thus , a stochastic layer is formed near the broken separatrix
{Chirixov, 1979).

Following Chirikov(13973), let us estimate the size of a
stochastic layer around the broken separatrix. - He considered
a pendulum as a model of nonlinear resonance, under a periodic

parametric perturbation described by a Hamiltonian:

H{p,@p,T) = Ho (P, ) + €-V(op,T), {(1.4.1)
Hy, = p*/2 - @o*cosp , V = w,? cosg-cost ,
T = -t + T, , where 0 and t, are the perturbation

frequency and the initial phase, respectively. By constructing
a surface of section at ¢ = 0 , he obtained the separatrix
map describing the motion of system(1.4.1) near the separatrix

when 0 /w, is very large. The separatrix map is :

’ -
w:w-cslnto »

, , (1.4.2)
To= To + X In (32/1wW"})

~TA
T = 4nmexr? e nh/2 y A= Q /0

Here, w is the quantity to indicate the degree of relative

deviation of H, from the unperturbed separatrix energy o

W = (Ho=-Wo? )/wWo?

The fixed points of the separatrix map(i.4.2) (G ,8) are;
A N
iw| = 32.exp(-2nn/x) , ® =0 or m
The residues defined in (1.2.1.8) of these fixed points are:

N N
R = L-A.Cc086 /(4.w)
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Note that the residue is dependent on the fixed point (3.8).
Also, recall that in the standard map, all the fixed points
have the same residues. All the fixed points in the region
where |{w| < T-A/4 are unstable, while ail the fixed points
on the line 6 = 0 are unstable,those on the line o=n stable
when 3 > L+«A/4, and vice versa when G < - C- /4 (see fiqure
1.4.5) 8So, since in the region where |w| <T.-A/4 all the
fixed points are unstable, one can expect that there are no
invariant circles in the region-hy Greene’s residue criterion
(see §1.3.2). Therefore, ohe can expect.- that in the region,
the motion may be stochastic.

For » << 1, the change of w is small, and thus orie can
linearize the separatrix map in w about a fixed point(s, 8)

to get a new map:

+ 17, (1.4.3)

"N
L., I= = - (w - w) , 0 = T,

0> o
>

Note that the above map is just the standard map and the
parameter is dependent on the fixed points. Recall that in
the standard map, extended chaos occurs when (Kl > 1 (see

§ 1.3.2). 8o, in the region where |w| < A , there are no
invariant circles and near the fixed points for which |3|ax-;,
there exist the 5oundary invariant circles (see figure 1.4.5).

Therefore, the half-width of the stochas?ic layer is :

w = A.c

-TTAN/2

gm.e.2Ye
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It is worth noting that for arbitrarily small € , ws is non-
Zero.

Roughly speaking, the stochastic layer consists of the
two parts. One part is the central one ( |w| < {-A/4) in
which there are no islands and the other part({.ia/4 <|w| <w8 )
is tﬂe peripheral one in which islands are imbedded, but there
exist no rotational invariant circles. In this way, the struc-
ture of the stochastic layer is intricate; it has the divided
space in which regﬁlar and stochastic components coxeist.

The diffusion is a distinctive raqdon process. So if one
considers the motion in the stochastic layer as being similar
to a random one, a diffusion in w must occur.

Let us see the statistical properties of the motion in
the standard map (1.4.3) when |K| > 1. Then, one can see the
statistical properties of the motion near a fixed point of
the separatfix map (1.4.2) since the standard map describes the
behavior of motion near a fixed point of the separatrix map.

The force correlation in the standard map is defined by
CR(1)= < at-at+1 >R R (1.4.4)

where at = It+1 - It = K-sxnet and the averaging is performed

over an ergodic component of the motion R. Also,the diffusion

coefficient is defined by :

D, = 1lim D_(t) , (1.4.5)
R t 300 R

Then, the diffusion coefficient can be expressed in terms
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of the force correlation:
0
1 .
= - . 1.4.6
DR 5 CR(O) + 2 CR (i) ( .)
j=1

For large K, the correlation decays fairly fast and so it is
sufficient to consider only short-term correlations. Then

the diffusion coefficient is:
- w2 2 - 2 2
DR = K*/4.[1-~-2 JQ(K) + 2J3 ({K) 2J1 (K)+2J2 (K)
+ 9Ky (1.4.7)

where'Jn(x) is the Bessel function,

Jn(x) x Iﬁ% .co8 [x-(n + 1/2).n/2]) for large Xx,
v g2
Ci(0) = K?* /4, cR(13 =0, Co(2) = -5 7,
'_ Kz 2 2 — Ka a2 'i
CR(3) =3 (J3 - J:)' CR(Q) =3 (J2 +0(K ™))

This result was first obtained by Rechester and White(13880)
and later by Cary et al(1981) in a different way. Since the
diffusion coefficient exists, one can see that there i8 an
intrinsic stochasticity in the standard map for large K.
But the stochastic motion is not purely random due to the
short-term correlations. The result(i1.4.7) agrees well to
rthe result of a numerical simulation for K> 4 (Chirikov, 1979).
But,in the parameter interval where an accelerator mode exist,
one cannot neglect the effect of the accelerating island
(Karney, 1983). In this case, the diffusion coefficient
becomes very large. For 1< K < 4, by a numerical simulation,
Chirikxov(1979) obtained :

D(K) ~ (K - 1)2°2° | (1.4.8)
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Also, Dana and Fishman(1985) obtained
D(K) ~ (K - 1)? , (1.4.9)

for 1 <« K < 2.5 , by a numerical simulation.

Now, let us see the statistical behavior of the motion
in the separairix map. The diffusion in w becomes inhomo-
geneous since D(K) in the standard map turns into D(X-C/Q)

by (1.4.3). Roughly speaking, there are two distinctive

regions in the stochastic layer:

1) near the layer center, a fast diffusion takes place and

the correlation may be neglected.

2) near the layer border, a slow diffusion takes placé,

D(w) ~ (w_ /|w| - 1)2:3% | (1.4.10)

Finally, I would like to mention long-time correla-
tions of stochastic orbits in the stochastic layer.
Chirikov and Shepelyansky(1984) followed a single trajectory
while it crosses successively the line w = O in the Beparétrix
map. Note that for w >0, the trajectory is in the rotation
region and for w <0, it is in the vibration region. The motion
time interval between two successive crossings waé recorded.
This time is called a trapping time or a recurrence time.
Define P(t) as the surviwval probability for a recurrence to
cccur later than x. The asymptotic behavior of P(t) as T 25 @
is related to the stru¢ture of the layer border. For various

A, they obtained :
P(T) ~ R (1.4.11)
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Note that as A varies, the boundary is also changed. So,
the survival probability distribution decays asymptotically
as a power law , which is roughly independent of boundary
Circles , and thus the motion in the stochastic layer

exhibits long-time correlations.
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CHAPTER 2. Critical behavior in area-preserving maps
§ 2.1 Introduction

The phase space of a generic area-preserving map is
devided into regular components and stochastié components
periodic, quasi-periodic, and stochastic orbits coexist
and interact .

LLet us see the roles of the above three kinds of orbits
in the DeVogelaere map (1.1.3.5). Figure 2.1.1 i8 the phase
flow near the main fixed point of the DeVogelaere map when
the parameter p is 0.24. Near the main fixed point, vibra-
tional invariant circles and a daughter island of rotation
number 1/5/are.visible. In fact, since the residue defined in
(1.2.1.8) of the main fixed point is 0.38, m/n-bifurcations
where m/n<0.2114... have already occurred (see § 1.2.4 ). So,
in fact, many islands exist. But only one has the appropriate
scale to be visible in the figqure. Also many unstable orbits
exist. Near these unstable periodic orbits, stochastic layers
are formed due to the separatrix-splitting (see 8 1.4 ) .

Figure 2.1.2 and figure 2.1.3 are the enlarged figure of
the phase flow near an unstable periodic point of rotation
number 1,/5. Notice that the dark part of the picture is a
single orbit. The orbit are very sensitive to initial conditions
and appears to be area-filling . So, it 18 called an apparently
area-filling stochastic orbit.

LLooking at the picture in detail, there exist the bound-

ary circles of the stochastic layer and near the boundary
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circles, islands exist in the stochastic layer. The rotation
number of a boundary circle on the left of the figure is
fo,5,12,1,1,1,1,1,.--+-1 in the continued fraction representa-
tion. Two large islands near the‘boundary circle are visible.
The rbtation number of the left one outside the stochastic
layer is 12,61 and that of the right one inside the stochastic
layer is 13,66. Also, in the stochastic layer , two smaller
islands are visible and their rotation number are 14,71 and
15,76, respectively.

I one follow the periodic orbits of rotation number
[0,5,m], then one can approach the broken separatrix as m—u.
Thus, one.can obtain the residﬁes of the periodic orbits and
expect the phase flow near the periodic orbits.

The residues of the‘per;odic orbit of rotation number
12/61 and 13/66 are roughly 0.20 and 0.28, respectively.
Note that 12,61 and 13,66 are [0,5,12) and [0,5,13), respec-
tively. As m increases further, the residues of the periodic
orbits 1nbrease. 80, the size of that i1sland gets smaller as
m increases, and all periodic orbits are unstable when m>16.
So, in the central part of the stochastic layer , many
unstable periodic orbits are embedded , and thus stochastic
orbits are scattered by them . Therefore, a stochastic orbit
has a short-term correlation in this region .

By Greene'’'s residue criterion ( see 8 1.3.2 ), all the
invariant circles whose rotation numbers are between 13/66
and 1,5 are broken, and thus a stochastic orbit wanders about
inside this stochastic layer bounded by boundary invariant

circles . But the stochastic orbit can not penetrate the hcound-
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ary circles . Therefore, invariant circles play the role of -
a complete barrier to transport of stochastic orbits

The dark part of figure 2.1.2 and figure 2.1.3 are form-
ed from an orbit of a point (-0.375,0). The times of the map
iteration are 2)(105 and 1.5x106, respectivelyf In the figure
2.1.2 , the orbit has approaéhed a region near the island of
rotation number 15,76, and it has been trapped for a long
time near islands of rotation number 14,71 and 13/65 , as
shown in the figure 2.1.3 . So, the reg;on near islands of
rotation number 14,71 and 13/65 has become darker in the
figqure. In fact, Channon and Lebowitz (1980) showed, quanti-
tatively, that the stochastic orbits have a long-time corre-
lation in this stdchastic layer. Shepelyansky and Chirikov
(1984) also showed the long-time correlations of stochastic
orbits inside the stochastic layer in the separatrix map
( see § 1.4‘);

Also, notice that the main fixed point has the outmost
boundary circle in.the figqure 2.1.1. The rotation number Vb
of the boundary circle is [(0,5,4,2,1,3,1,.-+1 in the conti-
nued fraction representation. So, all the invériant circles

whose rotation numbers are less than v, are broken. Hence,

b
if one 1terateé the map with an appropriate initial point
outside the boundary circle, then the orbit of the point
wanders about outside that boundafy circle. Sometime, the orbit
approaches the region near the boundary circle

chastic orbit spends much time. This is8 because small islands

, where the sto-

exist 1n the region as shown in the figure 2.1.1. That is8, the
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orbit has a long-time correlation in the region. In fact,
Karney(1983) showed ,quantitatively, a long-time correlation of
stochastic orbits near the outmost boundary circle when the
parameter p in (1.1.3.5) i8 0.367S....

We have not yet arrived at the full structure of the
Phase flow. In fact, the daughter 1islands havg theif own vi-
brational invariant circles and island chains around them ,
and so on. So, each island is a microcosm of the whole. In
other words, eéch island has the infinitely nested structure
(Arnold and Avez,1968).

In thg way stated above, periodic, quasi-periodic and
stochastic orbits coexist and play their own roles in the
pPhase space : unstable periodic orbits play the role of
‘scatterer’ of stochastic orbits like the pins in a pin ball
game, islands play the role of 'trap’ of stochastic orbits ,
and invariant circles play the role of ’dam’.

In this thesis , we study the critical phenomena related
to periodic and quasi-periodic orbits .

In § 2.2 , we describe generic bifurcations in revers-
ible area-preserving maps in furthur details than in § 1.2.4.
Particularly, we describe the relations between symmetric
periodic orbits and symmetry half-lines in details . This
relation play a very important role in understanding the cri-
tical phenomena. The role is described in § 2.3 and § 2.5

The first phenomenon we studied is the 1nf1nitely.
nested structure of islands which play the rolé of ‘trap’.

In § 2.3 , We show that at a certain parameter value, the
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so-called accumulation point, island chains of all classes of
a particular bifurcation exist and they have a self-similar
nested structure asymptotically. We found that their limiting
self-similar behaviors appear to be universal and calculated
scaling factors for i1/n-bifurcation sequence, with n=3 to 6.
We have also ohserved that the patterh of periodic orbits
repeats itself asymptotically from one bifurcation to the next
for even n and to every other for odd n. In fact, even more
asymptotically self-similar behavior exists near the accumula-
tion point. When we rescale not only dynamical wvariables but
also the parameter with appropriate rescaling factors, the
pattern of periodic orbits alsb exhibits the limiting self-sim-
ilar hehavior.

Recently, Meiss(1986) also studied the infinitely nested
island-structure for higher multifurcations than those studied
by us. HOWevér, he did not obtain scaling factors of d?namic
variables separately. Instead, he obtained the area-scaling
factor directly by calculating Mather’s action difference
between the minimaximizing and the minimizing periodic orbit
of each class. Of course, it is sufficient to obtain only the
area-scaling factor if one is concerned about the transport
of stochastic orbits near islands, since here the transport is
the transpbrt of the phase area. Actually, Heigs and Ott(1985)
construcfed a self-similar Markov tree model which describes
the motion of stochastic orbits near islands,in which the
transition probabilities are directly relgted to the self-sim-

ilar scaling behavior of the infinitely nested structure of
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islands and critical invariant circles. Thus, they obtained
an algebraically decaying recurrence-time distribution of
stodhastic orbits near islands. In this way, the long-~-time
behavior of a stochastic orbit near islands can be described
only if one knows the self- similar scalinj behavior of the
infinitely nested structure of islands and critical invariant
circles.

In § 2.4, we also study these asymptotically self-similar
island structures by a simple approximate renormalization
method.

The self-similarity of island structures is an asymptotic
long-time behavior of a map T. Therefore , the short timescale
behavior can be reﬁoved by considering a higher 1iterate ™ of
the map. As a next step, an appropriate coordinate change
to smaller spatial scales makes it look almost the same as T.
The operation of iterating n times and rescaling is a renor-
malization. Under the renormalization, T converges to a fixed
point of the renormalization. This fixed point is called the
universal map of i/n-bifurcation. Thus, T has asymptotically
self-similar behavior on longer timescales and smaller
spacescales. Since it is the same for all maps converging to
the universal map, the4behavior is said to be universal.

The gpproximate renormalization method used in thisk
thesis may be called the method of quadratic approximanté.
Since the self-similarity is an asymptotically smaller
spacescale behavior,it may be sufficient to retain upto

quadratic terms in the Taylor expansion of the iterated maps.

108



So0,the quadratic approximant is formed by keeping the terms
to the second order in the Taylor expansion of Tn. Compari-
sion of successive approximants gives the accumulation point
p*,the bifurcation ratio &, the rescaling factors o and 8 ;

and the universal residue value. By looking at the recurrence

nl n1+1
relation between T and T with large &

, one can make
better approximations. Furthermore, we also obtain the approxi-
mate universal map T* and thus show approximately that the
limiting self-similar behavior is universal.

The second phenomenon we studied is-the break-up of
invariant circles which play the role of ‘dam’ under a rough

perturbation

Consider a boundary circle whose rotation number vb is
{o,5,12,1,1,1,1,1,---1 in the figure 2.1.2 . Then, if one
follows periodic orbits of rotation number rn which is the

nth rational approximant of v then one can approach the

b
boundary circle and study the behaviors of phase flow near it.
For example, islands of rotation number 12/61 and 13/66 in the
figure 2.1.2 are those of rotation numbers corresponding to
rational approximants r2 and rs, respectively. The residues of
periodic orbits of rotation number corresponding to the ration-
al approximants of vb are rouqhly 1/4, asymptotically. This
implies the self-similarity of the infinitely nested structure
" near the boundary circle locally since one can see the property
of linearized flow in terms of residues. In fact, Shenxer and

Kadanoff(1982) and Mackay{(1982) showed that the boundary circle

has an infinitely nested self-similar structure in an analytic

109



-map. When the map parameter is increased slightly, periodic
orbits of rotation number corresponding to higher rational ap-
. proximants become unstaﬁle and residues of periodic orbits of
rotation number corresponding to lower rational approximants
lie roughly between 1,/4 and 1. In such a situation, the most
impértant thing to happen is that the boundary cifcle which
has separated islands is broken, and thus the width of the
stochastic layer has widened. Therefore , it is important to
study the critical invariant circles.

In the final section(§ 2.5), we s8tudy the persistence of
a noble invariant circle in an integrable map under a C2-per—
turbation.

First of all,if is worth while to notice that the per-
sistence of an invariant circle depends on the quality and
strenqth of perturbation and the robustness of the invariant
circle . For example, intuitively, rough systems are likely to
be chaotic (Wightman, 1981). There 18 a mathematical theorem
called Moser’s twist theorem(1973) which gives some answers
about the question of persistence of invariant circles under
perturbation. The theorem says that a sufficiently robust
invariant circle persists under sufficiently small and smooth
perturbation. Here, the sufficient smoothness is now Cr(r>3).
Then, the natural question is whether or not invariant circles
persist under Cr( r £ 3 )-perturbation. So, in this thesis, we
study a C* -map . |

Following Greene’'s residue criterion and Mather'’'s cri-

terion, we show numerically that a noble invariant circle
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persists below a critical parameter value in a map of class
C*. Therefore, the invariant circle plays the role of complete
barrier to transport of stochastic orbits below the critical
parameter value. Furthermore, we also observed that the crit-
ical behavior of that invariant circle seems to be the same

as‘that in analytic maps within numerical accuracy. Sd, they

seems to be in the same universal class
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g 2.2 Generic bifurcations in reversible

area-preserving twist maps

In this thesis, we consider the DeVogelaere quadratic
map since the map is represented in terms of symmetry coor-

dinates (see (1.1.3.4)). The map is:

x x/ = ~y + f _(x)
T — P
y y/ - x - fp(xl) , (2.2.1)

where fp(x): Px (1~-p)x* .

The map is an area-preserving map with unit Jacobian
(det(DT)= 1). Here DT is the Jacobian matrix which is the
two by two matrix 6f partial derivatives of x’ and y' with
respect to X and y.

The stability of a periodic orbit of period n is deter-
mined by the Jacobian matrix M of Tg about the orbit ( see

§ 1.2.1). The residue R of the periodic orbit 1is;

R = (2-TrM)/4

When R<0 , the orbit is hyperbolic, when 0O<R<1 it is elliptic,
and when R>1 1t i8 hyperbolic with reflection. For an
~elliptic orbit the residue can be represented as R=8in®(nv),
since the eigenvalues A of M are on the unit circle (N =

ett?nv).i Here v is the central rotation frequency about a

point on the orbit.

The map has the elliptic fixed point at the origin when

-1<p<1. The regsidue of the fixed point is8 : R=(1-p)/2.
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hence the central frequency v, about the fixed point is given

by an equation :

P = CO8 2NV, »

ti2ny
and the eigenvalues A of M are e °.

If xk¢1 for x=1,2,.{., g(gqa4), then there exists a canonical

transformation(x,y)>(6,1) such that
I = %(x‘+y‘), e = tan? y/x ,
and the transformation takes the map (2.2.1) into a map:

s (q+1)r/2

I =1 + O0(1 ),

, (q-1)/2 (2.2.3)

e @ + x(I) + o(I

1}

)

where o«(I)= 2ny, + ull + e+ us-Is R

'

8 = q/2 - 1 (Arnold, 1978)

Near the elliptic fixed point, typically, the map 1is a

twist map (Mackay, 1982), since it satisfies the twist

condition:

7’

A £ 0 for any © . (2.2.4)
al o _

So, near the elliptic fixed point, the map has typically

rotation shear.

The rotation number of an orbit in a twist map is defined

~as the average rotation rate:
= i (<] 2
% lim o/ (2mn)

’

if the l1imit exists.
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The range of twist defines the possible range of rotation

numbers:
0 < V < Vy .

For example, in the figure 2.1.1, the possible range of rota-

tion numher is : 0 < v < 0.2114...,
A twist map can always be obtained from avgenerating
function L(e,e”7) such that

I = - aL(e,0’) , se ,
(2.2.5)

s

I1’= aL(e,e’) s se”’ ,
since it satisfies the twist condition (2.2.4).

If o, o’ and 7/ are three successive points of 6 on an orbit,

then

9 (L(©,087) + L(67,877)1 = 0 (2.2.6)

ae”’
For integers~r and s with r+1 < s, let {et, r<t<s} be an
arhitrary sequence of real values of 6 subject to fixed
initial er and final et' Then, from (2.2.4), this sequence

gives an orbit-segment if and only if the action:

s-1

A = 2 L(et,et+1)
t=r

is stationary with respect to arbitrary variations of inter-

mediate point et . 80, an infinite sequence gives an orbit

if and only if every finite segment has stationary action.

Particularly, a periodic orbit can be obtained as follows.

lLLet us consider a periodic sequence of t&pe-(p,q),(eo,Ae ,

1'

eq = eo+ 2np). Then, the action of the periodic sequence is:

117



q-1
acce ) =Z Lte e, ) . (2.2.7)
S

A periodic sequence of type(p,q) gives an periodic orbit of
type(p,q) if and only if its action is stationary with respect
to variations keeping eq = 60 + 2np.

By the Poincare-Birkhoff theorem(see § 1,2.2), in area-
Preserving twist maps, there exist at least a pair of periodic
orbits in each‘rational v in the range of twist. For the
DeVogelaere map, one pair of periodic orbits exist ,
€e.g9. , in the figure 2.1.1 , a pair of periodic orbits of
type(1,5) . One of these orbits minimizes the action (2.2.5)
and the other is a minimaximizing periodic orbits(see § 1.2.2).
The minimizing orbit has.a negative residue and the minimaxi-
mizing one a positive residue (see § 1.2.2.). Also, the
difference in the actions between the minimizing and minima-
Ximizing orbi{s can be 1interpreted as the area transported
between the minimizing and minimaximizing orbits per iteration
of the map (see § 1.2.2.). So, computing the difference in the
actions, one can obtain the area scaling factor (Meiss, 1986).

Finally, the map is reversible since it can be factored

into the product (Tp-S)-S of two orientation-reversing involu-

tions:
’
x X = X
S: -
LA »
h 4 y ==Yy
) (2.2.8)
X X = y+ f (x)
T_S: — P
P4
Y vy o= x - fp(x') ,
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S* = I(identity) = (Tp-S)‘.

det(D8)= -1 = det (D(TpS)) .

If ( (xi, yi), ie Z ) is an orbit of Tp , then ( S(xi,yi),
ie Z }) is an orbit of T; which is the inverse map of Tp R
where T; = S-TpS. A symmetric orbit which is its own time
reversal is an invariant set under S.

Two symmetry lines formed from the points invariant
under S and Tp-s are the line y=0 and the line y = x-fp(x).
Then, a symmetric periodic orbit mugt have two symmetric
points on the symmetry lines(see §1.2.3); a periodic orbit
of even period has two points on one symmetry line and none
on the other, and a periodic orbit of odd period has one on
each symmetry line. It may be helpful to see the figures
2.2.1, 2.2.2, 2.2.3. Two symmetry lines are shown in the
pictures. They intersect at the elliptic fixed point. . Since
we are interested in the phase flow near the elliptic fixed
point, we divide the two symmetry lines into four half-lines
which meet at the elliptic fixed point. These half-lines
point away from the fixed point and are assigned an orienta-
tion as follows. Positive orientation,denoted by the subscript
*+", corresponds to pointing in the positive x direction.
Similarly negative orientation is denoted by the subscript
R LA Then, one can easily determine the rule for which points
of the symmetric orhits of rotation number p/q lie on which
half-lines. This depends on whether p ands/or q are even or odd,
as shown in the table 2.2.1. An obserbation, but not mathe-

mathically proved, is that all the minimaximizing orbits tend
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to havefa point on one of the four half-lines denoted by Ei
(see § 1.2.3). This half-line Ei is called the dominant half-
line. For the map Tp , the dominant half-line 1is S+. We denote
the second elliptic line by E; , and the two hyperbolic lines
by Hi and H; . Figures 2.2.1, 2.2.2, and 2.2.3 correspond to
each case shown in the table 2.2.1. These relations between
symmetric periodic orbits and symmetry half-lines can be used
usefully in locating symmetric orbits : a symmetric periodic
point can be evaluated by going only halfway rbund the orbit
(see 8§ 1.2.3).

In fact, periodic ofbits of type(p,q) have been born
from the elliptic fixed point of T by generic bifurcations as
the map-parameter p is varied (see § 1.2.4). In this section,
we explain generic bifurcations with figures.

As stated above, for an elliptic orbit, the residue can
be represented as R = sin*(nv). A generic ms/n-bifurcation
occurs when v is m/n, where m and n are coprime jintegers,
nal and 0<4£ m/n £1/2 (see § 1.2.4).

As an example, let us consider generic bifurcations of
the elliptic fixed point of the Devogelaere map, when p>1.
The residue of the elliptic fixed point is; R= (1-p)/2, and
the central! frequency v, about the fixed point is given by
an equation: p=cos 2nv,. As explained in § 1.2.4, when v
is m/7n(nas),a pair of stable and unstable orbits of rotation
number m/n stable and unstable orbits of rotation number
m/n are born. In the figqure 2.2.1, a pair of stable and

unstable orbits of rotation number 1,6 born from the fixed
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point are visible and a pair of stable and unstable orbits

of rotation number 1,5 and 2/5 are aiso visible in the

figures 2.2.2 and 2.2.3, respectively. When v, i8 1/4, two
types of generic 1/4-bifurcation exist (see §1.2.4). The

18t type is shown in the figure 2.2.4. At the resonance
value, a pair of stable and unstable orbits of rotation
number 1,/4 are born. This case correspond to the case of a
generic m/n{na5) bifurcation. The 2nd type is shown in the
figures 2.2.5 and 2.2.6. The figures shows a generic 1/4-
bifurcation from the elliptic orbit of rotation number 1/4
born from the elliptic fixed point by a generic bifurcation

of the 1st type. Let v be the-central frequency about a point
of the elliptic orﬁit of rotation number 1/4. Then, below

the resonance.value (v<is/i4), a pair of stable and unstable
orbits ofrrotation number 1/16 pop up. This 18 called a
tangent bifufcation. As v approaches the resonance value 1/4,
the unst?ble orbit approaches the elliptic orbit of rotation
number 1/4 (see figure 2.2.5). When v is 1/4, the unstable
orbit is absorbed by the elliptic orbit and as v increases
further, the unstable orbit is emitted(see figure 2.2.6).

Note that the elliptic orbit becomes unstable at the resonance
value since it absorbs the unstable orbit. As explained in

8 1.2.4, a generic 1/3-bifurcation corresponds to the case of
a generic 1/4-bifurcation of the 2nd type. In the figures
2.2.7, 2.2.8, 2.2.9, a generic 1/3-bifurcation from the ellip-
tic fixed point is shown. Also in this case, the ellipflc fixed

point loses its stability. Finally, as v, passes 1,2, the
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elliptic fixed point turns to the hyperbolic point with re-
flection and a new elliptic orbit of doubled period appear (see
figures 2.2.10 and 2.2.11).

All the daughter orbits born from the symmetric mother
fixed point by a generic m/n(0< m/n £i/2)-bifurcation, are
‘symmetric oribts (see 8 1.2.4) . However, as explained in
8§ 1.2.4, in a case of generic Os/1-bifurcation , daughfer
orbits are unsymmetric. The Devogelaere map has th;é example.
But we do not consider the case in this thesis .

We call the mother elliptic fixed point the class-zero
orbit(Meiss, 1986). So, the daughter orbits are class-1
orbits and encircle the class-zero orbit. Furthermore, each
class oné elliptic orbit becomes a mother orbit of class two
orbits encircling the class one orbit, and so on. In this way,
there exists‘an infinitely nested island structure, i.e.
islands around islands of all classes.

As stated above, for class one orbits, there exist a rule
for which points of a class one orbit lie on which half-lines.
Similarly, for higher class orbhit, there exists a rule depend-
ing on the mother orbit. Let E? and Eg bhe two elliptic

half-lines for class n. Then, since the daughter class-(n+1)

orbits encircle the mother orbit, the four half-lines —E?+1,
n+1
E2 R H?+1 and H2+1 for class~(n+1) are obtained from E?

and Eg by dividing each into two half-lines which meet at
the mother point. Like the case of class 1, each half line
points away from the mother points and is assigned an orienta-

tion as follows. Orientation of a half~line is designated
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poistive if the half line points in the same direction as
that of the mother line. For example, E? is divided into
two half-lines E?+ and E?_ . It may he helpful to seé the
figure 2.2.12. Then, one can easily determine the rule for
which points of the class (n+l)orbits lie on which half-lines.
This rule is shown in the table 2.2.2. This rule is not yet
proved mathemathically. Note that higher class orbits also
have the dominant symmetry line. So, all elliptic class-
(n+1) orbit have one point on that dominant symmetry Eg+ s
E?+1 = E2+ . We call the elliptic pOint’on the dominant
half-line the dominant elliptic point, and the elliptic
point on one of the remaining three subdominant half-lines
i8 called the subdbminant elliptic point. Let v be_the
central frequency about a point of an elliptic orbit of
class n. A generic ps/q-bifurcation occurs when v is p/q,
where p and d are coprime integers, gai1 and Oép/q41/2.4 The
positions of symmetric daughter points depend on whether p
and/or q are even or odd, as shown in the table 2.2.2. When
P/q is odds/enen, the dominant and subdominant elliptic points
of class n+1 are born from the subdominant elliptic point

of class n. When q is odd, the dominant elliptic‘daughter
point is born from the subdominant elliptic mother point and
the subdominant ellipfic daughter from the dominant elliptic
mother point. But the position of the subdominant point
depends on whether p is even or odd (see the table 2.2.2).
This rule is very useful in locating the higher class orbits

and explains why at the accumulation point i/n-bifurcation
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sequence exhibits ‘period-1' aor ‘period-2’ behavior, accord-
ing as n is even or odd, as will be seen in the next

section.
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p=  -@,@689800000000000

2= 0.8508

TICY- 0.8160
TICY- @.0160

Figure 2.2.6 : A pair of periodic orbits of rotation

number 1,16 when the central frequency is above 1/4
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P=

-8, 4200000000006060

Figure 2.2.7

DEV, MAP

NINDOM

X1- -0.4000
¥i- -0,4000
X2- 9.4000
¥2- 0.4680

TICN:- ©.1680
TICY=- 0.1000

: A pair of periodic orbits of rotation

number 1,3 pop up when the central rotation frequency

is below 1/3
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‘g
i

-8.4760808000000000

i - .| D, Map

R : T | oo

' ' | ¥1= -0, 400
| . {1 -0.4000
| 0= 0.408
' 2= 0.400

TICX= 9.1660
TICY= @.1608

Figure 2.2.8 : The unstable orbit of rotation number

1,3 approaches the mother fixed point
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p= -{,)2000000000a0000

DIV, MAP

WINDON

= -@.4800
¥1= -0.4600
8.400

= ©.4000
¥2- 19,4000

- | 1108 81008
. TI4= 61090

Figure 2.2.9 : The unstable orbit of rotation number
1/3 is emitted from the mother fixed point when the

central frequency is above 1/3
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p~  -8,97500000000808000 R R

DEV. MAP

NINDOK

¥1= -8.3000
¥1- -@.1060

= 8.2:00
¥2- @.10e6

AR il TICX- 0.0160
. | ' , e TICY- @.0l060

Ll
PUD TN U I U N U Ul S S W W U WS U U W WY I S W T WV ST YAV Y ST S W0 N U U W YOV U A R IU U U U U WD B U W U U Ui G U A U U WD

Figure 2.2.10 : The phase flow near the mother fixed

point when the central frequency is 1/2
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p=  -1.82)0000008080000

DEV, MAP

FET U A A I U W GIT A U U U U G U UL U AT U WP U ST W T U L. U W0 S0 G U T U S S U W U

Figure 2.2.11 ;: A new elliptic orbit of doubled period

is born from the mother fixed point
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Frgub-e 2z.2.12 : A f‘orﬂ»m‘:im of Sfoui
hal$~lines for class | .
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1 1 1 1
H
p/q B, £y 1 2
odd/even S+ S TS TS _
oddsodd S TS S TS
+ - - +
even/odd S TS S TS
+ + - -
Tabel 2.2.1 : four symmeiry half-lines for class one orbits
' n n n n
P/Q 21 E2 H1 H2
n-1 n-1 -1 n-1
odd/even E,. Eg_ E?; E].
n-1 n-1 n-1 n-1
odd/odd E2+ E1- E2_ E1+
n-1 n-1 n-1 n-1
evensodd E2+ E:1+ E2_ El-
Table 2.2.2: four symmetry half-lines for higher class

orbits (nx2)
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§:2.3 gelf-similar i1/n-bifurcation sequence

The remarkable discovery of universally self-similar
period-doubling sequences in one dimensional noninvertible
maps with one extremunm by Feigenbaum (1978,1979) inspired
several people (Benettin et al, 1880, Bountis, 1980,

Greene et al, 1981) to look for period-doubling sequences 1in
two dimensional area-preserving maps. They have found that
there are infinite period-doubling sequences with asymptotic
self-similarity and the lihiting self-similar behaviors are
different from those in one dim. noninvertible maps with one
extremum .

In 1-dim. maps, there are only period-doubling bifurca-
tions and tangent bifurcations, since the eigenvalues of the
Jacobian matfix of a periodic orbit are real scalars. But,
in 2-dim. area-preserving maps, there are generic m/n-bifurca-
tions, wheré m and n are coprime integers, nai and 0<m/n<i/2.

A stable periodic orbit loses its stability by a period-
doubling bifurcation and turns to a hyperbolic oribt with re-
flection (see figures 2.2.10 and 2.2.11) . As stated in §2.1,
unstable orbits play the role of ‘scatterer’ of stochastic
orbits likxe the pins in a pin ball game. On the other hand,
a stable orhit does not lose its stability by a m/n-bifurca-
tion(0< m/n <1/2), apart from 1/3-bifurcation or sometimes
i/4-bifurcation. In this case, islands play the role of
*trap’' of sBtochastic orbits. In other words, a stochastic

orbit has a long-time correlation near these islands.
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We (1984, 1985) have studied these island structures.
We have found that at a certain parameter value, i.e. the so-
called accumulation point, island chains of all classes of
a i/n~bifurcation, with n=3 to 6, exist and they have self-
similar nested structures asymptotically. We have also
observed that the pattern of periodic orbits repeats itself
asymptotically from one bifurcation to the next for even n
and to every other for odd n.

Firstly, I describe results for odd n-tupling bifurca-
tions, with n=3,5.

Figqure 2.2.7 shows a 1/3-hifurcation. One can follow
as many triplings as one pleases. I have followed up to 10.
Table 2.3.1 shows the parameter wvalue at which by tangent
bifurcation é pair of stable and unstable orbits of period

3n+1 are born and the residue of the stable orbit of period

3n at the parameter value, Table 2.3.2 shows the parameter
values at which the stable orbits of period 3n become unstable,
and Figqure 2.3.1 shows the stable zones of orbits of period

3,

As shown in the table 2.3.1, a pair of stable and un-
stable orbits of period 3n+1 are born when the residﬁe of
the orbit of period 3% g 0.7010815, asymptotically. The
4important thing to notice is that the successive parameter
values in the table 2.3.2 accumulate at a finite value p*.
This point p* is called the accumulation point of 1/3-bifurca-

tion point. In this case,

p* = =0.4770136842740464375.. . . (2.3.1)
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Also, note that given a residue value, the successive para-
meter values P, converge asymptotically geometrically with
ratio 6 (see the table 2.3.2 and the figure 2.3.1) !

Pn-1"Pn

§ = —m}m— — 5 . (2.3.2)
n P,-P

n+1
In this case, the bifurcation ratio is ;
6§ = 20.18468-.-. . (2.3.3)
Sc, given a residue, the successivé parameter values obey a

scaling law asymptotically :
P -p ~ 8 . (2.3.4)

At the accumulatioh point p*, the orbits of all classes of
1/3-bifurcation exist and they have the same residue value
asymptotically. The residues R: and Rf of the stable and

unstable orbit are :

R

0.7337096..- ,
(2.3.5)

I ¥ + %

]

R -0.0092326- ..

So, the parameter value of the accumulation point is below that
of each 1/3-bifurcation point of stable periodic orbits of

all classes, aymptotically.
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n fo) R

n+1 n
0 -0.414213562 0.70710678
1 -0.474217896 0.69910465
2 -0.476873826 0.70112633
3 -0.477006766 0.70103844
Y -0.477013341 0.70108185
S —0.477013667‘ 0.70108055
6 -0.477013683 0.70108151
7 -0.477013684 0.70108150

Table 2.3.1: the parameter value p at which a pair of

n+i
stable and unstable orbits of period 3n+1 are born and the

residue R of the stable orbit of period 3? at Py

14



1 ~0.5
2 -0.47815723 20.09
3  ~0.47706996 20. 31
Yy -0.4770164737 20.1876
S -0.4770138224 20.1878
6 ~-0.4770136911 20.1848
7 -0.4770136846 20.1847
8 -0.47701368429 20.184684
9 -0.4770136842748 20.184686
10 -0.4770136842741
Table 2.3.2; ~6n = (pn_1 - pn)/(pn - pn+1), where P, is the

paraneter'value at which a periodic orbit of period 3n

becomes a hyperbolic orbit with reflection.
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The next step is to fix the parameter value at the
accumulation point at which islands of all classes of 1/3-
bifurcation coeiist and examine the ;nfinitely nested
structure. Figure 2.3.2 shows consecutively enlarged figures
of the period-trebling bifurcation associated with two
symmetric points on the symmetry lines. There are two
synmetty lines y=0 and y:x-fp(x) corresponding to S-symmetry
and its complgnentary Tps-symnetry (see 8§ 2.2). But it
is more convenient to see the phase flows near the symmetric
point on the complementary symmetry line in the Henon's

quadratic map:

"
L]
n

-Y + Qfa(X)
T : '—" - (2;3.6)
x ’

<
<
i

R PP
where fa(X) = 2(1 ax*) ,
since it has the complementary straight line Y = X (1.1.3.10).
In fact, the DeVogelaere map (2.2.1) can be transformed into

the Henon's map (2.3.6) by a canonical coordinate change:

2  (X-z), y =2

24 1+a 24 1+a
p = 1-J1+a = -~a-Zz

X =

(Y-z) -~ fp(x) ’
(2.3.7)

So, we examine the infinitely nested structure in terms of
two representations: S-symmetry is represented in terms of
the DeVogelaere’s coordinates (y=0) and TS-symmetry is
repregsented in terms of the Henon’s coordinates (Y=X)

As explained in § 1.2.3, when one periodic point Pn(o)
of odd period A is on the symmetry line of 8, y=0, the

[(4+1)/21th point from that point (Pn((1+1)/2)) is on the
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complementry line, Y=X (Pn(m)= Tm-Pn(O)). It is important to
notice that when one symmetric poit is the dominant elliptic
point, the other one is the subdominant elliptic point.

For example, in the figure 2.3,2, An_1 is the subdominant

elliptic point and A;_ is the dominant elliptic point.

1
But, for the next higher periodic orbit An is‘the dominant
elliptic point and A; is the subdominant elliptic point.

In such a way, on each symmetry line, the dominant elliptic
point and the subdominant elliptic point appear alternatively
as n increases. So, as shown in the figure 2.3.2, the pattern
of the periodic orbit of period 3% ig similar to that of the

periodic orbit of period 3n+2‘ That is, magnification of the

region near the subdominant elliptic point of period 3n+1 by
appropriate féctors yields the same figure near the subdomi-
nant elliptic point of period 3%7%

Oon each'symmetry line, symmetric elliptic points converge
to a limit value 'in such a way as shown in the table 2.3.3.

a8 expected, the sequence exhibits ‘period-2' behavior. The

limit value on the line y=0 is:

x® = .2840928311... ,
and the limit value on the line ¥ = X is : (2.3.7)
»*
X = -0.488398124...

That is, on each symmetry dominant points or subdominant
points converges asymptotically geometrically to the limit
value with ratio «. Therefore, the scaling factor along the
symmetry line is:

x = -43,9807 .
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Aﬂ An—'
Cnt10
O o)
4 A4
An Ant
Bnri0
2__ 37\*H
. y.
O Butr 0 Cna
A
© S
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|
O Cata Anez
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Figure 2.3.2 : Period-trebling bifurcations associated
with two elliptic symmetric points on the symmetry

N — - s’ 4 ' 4
lines y=0 and ¥=X . an' Bn’ cn' An' Bn' and Cn are
2 -periodic points correspoding to Pn(o), Pn(Q/B).
Pn(QQ/B), Pn((ﬂ+1)/2), Pn((ﬂ+1)/2+9/3), and

Pn((9+1)/2—ﬂ/3) of the text with ¢ = 3“, respectively.
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1 0.3213

2 0.2898 4.77076

3 0.2832 -98.20728

4 0.28396 4.78659

5 0. 28411 -9.18864

6 0.2840957 4.78665

7 0.28409239 -9.18816

8 0.28409276 4.786653
.9 0.28409284 -9.188152
i0 0.28409283

Table 2.3.3: xn is the x-component of the position of the
symmetric elliptic point of period 3n on the line y=0.

txn=( X4 " X, )/(xn—xn+1 )
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We also obtained scaling factors along and across the

symmetry line by comparing the triangle with vertices An' B,

n

Cn with the triangle with vertices An B and Cn as

+2’ "n+2 +2 '
shown in the téble 2.3.4, The scaling factors along and
across the symmetry line are:

x = -43,9807
and (2.3.8)

B = - 186.723 .

In the way stated above, at the accumulation point p*,
the pattern of periodic orbits repeats itself from one bifur-
cation tq every other one when magnified by the rescaling
factor « and g.

We also studied two further trebling bifurcations of 2.3"
and 6-3n and found the éame results for both cases, except
that symme£ric points are on the same symmetry lines: the
former is on the S-symmetry line(y=0)and the latter on the TS-
symmetry line(Y=X) and thus there are two accumulation points
on each symmetry line y=0 or Y;X. In the latter case, the
orbit of the basic period 6 is one bifurcated of the mother
orbit ef period 3. So, these self-similar limiting behaviors

appear 1< be universal.
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Table 2.3.4 : Sequences of perioding-trebling
hifurcation

x (1) = (A ~-B ) , (A -B )
n n x n+l n+1'x ,

)9

x_(2) = (ﬁ;—D;)X / (ﬁ;+1-3;+1)x ,
Bn(l) = (Bn-—cn)y / (Bn+1_cn+1)y , and
Bn<2) = (B -C') / (Br’Hl-cI;H;Y

are defined with respect to Figure 2.3.2

(A_-B_)_ 1s the x-component of (A _-B_) and (B_-C_)
n n x n n n r

Y
the y-component of (B _-c_) . b =B + ¢’
: n n n n n
V4 4 . V4 V4 P4 V4
(An—Dn)X is the X-component of (an-Dn) and (Bn-Cn)Y

I'4

the Y-component of (B -c”)
n n
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Table 2.3.4
n o:n(1) txn(2) Bn(i) an(z)
2 2.39623 -17.9717 -32.1398 5.97879
3 -17.9389 2.46836 5.94564 ~-31.5555
Y 2.45693 -17.888S3 -31.4510 5.94589
5‘ ~-17.8954 2.45809 5.93983 -31.4376
6 2.45779 ~17.8943 -31.4364 5.93983
7 -17.8942 2.45781 5.93982 -31.4360
8 2.45781 ~-17.8942 -31.4360 5.93982
9 ~-17.8942 2.45781 5.93981 -31.4360
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The 1/5-bifrucation sequcnes also exhibit ‘period-2’
behaviors 1like the 1/3-bifurcation sequences. So, we
describe our results briefly. Given a residue value, the
successive parameter values P, converge asymptotically

geometrically to the accumulation point p* with ratio & :

p = p ~ 6 ’ (2-3.9)

where p¥ = 0.17713742750981... .

As shown in the table 2.3.5, the bifurcation ratio is :
6§ = 20.0478 . (2.3.10)

At the accumulation point, the orbits of all classes of
1/5-bifurcation exist and they have the same resiude values
asymptotically. The residues R: and Rt of the stable and

unstable orbits are:

R

0. 38915.. . ’
(2.3.11)

1 X 4+ X

R ~-0.16083...

Figure 2.3.3 shows consecutively enlarged figures of
the 5-tupling bifurcations associated with two symmetric
points on the symmetry lines y=0 and Y=X, when the parameter
is fixed at the accumulation point p*. On each symmetry line,
symmetric elliptic points converge to a limit value: the

limit value on the line y=0 is :

x* = o0.4085718... ,

and the limit value on the line Y=X is:

x* = 3.4s56924... . (2.3.12)
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As shown in the figure 2.3.3, the pattern of periodic orbits
repeats itself from one bifurcation to every other when
magnified by the scaling factors «x and p along and across the

symmetry lines, respectively. The scaling factors can be

obtained by comparing the pentagon with vertices An ’ Bn ,Cn »
Dn and En with the pentagon with vertices An+2 » Bn+2 ’
Cn+2 R Dn+2 and En+2 , as shown in the table 2.3.5. The

scaling factors along and across the symmetry line are:

x = -43.27

and {2.3.13)

In summary, for odd n-tupling bifurcation with n=3 and s,
n-tupling bifurcation sequences exhibit *‘period-2’ behaviors
at the accumulation point p*. However, the bifurcation ratio
6, the scaling factors x and 8 depend on n. The reason why
these sequences exhibit ‘period-2’ hehaviors is that the
dominant elliptib point and the subdominant point appear

alternatively and converge to a limit value.
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—o
ODnea Ang  Ana
CEmyz

Figure 2.3.3 : Period 5-tupling bifurcations associated

with two symmetric elliptic points on the two symmetry

c,bp, E, a7, B, c/, p’ and

lines y=0 and Y=X . A_, Bn, n n n n n’ Sn n

n
E; are f-periodic points corresponding to Pn(O), Pn(Q/S),
Pn(QQ/S), Pn(BQ/S), Pn(qe/s), Pn((ﬂ+1)/2), Pn((9+1)/2+2/5),
Pn((ﬂ+1 Y/2420/5), Pn((9+1 Y/72+38/5), ' and Pn( (2+1)/72+42/5)

with 2 = s , respectively. P_(m) = Tm-Pn(O)
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Table 2.3.5 : Feriod S-tupling sequences

« (1) = (c_-B )/ (C_ . -B ) ,
mn(Q) = (Bn—ﬂn)x / (Bn+1_ﬁn+1)x ,
“;(1) - (B;—F;)X g ‘ﬂ;+1—F;+1)X ’
07(2) = (FI-GT)y / (FL -Gl Iy »
ﬂn(l) = (Cn--Dn)y / (Cn+1—Dn+1)y ,
Bn(2) = (Bn—En)y / (Bn+1-En+1)y ’
,B;(l) = (Bé—E;)Y / (B;+1—E;+1)Y , and
B;(z) = ‘C;‘D;)v / (Cg+1”9;+1’y

are defined with respect to Figure 2.3.°3 . (Cn-Bn)x

and (B_-A_) are the x-components of (C_-B_) and
n n'x n n

(B -A_ ), and (Cc_-D_) and (B -E ) the y-components
n ' n n ny n ny

of (C_-D_)-and (B _-E_) , respectively. r’ =B + E’
n n n n n n n
V4 Ve V4 F4 v V4 V4
= + . -F - e t -COoOmpo -
Gn Cn Dn (An Fn)x and (Fn Gn)X ar he X-comp

7’
n

rd

F’) and (F’-c
I I n

7’

nents of (A ) , and (B°-g7)__ and
: n n

(C'—D') the Y-components of (B'-EI) and (C'—D/),
n n'y n n n n

respectively. B_ = (pn_l—pn) 7/ (p

n -p ). p, is the

n n+1

parameter value at which the residue of the stable

orbit of period 5n 18 s1n(n/5s)
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Table 2.3.5
n Bn un(l) un(2) u;(l) ué(?)
2  19.9690 7.40849 0.831189  -29.2454 -5.59284
3  20.0877 -6.24997 -30.8353 1.41469 7.2074S
4  20.0436 7.16292 1.40393 -30.8921 -6.04406
5 20.0479 -6.03398 -30.8830 1.4010S 7.16761
6  20.0476 7.16827 1.40099 ~-30.8829 -6.03628
7 20.0478 -6.03657 -30.8834 1.40105 7.16804
n B (1) B (2) 35(1) B;<2)
2 -17.8562 -8.83636 8.77680 4,351094
3 3.73783 8.14048 -9.09062 -19.4407
y -19.6196 -9.11968 8.29347 3.85777
5 3.86617 8.30441 -9.11740 Z19,5907
6 -19.5885 -9.11757 8.30287 3.86455
7 3.86432 8.30272 -9.11786 -19. 5900
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Secondly, I describe results for even n-tupling bifur-
cations, with n=4 ;6

As explained in § 2.2, there are two types of 1i/4-
bifurcation. A pair of stable and unstable orbits of period
4 are born by a 1/4-bifurcation of the ist type. On the
other hand, for qn(né25. the 2nd type bifurcation is observed
up to n=8, Likxe the case of 1)3-bifurcation, a pair of stable
and unstable orbits of period_‘tn+1 are born when the residue
of the orbit of period 4" g 0.494..., asymptotically. Like
the case of odd n-tupling bifurcation, given a residue, the
successive parameter values pn converge to the accumulation

point p* asymptotically geometrically with ratio 5 :

P, - P ~ 8 ., (2.3.14)
where p" = -0.0689824402834... ,

and

6 = 24.45

These results are included in the table 2.3.6. So, at this
accumulation point the orbits of all classes of 1/4-bifurca-
tion coexist and also they have the same residue values
asymptotically. The residues R: and Rt of the stable and

unstable orbits are:

R

0.5178. .. ’
(2.3.15)

R -0.02777. .-

I X + %

So, the parameter value of the accumulation point is above that
of each 1/4-bifurcation point of stable orbits of all classes,

asymptotically.
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n n

1 -0.1

2 -0.07 23.065
3 -0.06904 25.004
4 ~-0.06898 24,454
5 -0.0689825 24,478
6 -0.068982448 24,451
7 ~-0.06898244472 24.450
8 -0.0689824440

Table 2.3.6:; 5n=(pn_1— pn)/(pn-pn+1), where P, is the para-

meter value at which a periodic orbit of period y1 becomes

a hyperbolic orbit with reflection.
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Figure 2.3.4 shows consecutively enlarged figures of
period-quadrupling bifurcations associated with two elliptic
symmetric points on the symmetry line y=0. As explained in
§ 1.2.3, when one periodic point Pn(o)of even period & is on
the symmetry line y=0, the (4-/2)-th point from that point
Pn(I/Q) is also on the same symmetry line y=0 (Pn(m)=Tm-Pn(0));
Unlike the odd n-tupling bifurcation, the dominant elliptic
point and the subdominant point appear successively as n
increases, respectively. In the figure 2.3.4, An is the
subdominant point and Cn the dominant point. So, as shown
in the figure 2.3.5, the pattern of orbits repeat itself from
one bifurcation to the next one asymptotically when magnified
by appropriate scaling factors.

Symmetric elliptic points on the line y=0 converge

to a limit value x" geometrically with ratio « :

x® = -0.4086080643. - - ,

(2.3.16)
x = - 5.614

The ratio o is just the scaling factor along the symmetry
line.

We defined various sequences for scaling factors in
the table 2.3.7 like the case of odd n-tupling bifurcation
and computed them. The results are included in that table.
AB expected, unlike the case of odd n-~tupling bifurcation
sequences , these sequences exhibit ‘period-1’' behaviors,
asymptotically. The scaling factors along and across the

symmetry line y=0 are :
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and (2.3.17)

B= 14.27

We also studied one further quadrupling bifurcations of
6-4n. Also, in this case, we obtained the same result.
In this case, the orbit of basic period 6 is one bifurcated
from the mother orbit of period 3 and so symmetric elliptic

points on the line Y=X. Therefore, these self-similar limiting

behaviors appear to be universal.

The 1/6-bifurcation sequences also exhibit ‘period-i1i’
behaviors like the i/Q-bifurcation sequences.

Given a fesidue value, the successive parameter values
pn converge to the accumulation point p* asymptotically
geometrically'with ratio & :

»* -n

pn - p ~ 5 14 (203.18)

where p* = 0.33623839313... ,

and as shown in the table 2.3.8, the bifurcation ratio 5 is:
6§ = 13.85 . (2.3.19)

At the accumulation point, the orbits of all classes of
1/6-bifurcation exist and they have the same residue value
asymptotically. The residues R: and Rf of the stable and

unstable orbits are:

R* = 0.3130 ,
+
(2.3.20)
R* = -0.2420
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Figure 2.3.4 : Period-quadrupling bifurcations assocCi-

ated with two symmetric elliptic points on the symmetry

line y=0 . & , B “ B’, ¢/, and D’ are
n n n

n c, D A

n’ n n’ 'n’
2 ~-periodic points corresponding to Pn(o). Pn(ﬂ/q).

Pn(¢/2), Pn(32/4), Pn(Q/B), Pn(32/8), Pn(SQ/B), and

Pn(7Q/8) of the text with ¢ = qn , respectively.
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Table 2.3.7 : Period-quadrupling sequences.

xnt1) = (B =B) 7/ (ﬂn+1'Bn+1)x ’

x (2) = (B_-C_) /7 (B ~-C ) ,

n n nx n+1 n+l x

x (3)-=(a’-B7) , (a7 _-B? ) ,

n n n x n+1l n+l X

Bn(l) = (Bn—Dn)y d (Bn+1_Dn+1)y ’
. s V. /s

B,(2) = (AZ-D/)_/ (a’ -p’ ), and
V4 V4 V4 V4

Bn(3) = (Bn-Cn)y / (Bn+1—Cn+1)y ,

are defined with respéct to Figure 2.3.4 . (A_-B )

L4

n n x

(B_-Cc_)_and (A’-B’) are x-components of (A _-B_),

n n'x n n n n
(B_-C_) and (A’-B”) , and (B_-p_ ) , (a’-p’)_ and

n n n n n n'y n n'y
(B’-c”) y-components of (B _-D_), (A -p’) and

n n'y n n n n

V4 Vd N
(Bn—cn) , respectively
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Table 2.3.7

n un(l) un(2) an(3) Bn(i) Bn(2) Bn(3)

2 -5.6072 —5.802? -4.7438 14.828 17.148 16.440
3 - -5.6169 -5.5718 -5.9847 14,365 13.528 13.628
4 -5.6138 ~5.6309 -5.4984 14,294 14.588 14.589
S -5.6141 -5.6117 ~5.6413 14,277 14.211 14,213
6 -5.6142 -5.6151 -5.6078 14.270 14, 287 14.287
7 -5.6140 ~5.6137 -5.6153 14.269 14, 265 14, 265
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Figure 2.3.5 shows consecutively enlarged figures of
the 6-tupling bifurcations associated with two symmetric
elliptic points on the symmetry line y=0, when p=p*. Oon
that line, symmetric elliptic points converge to a limit
value;

x¥ = _0.578806968... . (2.3.21)

We defined various sequences for scaling factors in
the table 2.3.8 and computed them. The results are included
in that table. Like the 1/4-bifurcation sequences, these
sequences exhibit 'period-1' behaviors,.  asymptotically.

The scaling factors along and across the symmetry line y=0 is;

x = -8.25 ,
(2.3.22)

™
1}
(o)
w
o

In summary, for even n-tupling bifurcation with n=4 and
6, n—tupling bifurcation sequences exhibit ‘period-1’
behaviors at the accumulation point p* . Period-doubling
sequences also exhibit 'period-1’ behaviors. But, the limi-

ting self-similar behaviors depend upon n.
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Figure 2.3.5 : Period 6-tupling bifurcations associated
with two symmetric elliptic points on the symmetry line
4 ’ 4 7’

¥=0 . A, B, C, D, E, F,a’, B’ c’ D,

4
E', and
n n n n n n n n n

F; are f-periodic points corresponding to Pn(o), Pn(!/s),
Pn(2¢/5), Pn(sﬂ/s), Pn(qﬂ/s), Pn(se/s), Pn(32/36),

. n
Pn(99/36), Pn(159/36), Pn(219/36), Pn(27!/36) with 2=6 ,

. m
respectively. Pn(n) =T -Pn(o)
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Table 2.3.8 : Period 6-tupling sequences.

xpti) = A =B ) B B

x (2) = (B -C )/ (B _-C_ ) ,
un(3) = (Cn-Dn)x / (Cn+1~Dn+1)x"
x4 = (AQ—B;)X 4 ﬂ;+1- £+1)x ’
x_(5) = (Bé-c;)x / (B;+1—C;+1 <

B, (1) = (B -F )/ (Bnﬂ-rn;l)y ,

B, (2) = (C -E )/ (C  -E ),

B (3) = (ﬂg-F;)y / (ﬂé+1—F;+1)y ,
Bn(g)*: (B;—E;)y / (Bé+1—Eé+1)y , and
B (5) = (c;-né)y / (c;+1-ng+1)y

are defined with respect to Figure 2.3.S

(A -B_) , (B.-C_ ) , (C_-D ) , (a’-BY) and (B -c”)

n n'x n n'x n n x n n'x n n'x
are x-components of (A -BR ), (B -C ), (C_-D ), (a°-B7)

n n n n n n n n
and (B’-c’) , and (B_-F_) , (C_-E ) , (a’-r") ,
n n n'y n n'y n ny

’ s 7 _

(Bn—En)y , and (Cn-D )y y-components of (Bn Fn),

V4 s/

(C_-E ), (A_~F_ ), (B
n n n n

b BN IEENE

P4 V4 4 .
- - vel
En), and (Cn Dn) , respectively

5. = (p

n P_) / (pn—p

- i meter
n-1"Pn ) , where p_ is the paramet

n+i
\ ) n
value at which the residue of the orbit of period 6

18 1/4
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Table 2.3.8

n o un(l) un(Q) un(3) an(q) un(s)
2 13.91 -9.820 -8.098 -9.234 1.307 -5.298
3 13.82 -8.006 -8.206 -8.268 -10.36 -10.04
4  13.84 -8.340 -8.285 -8.260 -7.832 -8.094
s 13.85  -8.248 -8.257 -8.261 -8.281  -8.283
6 13.85 -8.257 -8.254 -8.252 -8.231  -8.254
n 8 (1) B (2) B (3) B (4) B (5)

2 6.080 5.596 12.24 12.01 11.67

3 6.289 6.353 5.226 S.202 S.128

y 6.290 6.282 6.454 6.453 6.457

s 6. 300 ' 6.300 6.289 6.284 6.281

6 6.303 6.303 6.306 6.306 6. 305
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In the above, we show numerically that there exist
limiting self-similar behaviors at the accumulation point
(p:p*) on smaller spatialscales. In fact, even more asymp-
totically self-similar behaviors exist near the accumulation
point (Lee et al, 1984, 1985). Given a residue value R, let
Pn be the parameter value at which periodic orbit of class-n
has R. Then, asymptotically, the pattern of thé periodic
orbit of class-n when p=pn appears to be the same as that
of the periodic orbit of class-m when p:pm on smaller spatial
scales, where m is (n-1i) for even n and‘(n-2) for odd n.

S0, when the parameter and the dynamic variables are rescaled
with the rescaling factors 6§, o and g , the pattern of period-
ic orbits also reﬁeats itself from one bifurcation to the

next for eveh n-tupling bifurcations and to every other for

odd n-tupling bifurcations.
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8§ 2.4 Renormalization Analysis of Bifurcations

We(1986) also studied the asymptotically self-similar
island structures described in the previous section by a
simple approximate renormalization method.

The renormalization method was introduced into the
dynamicaliaystem first by Feigenbaum(1978,1979) to study
the Feigenbaum sequence in 1-dim. noninvertible maps with one
extremum . The method soon extended to the 2-dim. area-pre-
serving maps for the study of period-doubling sequences and
critical invariant curves. Collet et al (1981), and Widom and
Radanoff (1982) solved directly the fixed point equation for
the renormalization of 1i/2-bifurcation in map and action space,
respectivély and obtained an approximate fixed point, the scal-
ing factors and the bifurcation ratio. Using MACSYMA, Greene
et al (1981) also obtained an approximate universal map, but
they used fhe information of the accumulation point and the
scaling factors obtained by directly following 1/2-bifurcation
sequence. However, these methods of directly solving the fixed
point equation for the renormalization of i/n-bifurcation be-
come rapidly intractable as n increases. Therefore, for higher
n-tupling bifurcation, it is desirable to use an approximate
renormalization method in which the difficulty of calculations
does not increase significantly with n.

The approximate renormalization method used in this
thesis may be called the method of quadratic approximants.

Since the sgelf-similarity 1s an asymptotic property valid
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only in the immediate. vicinity of symmetric elliptic point,
we expect that it would be sufficient to retain upto quadra-
tic terms in the Taylor expansion of the composed map. 8o,
the quadratic approximant is formed by keeping the terms to
the 2nd order in the Taylor expansion of the nth iteréte of
amap T, i.e. T?. Then, comparison of successive approxi-
mants of a i1/n-bifurcation gives the accumulation point p*,

the bifurcation ratio 5, the scal}ng factors « and B8, and

the universal residue value R*. Furthermore, by looking

| a+1
at the recurrence relation between Tn and Tn as &

increases, we can make better approximations and obtain

the approximate universal map T*:

. Iy (v 4 (0]
T*= lim An-Tn*-A—l , A=

1300 P o B

Actually Helleman(1980) and Helleman and Mackay(13883)
used this method for 1/2-bifurcation. In their calculation
they compare quadratic approximants for T and T*, i.e.
the lowest pair of approximants. We(1986) made better approxi-
mations analytically by comparing the next higher approximants
for 'I‘2 and Tq .  Although approximants for low order iterates
can be handled analytically , it is imperative to resort to
numerical method for quadratic approximants for high order
iterates of T for i/n-bifurcation with high n and high order
calculations. So, by the numerical implementation of this
simple method, we obtained universal mapg, scaling factors,

bifurcation ratios and universal residue values for 1i/n-

bifurcation, with n=2 to 6.
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Recently Lichtenberg(iSBS) obtained accumulation points
for higher n-tupling bifurcations(n>2)in the standard map
by a simple method. He reconstitutes approximately a local
standard map about a.single islaﬁd of period n (ﬁ>2).
Through this procedure he obtains a recurrence relation
between the old parameter of the original map and the new one
of the local map, and calculates the accumulation point as
the fixed point of the recurrence relation. However, in
effect, his one-shot renormalization scheme amounts to our
lowest A(A=1) approximation.

As an example, we take 1/2-bifurcation and describe our
method briefly. Let us denote the subdominont point of
period 21 as (Qn » 0). Then, the idea of the renormaliza-

tion method is to associate, for each p' , a value p such

21 ~ 1-1
that Tp with origin (xn,O) looks the same as sz on a

small spatial scale:

(2-1) a2
T:, = A-T; <A, (2.4.1)

where A is the geometric rescaling matrix:

[+ ¢ 0
A =
0 B
21
If we denote T as
0 x x? = F;“(X.y)
Iy, ud P (1)
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(4) » (1)

. )
then Fp (xl ,0) = 0 and Gp (x1 ,0)=0
. . (1) (1)
Let us first make Taylor-expansions of F and Gp
about (Qn , 0). Then,
FCO x,7) = %, + B,(p)e(x-X,) + B (P)ey + U,(pP)- (x-x, )2
p Y= Xy 2 \B 1 ARRAR4 2 \P’ %

v X W
+ V() (x=X )y + W AP)YE + onn

G2 (x,¥) = C(P)e(x-X.) + D.(P)ey +Q.(P)-(x-X.)?
p )y - 4.. p M 4.. + 4.. p 'y n p * x-xl

R < :
FR(P) (X=X )27 + S (P)ey? +e-n

‘-

Since the self-similarity holds in the vicinity of the

periodic point, we expect that it would be sufficient to

xeep the terms to the 2nd order in Taylor-expangion.

L

P,y of T2 (x,y)

LLet us define the linearized map M

as
' H(l)(x,y) I(n)(x,y)
(2) ' 2t P P
Hp (X,y) = DTp (x,y) = (1) (1) ’
: » ‘Jp (x,Y) Kp (x,Y)
(2.4.2)
by introducing four fuhctions H(l), I(l), J(l)and K(l)
_ : p P p P
Here the area-preserving condition is given by
g8 g 18 )y for any (x,¥). (2.4.3)

P P p p

Then, the coefficients of linear terms of Taylor-expansions

can be represented by :
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' (1), A : RTI
Al(p) = Hp (xl , O), Bl(p) = Ip (x1 , 0),
c.(p) = 7*7(x. , 0) and (2.4.4)
2'P) = P 1’ .
D (p) = B'E(%X. , 0) = (14B..C.)/A

2P =Ry 6’ ' PR Sadid !

On the other hand, in symmetry coordinates, An--.Dn (Mackay,

]
1982). So, the trace of the Jacobian matrix of T; about

2l
(xl »0) is;

Trul(p) = 2An(p) : (2.4.5)

The coefficients of quadratic terms are also represented

by the defivatives of the above four functions:

1 BH;I) 81;1)
U, (p) = = — V. (p) = =—
E 2 ox (x ,0) * 1% ox (%,,0) *
'3 '
, a3tt) , ot
Q(p) = ==L W (p) = L._P
. 2 ox (x,,00 0 4 29 (X,,0)
(2.4.6)
ok (L)
R (P) = 5= A = (2B-Q, +C, .V, -2D, .U /D, ,
(xl,o)
and
. BK;I)
Sl(p) = 3" 8x A = (Bl-Rl-i-?Cn-wl-Dl-Vl')/(QDn)
(xl,O)

In (2.4.4) and (2.4.6), the area-preserving condition (2.4.3)

is used to express D R, and 8, in terms of the other

| SO | |
coefficients. In such a way, the quadratic approximant of
l .
2
T is- formed to keep the terms to the 2nd order of the
) }

Taylor-expansion of T: about the subdominant point. Then,
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-1 [ |
substituting the quadratic approximants of T;: ‘and T;

into(2.4.1) , we have

P4 V4
Ay 4P )=A(P) , D, ;P =D, (p),
- s, ‘. _ g
81-1(p )= ) Bn(p) , C1-1(p )= % Cl(p) ,
u, (pHr= L u (p) v, (p7)= 1 v, (p)
1_1 p - '&' 1 p » 1_1 p - B 1 p ’
s, sv_ B
WP )= =W, Py,  Q ,(p)==Q(p),
B o
’ 1 ’ b}
R1—1(p )= = Rl(p) , and S‘_l(p )= 5 Sl(p) . (2.4.7)

Comparing the diagonal coefficients of the linear terms

21 A 21-1 A
of Tp with orxgxn(x‘ ,0) and sz with origin (xl_1

we can obtain the accumulation point p* and the bifurcation

01,

ratib 6 as follows. By (2.4.5) and (2.4.7) , we have :

’
Tr Hn_l(p ) = Tr Mn(p) . (2.4.8)

This recurrence relation (2.4.8) can be also obtained by the
method of Derrida and Pomeau(1980). The fixed point of

- . - < *
the recurrence relation gives the accumulation point p :

* »*
Tr Mn_l(p ) = Tr Ml(p ), (2.4.9)

and the bifurcation ratio is given by an equation :

’, d{(Tr HI(P))/dP l *
- 4P = P . (2.4.10)

4 ’
p* actr My (e 0isap” |

As 1 increases, naturally one can obtain more accurate values.
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For the:first two-orders, explict analytic recurrence rela-
tions can be easily derived, and thus Derrida and Pomeau(1980)
obtained b and 5 to the second order. We extend the calcula-

tions to higher orders. Our method is as follows. For any

given (x,, y,), the function vaiues of H(l), Iél), Jél) and
K;l) in (2.4.2) are easily calculated from
H(l)(x Y.) I(l)(x y.) 21
(1) p 1’71 P 1’71
P | % vy kY x ¥y |
’p 1’7" P 1'%
(2.4.11)
_where
, £o(x,) -1
m .= DT_ = P
1 p ' d 4 ' d !
1-fp(xi+1)-fp(xi) fp(xi+1)
, e | X3
f (x.) =p - 2.{1-p)-x. and - 'p
p 1 t yi.+1 yi

Therefore, Tr Hl(p)is readily calculated after finding the

periodic orbit of period 21. That is,

(1)

lal
Tr Hl(p) = 2-Hp (x_.,0) . (2.4.12)

a
The equation for p to be solved is given by :

F(p)= Tr Hl(p) - Tr "1-1(p) =0 . | (2.4.13)
The root of F{(p)=0 is just the accumulation point p* and the
universal residue rR* is (2-Tr Hl(p*))/Q. Also, the bifurcation
ratio & is the ratio of the slopes of Tr Hl(p)and Tr H141(pl) at

the accumulation point(see (2.4.,10) ). At pzp*, the derivatives

of Tr Hl(p) and Tr Hl-l(pl) are calculated by ordinary differen-
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tiation routine. We numerically solﬁe (2.4.13) anq (2.4.10),
and obtain p* and 6§ to the 6th order (see the table 2.4.1).
As shown in that table, we have more accurate values as %
increases.

Once we have p*, we can obtain the scaling factors « and
g through (2.4.7). At the accumulation point p*, we first
find the subdominot point of period 21 and calculate the
(1)’ I(l), J(1) and K(l)at (Q

function values of H R
p p P P 1

(2.4.11). Nexf, we calculate the derivative wvalues of them

0) through

o _
at (xn,O) by ordinary differentiation routipe. Thus, at p=p*,

4-1 1
we obtain the quadratic approximants of T;* and T;* .

Then, by (2.4.7), when p=p*=p', we obtain not only the ratio
of the scaling factors «/p comparing the off-diagonal éoeffi-
cients of the-linear terms, but also the scaling factors «
and g, separately comparaing the quadratic coefficients. As
shown in the fable 2.4.1, we obtain more accurate values of
x and B as & increases.

Finally, we obtain an approximate universal map of 1,/2-
bifurcation as follows. We define a renormalization trans-
formation N :

4

T = N(T) = A T* A ,

o 8]
where A = and the subdominant point of period 2
0 B
in T lies at the origin. Let us define T, as the i-times
2 2 20 |
renormalized map. That is, Tl: N (To) = A -Tg A
A
with origin (x, ,0). If we put To=T__ , then lim T, = T¥,
1 p* 100 1
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as shown in the figure 2.4.1.. Then, we have approximately

) |
T*u An-T2 -A-1 for large 4. Thus, we have an approximate

universal map T* of i/2-bifurcation:

T

X7 = =1.27176%X-1.01322y-2.31933x* +0. 334822XY++
y’ = ~.609305x~-1.27176y+. 793849X* +5. 91963XYy++ » -
and thus the universal residue R* is
R® = 1.13588 .

Consider the linearization of N, dN, in the neighborhood
of T*. Then, it has one relevant eigenvalue 5 outside the unit
circle whichxis coordinate independent. Of course, there
exist ccordinate dependent unstable eigenvalues (Mackay, 1882).
However, it is possible to choose coordinates for a system in
order that it have no components in those unstable direc-~
tions(Mackay,1982). These coordinates are called scaling
coordinates. Maps in the figure 2.4.1 are represented in
terms of scaling coordinates. So, only one relevant eigen-
value 6 exist. The horizontal line in that figure represents
mabs in which the parameters are fixed at the accumulation
points. This is called the critical surface of maps. So, all
maps in this surface converge to T* under the renormalization
N. In such a sense, the limiting self-similar behaviors are
universal. The vertical line in that figure represents a
universal 1-parameter family. This unviersal 1-parameter

satisfies :

176



Frawe 2.4.] + A sketch o:f- flow- P-oauced

By the }-ena-ua.l'i&ai’:ion operafak N mn He
infimite dim. funcl:ron space. The dashed

line pepresew{:; a. l-—pa}a'me{:ei- fnmly .

M



%*

Tu-&

= N(T: Y,

where y is the scaling parameter and thus at u=0, the map is
*. As shown in the figure, a 1-parameter family of maps
near the accumulation point converges to the universal 1-

parameter under the renormalization.

The renormalization method can be also applied to

1/3-, 1/4-, 1/5- and 1/6-bifurcations. However, since 1/3-
and i1/S-bifurcation sequences exhibit 'period-2’ behaviors,
the renormalization transformation N now must be:

-y 4

a
T’ = N(T) = A-T® .A?

where n=3 and 5. Let T, be the initial map. We define T, by: -

j |
21
T,= N(To) = Attt oA

Then, for T, =T we have

p*
21 '

lim An-Tn* a7 oo

1500 P

and for T, = T:* we have;
n(21+1) _
lim A™-T " A =T
250 P
Therefore, unlike even n-tupling bifurcation, we have two

*

fixed T*, and T** + T and T** are the universal maps which

describe the phase flows near the subdominant and dominant

elliptic points, respectively. However, the linearization

of N, dN, near these two fixed points has the same relevant

eigenvalue &.
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Using this method, we have performed the calculations to
higher order for 1/3-,1/4-,1/5- and 1/6-bifurcations. The
resgults of p*, 6§, x and B8 are listed in the table 2.4.,2.

For 1,4- and 1/6-bifurcations, like 1/2-bifurcation, we

obtained a single approximate universal map. For 1/4-bifur-

cation, we have :

5
T & A°. T3 .a7°
, P*
x’ = -0.03561%-1.0114y-1.251X* -0.3308XY+- « »
vy’ = 0.9874%~-0.03561y-0.1982x* +0.4157XY+- « -

with R¥ = .s17s1

and for 1/6-bifurcation, we have ;

™ 2 A%.1% .a7°
joF
x? = 0.374%-1,129y-0.764x* ~0.623XY++ -+
v’ = 0.7617x+0.374y+0.0588X* <0, 0967Xy+~ « -

As explained above, for 1,/3- and 1/5-bifurcations, there

exist two universal maps. For 1/3-bifurcation, they are:
6
T* o A3-T3 .A-3
P*
’
x =

~0.46742X~0.908416-1, 737x* -0. 23 725Xy +: -

«
i

0.86032X-0.46742y-0.58538X% +1.8279Xy+- -+ *

and
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%, aA3.73 473
pn
x’ = =0.46742X+0.28035y-17.773x* =18, 059Xy ++ - »
y/ = -2.7877x-0.46742y" -32.037x* =33, 728Xy +- - -

with R® = 0.73371 ,

and for 1/S5-bifurcation, they are :

" x7=.2217x-. 46y -1, 4X* =, 3TTXY 4. - -

vy = 2.07%x+.2217y-.215%* + .162Xy:--

and

T** 2 S -2

X/=.2217X+.27y~15.9%* =3. 21Xy +- «

s

Y= =3.52X+.2217y-41.4X* -18. IXy+- - -
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L

? P 5 x B

1 -1,265564 9.0623 A -4.1204 17.012

2 -1.266321 8.6845 -4.0059 16.294

3 -1.26631115 8.72541 -4,.01992 16. 3729

4 - ~1.2663112786 8.720586 -~-4.01775 16.3627

S -1.266311276899 8.721156 -4.01814 16. 3641

6 . ~-1,2663112769223 8.721090 -4.01806 16. 36386
xnown best .
valdes -1,2663112769221 8.721097 -4.0180767 16.363897

Table 2.4.1: The various quantities obtained by an approximate

renormalization method for 1/2-bifurcation. Known best values

are those obtained by Greene et al(1981) by following

i/2-sequence.

181



m/n-

*
Q 5 o
bifurcation p B
1/3 3 -.H4770132684274045 H4O7.4254 -43,9794 -186.,723
Known best
-.477013684274048 407.422 -43,9807 -186.7
values )
1/4 ) -.0689824440291 24.4616 -5.6119 14,2824
Known best
’ -.0689824440286 24 .45 -5.6141 14,269
values
1/5 2 177137427506 401.75 -43,34 ~-76.09
Known best -
.177137427510 401.92 -43, 27 -75.70
values
1/6 =3 .3362383932 13.83 -8.248 6.032
Known best . 3362383931 13.85 -8.25 6. 30

values

Table 2.4.2: The various quantities obtained by an approximate
renormalization method for i/n-bifurcation, with n=3 to 6.
Known best values are those obtained by following 1/n-sequence

in our works{(1984, 1985).
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§ 2.5 Critical behavior of an invariant circle

in a C* -map

In this section, we study whether or not invariant cir-
cles exist in a map of class-~C?*. In this case, persistence
of invarinat circles is not guaranteed by Moéer's twist
theorem, since the sufficient critical smoothness of a map
is now class-C’ (r>3)in that theorem (§ 1.3.1).

Following Greene's residue criterion (see § 1.3.2), we
show numerically that a nobel invariant circle persists
below a critical parameter value. Therefore, below the
critical parameter value, the invariant cirlce plays the
role of a complete barrier to the trnasport of stochastic
orbits. We also‘observed that the critical behavior of
that invariant circle appears to be the same as that ;n
analytic mapé. On the other hand, Herman(1983) has Cr(r(‘\-
counterexamples to Moser’s twist theorem. So, for a map
of class-Cr(r<3) invariant circles may or may not exist,
depending on the map.

In this section, we study an area-preserving map of

class-C*, T which has a unit Jacobian (det(DT)=1)

.o

[ I =1 + € F(©)

T: (2.5.1)
e’ =e + 17 ,
3 .
46~ -30,4 , 0D £ 0O £ 1/4
where F(0) = —q(e—ﬁ)3+%-(e-§) , L 1,4 £ 8 £ 34
33
4(e-1)7-2. (8-1) 34 0 £1

1
J F(e).de = 0
| O
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’
g? >0),
e

T-is a twist map(see § 1.1.2). So, the map can be obtained

Since the map T has a rotational shear (

from a generating function L such that I=-a8L(e,e0’)/86 and

’

I1’= aL( o,0”)s/807,

where L(e,0”) = %-(e,e’)‘ - €-V(®0) (2.5.2)
and
F(e) = - vi(e) .

From the stationary action principle (see 8 1.2.2) a periodic

sequence(et) with et+q

= et+p yYields a periodic orbit of

rotafion number ps/q if its action:
q-1
A= z L(e,,-6, ) (2.5.3)
t=0

is stationary with respect to variations keeping eq=e°+p.
T 18 also reversible, since T can be factored into the
product (TS)-S of two orientation-reversing involutions,

where

e’ = -o
S: . (2.5.4)

1’ I + € F(0)

The four symmetry half-lines formed from the invariant points
under S8 and TS are the lines ©6=0, 6=k, I=20 and I=20-1.

We study the most robust invariant circle. The most
robust invariant circle is one that is the farthest from
nearby islands(see § 1.3.2). The continued fraction represen-

tation of the rotation number of that invariant circle is

.
»
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v = [mg,m,mg, -1 = [0,2,(1,)01 = y7%, (2.5.5)

Y = (1+{5)/2 ,

and the rational approximant rn of v is:

rn= pn/qn = [moomx0"'0mn] ’

n+1- ®n41°Pn ¥ Ppog (2.5.6)

Ae1™ Pner’9n Y 9y 0 972 » A, 0.

Following Greene’s residue criterion, we show that
the invariant circle of rotation number x-z persists under
a critical parameter value e*. Near E*, it is observed
that given a rotat;on number pn/qn, a palr of periodic orbits
of the rotation number exist. As explained in § 1.2.2, one
is a minimizing orbit , the other is minimaximizing one , and
the differences in the actions Fn between the two orbits can
be interpreted as the area that is transported between the
two orbits per iteration. Mather (referred to by Mackay 1982)
has shown that given a sequence of rational approx%mants
pn/qn 5 v , there exists an invariant circle of rotation v

if and only if F. = 1lim F =0 . When F. is nonzero , Mather
v N300 n v

(referred to by Mackay, 1982), Aubry and Daeron{(i1983), and
Kétok(1982) has shown that a hyperbolic invariant set of rota-
tion number v,i.e.the so-called cantorus, exists. The cantorus
can be regarded as a circle with a dense set of countably

infinite gaps caused by overlap of nearby island chains.
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The critical parameter value c* can be obtained as
follows. We follow the parameter values En such that the
minimaximizing periodic orbit of rotation number pn/qn
corresponding to the nth rational approximant to 7—2 ﬁas some
given residue, e.9. 1. The limit value of (en)-sequence is
just the critical parameter value e*. The convergence ratio
& is the limit value of (Bn)-sequence defined by 6n=(c

n-1_

en)/(cn - £n+1 ). These sequences are shown in the table

2.5.1. By superconverging the results, we obtained c* and &:

m
{]

1.3630577 and 5§ = 1.628 . (2.5.7)

Thus, the parameter value En converges to the critical

parameter value geometrically, asymptotically:

e - _&". (2.5.8)

In the subcritical, critical and supercritical cases,
we calculated the residues R; and R; of the minimizing and
minimaximizing periodic orbits of rotation number pn/qn,
their action difference Fn and the ©&-coordinate Bn of the
nearest minimizing periodic point to the dominant symmetry
line(®=0). Near e*, all the minimaximizing periodic point
tend to have a point on the dominant symmetry line and the
relations bhetween periodic points and the other three sub-
dominant half-lines are shown in the table 1.1.3.1.

As shown in the figures 2.5.1 and 2.5.2, when e<e® Rz
approaches to zero and when e>e‘ R: diverge to im. The

results are shown in the tables 2.5.2 and 2.5.3 in details.
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For the critical case, Ri approaches to some finite wvalue:

R = 0.250

(2.5.9)
and
R® = -0.255 .

Therefore, when the residues of nearbhy minimaximizing orbits
are nearly 1i1/4, the invariant circle of rotation number 7-2
is on the edge of disappearence. |

Figure 2.5.3 shows the flux Fn. In the critical case,
as shown in the table 2.5.5, the ratio F#/F#+1 approaches
to some value §. Here £ is the area-scaling factor of nearby

islands and the observed value of B is

E = 4,3390 . (2.5.10)

Therefore, Fn obeys a power law decay :

-d
Fn L s do_log\(& x 3.0499 . (2.5.11)

In the subcritical case, as shown in the figure 2.5,3 and
the table 2.5.4, Fn approaches to zero at a rate raster than

that in the critical case. On the other hand, when €>€*, F

n
approaches to some nonzero value. In this case,'the invariant
circle is broken into a cantorus. As shown in the table 2.5.4,

at e€=e® + 10”3, the observed flux through the cantorus is 1.23 X

-11
101.

The ©-coordinate en of the nearest minimizing periodic
point to the dominant symmetry line approaches to zero when

eée*, a8 shown in the figure 2.5.4 and the table 2.5.5. In
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4

the critical case, en obeys a power law decay(see the table
2.5.6):

o ~ ~Xo | Xo = 0.7211 . (2.5.12)
Therefore, the critical invariant circle is not differentiably
but topologically conjugate to uniform rotation. On the other
hand, when e=e” + 10-3, the observed limiting value‘of o, is
2.22 x 10”2, This is the half-width of the gap lying on the
&oninant symmetry. Since the forward and backward images of
this gap are also gaps, the invariant circle is broken into
the cantorus with an infinity of gaps.

Figure 2.5.5 shown orhits near the Golden Mean invariant
circle at €*. That invariant cirlce plays the role of a
complete barrier. For example, with an initial condition:
(6,1)=(0.5,0.05) in the figure 2.5.6, we have iterated the
map 106 times. As shown in that figqure, the orbit with that
initial condition is confined by the Golden Mean invariant
circle. On the other hand, when e>e*, extended chaos occurs,
as shown in the figure 2.5.7. The dark part in the figure
is formed by iterating the map 2-105 times with an initial
condition : (©,1)=(0.5,0.1).

To sum up, the Golden-Mean invariant circle persists

below the critical parameter value in the map T (2.5.1) of

class-CQ.
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n € §

n n

3 1.72791753

4 1.56942565 1.94941
5 1.48812316 1.59105
6 ' 1.43702338 1.78782
7 1.40844114 1.58694
8 1.39043019 1.71734
9 1.37994250 " 1.59142
io 1.37335234 1.66866
11 | 1.36940298 1.60707
12 1.36694548 1.64267
13 1.36544944 ~1.61811
14 1.36452488 1.63471
15 1.36395930 1.62591
16 1.36361144 1.62855
17 1.36339784 1.62802
18 1.36326664 1.62793
19 1.36318605 1.62815
20 1.36313655 1.62791
21 1.36310614

Table 2.5.1 : Parameter values eﬁ for the nth conver-
gent minimaximizing periodic orbit to have residue 1

‘and the convergence ratio an
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* »* *
n € ~a€ . € € +A€
-1 -1
3 2.4275 x 10 . 24383 2.4490 x 10
-1 -1
y 2.5281 X 10 . 25468 2.5656 X 10
-1 -1
s 2.4077 x 10 . 24370 2.4667 x 10
A : -1 -1
6 2.4931 x 10 . 25409 2.5896 x 10
-1 - -1
7 2.3767 x 10 . 24531 2.5319 x 10
-1 -1
8 2.3874 x 10 . 25216 2.6523 x 10
-1 -1
9 2.2855 x 10 . 24819 2.6953 x 10
+ -1 -1
10 R~ 2.1946 x 10 . 25084 2.8675 x 10
’ -1 -1
11 2.0079 x 10 . 24948 ~3.1015 x 10
-1 -1
12 1.7606 X 10 . 25058 3.5711 x 10
. -1 C -1
13 1.4061 x 10 . 24996 4.4539 x 10
-2 -1
14 9.7913 x 10 . 25002 6.4207 x 10
15 5.4693 x 10 2 . 25009 1.1646
16 2.1251 x 10°2 .25010 3.09873
-3 1
17 4,.5081 x 10 . 25008 1.5553 x 10
-4 2
18 4,2434 x 10 . 24005 2.2475 x 10
-5 y
19 3.3628 X 10 . 25005 1.8266 x 10
-6 7
20 7.1528 x 10 . 24999 2.3227 x 10

Table 2.5.2 : Residue values R; of the nth convergent mini-

*

L . . . * *
maximizing periodic orbits when € = € - a€ , € , €.+ a€ ;

-3
ae = 10
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3 -2.4742 x 10"} ~. 24854 -2.4965 x 10"}
- -1 -1

Yy -2.5107 x 10 -.25301 -2.5496 x 10
_ -1 -1

5 -2.3960 x 10 -. 24263 ~2.4570 x 10
-1 -1

6 -2.5674 x 10 -.26173 -2.6682 X 10
-1 -1

7 -2.4286 x 10 -.25078 -2.5897 x 10
-1 -1

8 -2.4444 x 10 -.25737 -2.7099 x 10
-1 -1

g -2.3254 x 10 -. 25296 -2.7521 x 10
- A -1 -1

10 R -2.2321 x 10 -.25577 -2.9321 x 10
-1 -1

11 -2.0410 x 10 -.2545S -3.1787 X 10
-1 -1

12 - -1.7914 x 10 -. 25631 -3.6793 x 10
-1 -1

13 -1.4235 x 10 -.25556 -4.6206 X 10
-1 -1

14 -9.8819 x 10 -.25529 -6.7336 x 10

15 -5.4992 x 10 2 -.25553 -1.2565
16 -2.1332 x 102 -. 25545 -3.5658

-3 1

17 -4,.5270 x 10 -.25544 ~2.0119 x 10
Y 2

18 -4,2689 x 10 -.25537 -3,1750 x 10
-S 4

19 -2.7293 x 10 -.25539 -2.6190 X 10
-5 7

20 -1.1374 x 10 -.25533 -1.6148 x 10

Table 2.5.3: Residue values R; of the nth convergent mini-

-3

mizing periodic orbits when €=ex -a€, €% , €% +a€e ; a€e = 10 .
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n € - HE € € + A€
-y -y -4
3 3.5759 x 10 3.5910 x 10 3.6061 X 10
' -5 -5 -5
y 8.7155 X 10 8.7771 x 10 8.8391 x 10
-s -5 -5
s 1.8044 x 10 1.9267 x 10 1.9492 x 10
-6 -6 -6
6 4.6220 X 10 4,7054 x 10 44,7902 x 10
-6 -6 -6
7 1.0143 x .10 1.0451 X 10 1.0768 X 10
-7 -7 -7
8 2.3514 x 10 2.4664 x 10 2.5868 x 10
' -8 -8 -8
=) 5.1822 X 10 5.6032 x 10 6.0572 X 10
-8 -8 -8
10 F_ 1.1489 x 10 1.3037 X 10 1.4788 X 10
-9 -9 -9
11 .2.4374 x 10 2.9936 x 10 3.6737 x 10
12 4.9606 x 10 ° 6.9317 x 10 ° 9.6625 x 10 °
13 9.2165 x 10 11! 1.s5936 x 10 }° 2.7351 x 10”10
14 1.4998 x 10 1 3.6692 x 10 11 8.8038 x 10 11!
1s 1.9669 x 10 12 8.4643 x 10 12 3.4528 x 10 11
16 1.8020 x 10 13 1.9504 x 10 12 1.8067 x 10 11
- — i -
17 9.0380 x 10 1> 4.4045 x 10 13 1.3281 x 10”11
18 2.0163 x 10 1° 1.0356 x 10 13 1.2377 x 10”1
- - -11
19 3.3880 x 10 18 2.3868 x 10 1 1.2316 x 107}
20 2.2246 x 10" 1° S.5006 x 10 1°

Table 2.5.4 ; Action difference Fn between the nth convergent
.. . . . . *
minimaximizing and minimizing periodic orbits when € = € -a€e ,

* * -3
€ , € +0€ 3 ne = 10
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F /F

n’  n+l

10~

11

12

13

14

15

16

17

18

19

4.0913
4.5555
4.0946
4.5023
4.2374
4.4018
4.2980
4.3548
4.3138

4.3496

4.3433

4.3349

4.3397

4.3396

4.3400

4.3390

4.3391

Table 2.5.5 : Ratio of the fluxes Fn/ Fn

critical case
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. »* -
symmetry line when €=€ -A€,€ ,€ +A€ ; A€=10

198

n e - Ae € e + Ae
-1 -1 -1
3 .5271 x 10 .5277 x 10 1.5284 x 10
4 0956 x 107} 0965 x 1071 1.0973 x 107+
5 6817 x 1072 6921 x 102 7.7025 x 1072
-2 -2 -2
6 L4429 x 10 .4555 x 10 5.4682 x 10
=2 =2 =2
7 .8269 x 10 L8417 x 10 3.8566 x 10
-2 -2 -2
8 .7049 x 10 .7221 x 10 2.7396 x 10
-2 =2 -2
9 .8993 x 10 L9192 x 10 1.9395 x 10
-2 -2 -2
10 &n .3353 x 10 .3580 x 10 1.3817 x 10
-3 -3 -3
11 .3276 x 10 .5852 x 10 9.8617 x 10
12 4878 x 1072 7778 x 1075 7.1033 x 1070
' -3 -3 -3
13 4.4667 x 10 .7885 x 10 5.1768 x 10
-3 -3 -3
14 3.035 x 10 .3856 x 10 3.8602 x 10
15 2.0235 x 1073 .3926 x 1070 2.9934 x 1077
16 3191 x 1073 6911 x 1075 2.4869 x 1070
—4 -3 -3
17 8.4100 x 10 .1953 x 10 2.2715 x 10
- -4 -4 -3
18 .2738 x 1C L4480 x 10 2.2258 x 10
19 .2790 x 10°° 9709 x 10”% 2.2227 x 1073
-4 -4
20 2.0318 x 10 .2201 x 10
Table 2.5.6 : ©-coordinate en of the nth convergent
minimizing periodic point nearest to the dominant
3



n E*—AE E* €*+A€
3 . 69001 . 68928 .68854
4 . 73787 . 73668 . 73548
5 . 71585 . 71396 .71195
6 . 73204 . 72883 . 72560
7 . 72106 . 71590 .71066
8 .73472 .7é633 L71771
9 .73223 .71877 .70473
10 x3 . 74553 . 72395 . 70080
11 . 75447 . 72020 .68183
12 : .77568 .72199 .65746
13 - .80278 . 72044 . 60986
14 . 84270 L 72145 . 52845
15 .88913 .72108 . 38526
16 . 93543 .72112 .18828
17 . 96976 . 72113 . 42202 x,1o'2
18 . 98576 . 72114 2.8981 x 10 >

19 . 99455 . 72117

* * *
Table 2.5.7 : Exponent x? when €=€ -a€, € , € +44a€ .
xD = en(e_se_ _)/fnv i v=(1+5%),2
° - n° n+1 | LT '

-3
A€E=10
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The next question is whether or not the critical behavior
of the invariant circle is the same as that of the Golden
~Mean invariant circle of class cr (r>3).

We describe the scaling along and across the symmetiry
lines for the critical invariant circle. We use symmetry
coordinates (X,Y). For S-symmetry, symmetry coordinates are :
X=0 and Y=I+€/2oF(e), and for TS-symmetry symmetry coordinates
are : X=6-I/2, Y=I . In the symmetry coordinates ,the sym-

metries are represented as (X,Y) 2 (X',Y') = (~X+n,Y),ne Z.

Firstly, we describe the scaling behavior near the domi-
nant half-line. We call the periodic point (O,Yn) on the
dominant half—ling the dominant point. We measured the
position Yn qf the dominant point. (Yn)—sequence converges
geometrically to the invariant circle with ratio p. Here the

limit value of (Yn)-sequence is

Y* = 0.405611110478107 , (2.5.13)
and the convergence ratio g is the limit value of (Bn)—
sequence defined by Bn=(Yn—1-Yn)/(Yn-Yn+1)' This 'sequence
18 shown in the table 2.5.8. The observed scaling factor
B along the dominant half-line is :

g = - 3.0668 . ‘(2.5.1‘-!)

Therefore, Yn approaches to the invariant circle in a

nonanalytic fashion:

¥n+e1 ¥n
T ~y T, | (2.5.15)
n n+i1
Yo = log_|gl = 2.3288
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This is consistent with

* -Yo .
IYn-Y |~ a, . (2.5.16)

The scaling bahavior across the dominant symmetry line can
be also studied by measuring the position8~(Xn,Yn) of the
nearest point of the periodic orbit to the dominant half-
line. Thg convergence ratio « is the limit wvalue of (un)-

sequence defined by un=xn/x This sequence is included

n+1’
in the table 2.5.9. The observed_scaling factor o across
the dominant half-line is :

X = = 1.4148 . (2.5.17)

This is consistent with :

IX | ~q o Xo = longul . (2.5.18)

Secondly, we describe the scaling behaviors near the
three subdominant half-lines. We call the periodic point
on the subdominant half-line the subdominant point. In a
similar way, by measuring the positions of the subdominant
point and the nearest point to it, the scaling behaviors
can be studied. However the scalings exhibit ‘period-3’

behaviors unlike the scaling behaviors near the dominant

symmetry line. These behaviors are shown in the tables 2.5.9

and 2.5.10. This ‘period-3' scaling behavior is directly

related to the fact that periodic points on each subdominant
symmetry line have a ‘'period-3' routing pattern as shown in
the table 1.1.3.1. The 3-step scaling factors 93 and «

3

along and across the dominant half-lines are :
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83 = -16.8%59, us = -4,8458 . (2.5.19)

Note that p_ # 93, x_, # «3 and x_-p_ = (u-B)s. Hence,

3 3 3 73
though the scalings along and across the symmetry half-lines
exhibit different behaviors, the area-scalings exhibit the
same behaviors. This is consistent with the fact that

the ratio of the fluxes Fn/Fn approach to some value E;

+1
E = |x-B}.

Finally, ndte fhat these critical behaviors are the
same as those of the Golden KAM circle in the analytic
standard map within numerical error(Shenker and Kadanoff,
1982, Mackay, 1982).

‘ To sum up, we show numerically that in a map of class-
C2, the Golden KAM circle persists below the critical
parameter value and the critical behaviros appear to be the
same as those in analytic maps. But, Herman(1983)has Cr
(r<3)-counterexamples to Moser’s twist theorem. So, for a
map of class-Cr(r<3), KAM circles may or may not exist,
depending on the map. It may be helpful to recall that a

Denjoy’s theorem on a circle map f: S1 3 S1 requires that f

has first derivatives of bounded wvariations (Moser, 1973):

n

3 s, ’
- Z
C>0o0 s.t. (. ¢ (ei) f (61_1) | £ C

i=1
for all finite sequences 0<% 60 L .. £ en 4
Then, f is topologically conjugate to uniform rotation on
Sl. So, we guess that like the case of circle maps some

additional detailed conditions on the quality of perturbation

should be required in the case of 2-dim. area-preserving maps.
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n n
y -3.0326 -1.4232
S -3.0725 -1.4082
6 -3.0469 -1.4191
7 -3.0735 -1.4128
8 -3.0630 -1.4174
9 : -3.0658 -1.4138
10 -3.0660 -1.4164
11 -3.0651 -1.4146
12  -3.0669 -1.4157
13 -3.0673 -1.4147
14 -3.0680 -1.4150
15 -3.0661 -1.4148
16 -3.0670 -1.4149
17 -3.0670 -1.4148
18 -3.0669 -1.4148
19 -3.0668 -1.4149
20 ~-3.0668 -1.4149
Table 2.5.8 : Scaling factors ﬁn and x along and

across the dominant symmetry line when e:e*
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n 6=1/2 I=206 I=26-1

y -2.0485 -3,.3367 ~2.4447
5 -3.3876 -2.4215 -2.0625
6 -2.4459 -2.0686 -3.3489
7 -2.0577 -3.3795 -2.4165
8 -3.3542 -2.4396 -2.0643
9 -2.4254 -2.0584 -3.3714

10 B -2.0621 -3.3625 -2.4345

11 -3.3692 -2.428S -2.0594

12 . _2.4318 -2.0604 -3,3673

13 -2.0589 -3.3698 -2.4291

14 -3.3678 -2.4305 -2.0597

15 -2.4306 -2.0596 -3,3678

16 -2.0596 -3,3684 -2.4302

17 -3.3682 -2.4303 -2.0596

18 -2.4303 -2.0597 ~-3.3681

19 -2.0597 -3.3679 -2.4304

20 -3.3679 -2.4303 -2.0597

Table 2.5.9 : Scaling factors Bn along the three

subdominant half-lines when € = e*
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n O0=1/2 ‘I=260 I=20-1

4 -1.7835 -1.6283 - -1.7055

5 -1.6101 ~-1.7087 -1.7706

6 -1.6966 -1.7734 -1.6075

7 -1.7729 -1.6005 -1.7067

8 -1.6022 -1.6980 ~1.7748

9 -1.7065 -1.7722 -1,6038

10 “n -1.7747 -1.6028 ~-1,7013

11 -1.6038 ~-1.7042 -1.7735

12 -1.7025 -1.7745 ' -1.6030

13 -1.7743 -1.6033 -1.7037

14 -1.6032 -1.7030 -1.7746

15 -1.7034 -1.7741 -1.6037

16 -1.7743 -1.6034 -1,7033

17 -1.6034 -1.7032 -1.7744

i8 -1,.7033 -1.7743 -1.6035

19 -1,.7743 -1.6034 -1.7033

20 -1.6034 -1.7033 -1.7743

Table 2.5.10 : Scaling factors across the thrée
subdominant half-lines when € = €
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CHAPTER 3. Summary and Discussion

We have studied two phenomena related to periodic and
quasi-periodic orbits in aréa-preserving maps.

The first phenomenon is the infinitely nested structure
of islands which play the role of ‘'trap’. We show that at
the accumulation point island chains of all classes exist and
they have a self-similar structure asymptotically for i1/n-bi-
furcation, with n=3 to 6. It is also observed that the
limiting self-similar behaviors depend on n. For even n, the
pattern of periodic orbits repeats 1tself from one bifurcation
to the next one, while for odd n to every other one. These
observations are related to the following observations. For
even n, the subdominant elliptic point and the dominant ellip-
tic point appear succesasively as the class C increases,re-
spectively , while for odd n they appear alternatively as C
increases. Héwever, these observations are not proved ﬁathe—
matically. Indeed, even more limiting self-similar behaviors
exist near the accumulation point. When we rescale not only
the dynamical wvariables but also the parameter witﬁ the re-
scaling factors of dynamic variables x and g , and the para-
meter rescaling factor 6 , the pattern of periodic orbits also
exhibits the limiting self-similar behavior .

It may be worth while to compare the period-doubling
bifurcation with higher n-tupling bifurcations(n>2). The
residue values R*"for higher n-fupling bifurcation afe less
than 1, while R* in the period-doubling bifurcation is

1.13588( Greene et al, 1981 ). So, for higher n-tupling
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bifurcation, infinitely nested islands exist and near these
islandr a stochastic orbit has a long-time correlations. That
is, these islands play the role of 'trap’ of a stochastic
orbit. On the other hand, at the accumulation point of 1/2-
bifurcation, no islands exist and thus the unstable orbits
play the role of ‘scatterer’ of stochastic orbits.

We also studied the limiting self-similar structure by a
simple approximate renormalization method. Tﬁe method we
employed is essentially a generalization of Helleman’s
original idea(1980,1983) which was used for 1/2-bifurcation

to the lowest order. As explained in § 2.4, comparison to the

1 1+1
quadratic approximants of Tn and T yields the accumulation

point p*. the scaling factor x and g8, the bifurcation ratio &

and the universal residue value R*. Naturally, as 4 increases,
the higher order approximation gives better values. Thus, the

results obtained by this method agree well with those obtained
by directly following bifurcation-sequences. We can also ob-

tain an approximate universal map since at the accumulation

point, in the limit 28— o , aA.T" .A7' 1% ; a = [“ ° ]
, o s

So, we show approximately that the limiting self-similar be-
haviors are¢ universal. Hence, all maps lying on the critical
surface converge to the universal map T* under the renormaliza-
fion transformation N, and thus they exhibit the same limiting
self-similar behaviors on longer time scales and smaller spa-
tial scales. Also, note that the linearization of the renor-

malization transformation N, dN , has one essentially relevant

210



eigenvalue 6. That is just the bifurcation ratio. So,only if
the residues R of a periodic orbit is computed, then one can
say whether the map describing the phase flow near the period-
ic orbit lies above or below the critical surface in the
figure 2.4.1 as follows. The map lies above or below that cri-
tical surface according as R is larger or sﬁaller than R*. For
higher n-tupling bifurcation (n » 2), in the subcritical case
periodic orbits of higher period are not born yet, and in the
supercritical case periodic orbits of hiéher period have be-
come unstable already. In this way, one information of R*
yields a lot of information.

The second phenomenon we studied 1is the break-up of
invariant circles which play the role of ‘dam’ under a rough
perturbation

We stﬁdied whether or not invariant circles exist in a
map of class;CQ. In this case, persistence of invariant
circles is not guaranteed by Moser’ twist theorem, since the
sufficient critical smoothness of a map in the theorem is
now class—Cr( r > 3 ).

We showed numerically that a noble invariant circle of
rotation number Y-Q (Y=(1+5ﬁ)/2) persists below a critical
parameter value. So, the invariant circle plays the role of a
complete barrier to transport of stochastic orbits below the
critical parameter value. We also observed that the critical
behavior appears to be the same as that in analytic maps. So,
they seem to bhe in the same universality class. However,

Herman(1983) has Cr( r<3 )-counterexample to Moser’s twist

211



theorem., So , for a map of class-C (r < 3) invariant circles
may or may not exist, depending on the map. A similar phenb—
menon exists in circle maps. A theorem of Denjoy ( referred to
by Mackay , 1982) on a circle map requires the map to bave
first derivatives of bounded variations for the map to be
topologically'cbnjugate to uniform rotation on 81, but it is
false for Cl-maps. So, we guess that for invariant circles

in a map of class-C'( r<3 ) to exist, some additional detailed
conditions on the quality of perturbtion should be required
lixe the case of circle maps.

Like the cases of bifurcations, the information of the
universallresidue R* gives us much information concerning the
phase flow. In order to use this, we first define neighboring
reriodic orbits in terms of their rotation numbers as follows.
We define two rational rotation numbers, v, and v,_. , to be

1 2

neighboring if they are expressed as

v1 =[m ,m, , «¢c- , m 1] = pl/q1 ’

v, =[m_ , m , «s. , mn+ 11 = p2/q2

The first question is whether an invariant circle exists
between two neighboring periodic orbits. We expect that the
most robust invariant circle in the frequency interval

between v1 and v2 may have the rotation number :

— m -
v = [ my, ™o, e, B, (1,) 1 = (p2-7 + pl)/(q2-7 + q1)’

where vy = (1 + 5’é Yr2

Then , the invariant circle may or may not exist according as

the average residue R of the residues R1 and R2 of the two
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periodic orbits is larger or smaller than R* which is roughly
i/4. In this way, we obtained the rotation numbers of boundary
circles in the figure 2.1.2 ( see 8§ 2.1 ). |

In the way stated above, the universal residue values rR*
of bifurcations and noble invariant circles give us much in-
forﬁation concerning the phase flow in 2-dim. area-preserving
maps. Also, one can expect naturally that the long-time behav-
ior of stochastic orbits near islands may be governed by the
self-similar behavior of the infinitely nested structure of
islands and the critical boundary circle. Actually, the
self-similar behavior is directly related to the transition
probabilities in a sélf-similar Markov tree model which de-
scribes the transport of stochastic orbits near islands
( Meiss and 0Ott , 1985 ), and a long-time correlation of
stochastic orbits near islands is obtained in the model. In
this way, the universal residuevvalue R*, the parameter re-
scaling factor 6 , and the rescaling factors of dynémic
variabies , x and 8 give much information of thé phase flow

in area-preserving maps.
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