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ABSTRACT 

We have studied numerically period-trebling and 

period-quardrupling (k•3n, k·4n) cascades of periodic 

orbits of two dimensional area-preserving maps. Period-

trebling o -sequence converges as n+oo, and the limit 
n 

value is 20.2. Unlike the period-doubling cascades, 

each of period-trebling an-and Sn-sequence converges 

alternately, and two limit values of an-sequence are 

a
1 

(= -17.9) and a2 (= 2.45) and two limit values of Sn­

sequence are S1 (= -31.0) and S2 (= 6.02). The structure 

of periodic orbits reproduce itself asymtotically from 

one 1/3-resonance to every other 1/3-resonance under 

the rescaling and the rescaling factors a{=at.a2) and 

S(= S 1 ·S 2 ) are -44.0 and -187. Period-quadrupling se-

quence confirm the universal limiting behavior and the 

universal constants o,a and S are 24.5, -5.61 and 14.3. 



I. INTRODUCTION 

There has been interest in the transition from the 

regular motion to the irregular motion in the dynamical 

systems. It is generally believed that two dimensional 

area-preserving maps have generic properties of ergodic 

motion and one dimensional noninvertible and higher di­

mensional area-contracting maps have generic properties 

of turbulent motion. For the two dimensional area-pre­

serving maps, KAM theorem says that when a non-integrable 

canonical perturbation is acted on an integrable mapping, 

invariant circles with sufficiently irrational winding 

numbers are preserved, albeit in distorted form, while 

invariant circles with rational and nearly rational 

winding numbers are destroyed and the measure of the 

destroyed region is, though small, not zero. But KAM 

theorem does not say what happens to the motion in the 

destroyed region. By the Poincare -Birkhoff theorem, 

any invariant circle of period n breaks up into many 

pairs of elliptical and ordinary hyperbolic orbits of 

period n when a nonintergrable canonical perturbation 

is acted. As the perturbation is increased, at £/m -

resonance (m and £~5, relatively prime) a pair of 
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elliptical and ordinary hyperbolic orbits of period m 

times the original period are born around the original 

elliptical orbit born in consequence of the Poincare-

Birkhoff theorem and finally at l/2-resonance (bifur-

cation) a new elliptical orbit of the doubled period 

is born around the original orbit which now turns into 

the inversion hyperbolic orbit:- 2 The newly born elli-

ptical orbit either by resonance or bifurcation is now 

the basis of the above process, and this process repeat 

infinite times. The stable separatrix and the unstable 

separatrix emanating from the fixed hyperbolic point or 

two hyperbolic points of the same unstable orbit inter-

sect each other infinitely to form a kind of network 

with infinitely tight loops. Therefore, near the separ-

atrices of the unstable orbit a chaotic region is formed. 

In this region, another unstable orbit is born, separa-

trices of two different unstable orbits intersect each 

other infinitely and the chaotic regions are broadened. 

This phenomenon is called the resonance overlap which 

is the criterion of the stochasticity in the theory of 

the nonlinear oscillation developed by Chirikov and 

3-4 
Zaslabski. As the KAM torus encloses this chaotic 

region for N (degree of freedom)=2, this chaotic region 
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lS a locally unstable region. Because KAM torus does 

not enclose the locally unstable region for N ~ 3, the 

locally chaotic regions are connected to form a globally 

chaotic region. This phenomenon is called the Arnold 

diffusion. 2
'

5 

In recent years, Feigenbaum's discovery of the un-

iversal scaling behavior of the period-doubling cascade 

of the one dimensional noninvertible maps expedited the 

study of the period-doubling cascade of the two dimen-

sional area-preserving maps. 6 The universal scaling 

behavior has been discovered by the nume.rical study and 

the renormalization method. ~20 By the resonance, there 
. n 

are in general k·r (r~3) cascades in the Hamiltonian 

maps. Therefore it would be interesting to study the 

k•rn (r~3) cascades. 
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II. MULTIFURCATION FOR THE 2-DIM. REVERSIBLE 

AREA-PRESERVING MAPS 

We use the following form for the 2-dim. reversible 

area-preserving maps, 

T: X+= -Y +2h(X ), Y + =X; h(X) = (l-aX2 )/2 n1 n n n1 n 

Most of different forms of maps studied in literature are 

all equivalent to the above form. Since T is a rever­

sible map, T = I2 ·I1; I~ =I~ = 1, 

X = X I y = -Y + 2h{X ) n+1 n n+1 n n 

The set of the invariant points under the operation of 

I 1 or I 2 forms a line and we call it a symmetry line. 

It can be easily shown that two or no points of every 

orbit of even period and one or no points of every orbit 

of odd period lie on any given symmetry line. It is of 

great advantage to use the reversibility for the numeri-

cal work. The symmetry lines of T are Y=X and Y=h(X). 

A quantity R called the residue makes the study of 

the behavior of the neighborhood around a periodic orbit 

effective. The residue lS given R = (2-TrM)/4, Where M 

is a Jacobian matrix of Tn about an orbit of period n. 
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------~---------------------~ 

The periodic orbit is stable for O<R<l (except for 

R = 3/4 and sometimes 1/2), and unstable for R<O and R>l. 

In the stable case, nearby points to a periodic point 

move around it in ellipses under M at rate a rotations/ 

period given by R = sin2 (a/2). Therefore the orbit is 

called an elliptical orbit. In the unstable case nearby 

points move on hyperbolae, alternating between correspon-

ding branches if R>l (inversion hyperbolic orbit), and 

staying on one branch if R<O (ordinary hyperbolic orbit). 

In the special cases R=O, 1, 3/4, 1/2 corresponding to 

the low order resonances, M is not sufficient to describe 

the behavior of nearby points. 

When the residue R of a stable orbit passes the valuE 

sin2 (n9../m), as the nonintergrable parameter a changes, 

where 9.. and m are coprime, m~S and m>.P..>O, a pair of 

stable and unstable orbits of period m times the original 

period are born near the original orbit. The resonances 

of order 3 (m=3) and order 4 (m=4) are exceptional. 

For the generic bifurcation (R=l), a new elliptical 

orbit of doubled period is born around the original orbit 

which turns to the inversion hyperbolic orbit. When R=O, 

two new elliptical orbits of the same period are bifur-

cated from the original orbit which turns to the ordinary 
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----------

hyperbolic orbit. When R(~l) passes to 1, a new ordinary 

hyperbolic orbit of doubled period is bifurcated from the 

original inversion hyperbolic orbit which turns to a el-

liptical orbit. As the nonintergrable parameter a is fur· 

ther increased, the above elliptic orbit turns to the 

ordinary hyperbolic orbit. 

Before the residue R passes the resonance value 

(R=3/4), a pair of stable and unstable orbits of period 

3 times the original period are born, at the 1/3-reson-

ance value the newly born unstable orbit is absorbed by 

the original orbit, and after the residue R passes the 

1/3-resonance value, the original periodic orbit emits 

the newly born unstable orbit. (Fig. 1, Fig. 2, Fig. 3) 

I 

3 · 1 Phase flows under T when R<3/4. • denotes an Flg. . 

elliptic point and x denotes an ordinary 

hyperbolic point of period 3. 
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Fig. 2. Phase flow 

under T 3 

when R=3/4 

Fig. 3. Phase flow 

3 under T 

when R>3/4 

When R=3/4, the original elliptic orbit is unstable 

(Fig. 2). 

For the 1/4-resonance, there are two cases. One 

case is that at the resonance value(R=l/2), a pair of 

elliptic and ordinary hyperbolic orbit are born. The 

other case is the same as the case of the 1/3-resonance 

(Fig. 4, Fig. 5, Fig. 6) 
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III .. PERIOD-TREBLING AND PERIOD-QUADRUPLING CASCADES 

We use the following form for the 2-dim. reversible 

area-preserving maps, 

2 
where h(X) = (l-aX )/2 ( 1) 

Since Tis a reversible map, T = I 2 • 1 1 ; I~= I~ = 1, 

X 
n+1 -Y 

n 

- X n 

+ 2h(X ) 
n 

The symmetry lines ofT are Y=X and Y=h(X). 

Before the residue R passes the 1/3-resonance 

(2) 

(3) 

value (R~3/4), a pair of stable and unstable orbits of 

period 3 times the original period are born, at the re-

sonance value the newly born unstable orbit is absorbed 

by the original periodic orbit, and after the residue R 

passes the 1/3-reson?nce value, the original periodic 

orbit emits the newly born unstable orbit. 

Let us see the structure of the newly born orbit 

by the resonance of order 3. One point of the orbits 

of period 3n lies on the symmetry line Y=X, and another 

point lies on the Y=h(X). There are two cases for the 

k·3n-cascades, where k is even. One case is that two 
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different points of the orbits of period k·3n lie on 

the Y=h(X), and the other case is that two different 

points of the orbits of period k·3n lie on the Y=X. 

For example, the 2·3n-cascade is the former case and the 

n 6·3 -cascade is the latter case, where the basic orbit 

of period 6 is the orbit bifurcated from the orbit of 

period 3. For the 3n-cascade, let us call the point 

which lies on the Y=X the initial point. The initial 

point Z 0 , the 1/3-way point z3n-l and the 2/3-way point 

Z
2

• 3n-l of the orbit of period 3n enclose the initial 

n-1 
point of the orbit of period 3 , and the 1/6-way point 

Z · , the 1/2-way point Z n and the 5/6-way 
(3n-1_L)/2 (3 -1)/2 

point Z enclose the 1/2-way point of the 
( s • 3 n - 1 - 1 ) I 2. 

orbit of period 3n-l. Z =(X Y ) . 1 T T 1 T 

An orbit of odd period (2m+l) with the initial 

point on the Y=X satisfies 

X = X Y m+£ m-£, m+£+1 = y + £ = o. 1, m-t 1 , 
( 4) 

Since Y = X X 
T T+1 1 

2 • 3 n-1 = Y n 1 and X n-l=Y n-1 2·3 .... +1 3 3 +1 

By (4), Y2 • 3n-1+ 1 = Y3n-1 and Y3n-1+ 1 = Y2 . 3 n-1. 

Therefore the 2/3-way point Z2 • 3n-I is the reflection 

point of the 1/3-way point Z
3
n-1 about the Y = x. 
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By (4), x(3n-1_1)/2 = x(s·3n-1_1)/2. 

Hence the X-components of the 1/6-way point and the 5/6-

way point are equal. The intersection point between the 

Y = X line and the line which joins the l/3-way point 

and the 2/3-way point is Z which is [(X n- 1 + Y n-1) 
0 1 C 3 3 

j2, (X n-1 + Y n-I)/2], and the intersection point betwe( 
3 3 

theY= h(X) line and the line which joins the l/6-way 

point and the 5/6-way point is Z~ ,c' which is [X( 3n- 1 _
1

: 

Two different points of the orbit 

of period 2·3n lie on the Y = h(X) line. Let us call onE 

point which is left to the other point the initial point 

By (4) X2 • 3n-l = X4 • 3n-l and X3n-l = X
5

• 3n-l. Hence the 

x-components of the 1/3-way point z2 ·3n-l and 2/3-way 

point Z
4

_ 3n_
1 

are equal, and so are the X-components of 

the 1/6-way point Z n-l and 5/6-way point Zs·3n- 1
• Z0 -c 

3 ' 

where Zo,c is the intersection point between Y=h{X) line 

and the line which joins the 1/3-way point and 2/3-way 

point. z is the point defined for the 3n-cascade. 
1j2,c 

Two different points of the orbit of period 6•3n lie on i 

Y = X line, where the basic orbit of period 6 ~s the 

orbit bifurcated from the orbit of period 3. When the 
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1/2-way point of the orbit of period 2m lie on Y = X, 

X = X and Y = Y n - 0 1 2 (5) m+ £ m- £- 1 m+ £+ 1 m- 9.,, N - ' ' ' • • • 

By(5), X 6 • 3 n-1=Y 12 ~ 3 n-1 and X12 • 3n_ 1=Y
643

n. Therefore the 

1/3-way point Z6 • 3 n-1 is the reflection point of the 2/3-

way point Z12 • 3n-1 about the Y=X line, and the 1/6-way 

point Z 3 ·3n-l is the reflection point of the 5/6-way 

point zl 5"3n-I about they= X line. z 0 c is [(X 6 • 3 n-1 
' 

z is [ (X3•3n-l !.:2,c + Y n- ~ ) I 2 , (X 6 • 3 n- 1 + Y 6 • 3 n- 1 ) I 2 ] and 
6 • 3 

where z 
!.:2,c is the 

intersection point between the Y = X line and the line 

which joins the l/6-way point and 5/6-way point, and 

Zo,c is the point defined for the 3n-cascade. 

Before the residue R passes the 1/4-resonance value 

(R=l/2), a pair of-stable and unstable orbits of period 

4 times the original period are born and at the 1/4-reson-

ance value the newly born orbit is absorbed. After the 

residue R passes the 1/4-resonance value, the original 

periodic orbit emits the newly born unstable orbit in 

such a way that two points which lay on the symmetry line 

lie off the symmetry line and two points of four points 

which enclose the 1/2-way point of the original periodic 

orbit and lay off the symmetry line lie on the symmetry 

line. 

- 12 -



Let us see the structure of the newly born orbit by 

the resonance of order 4. There are two cases for the 

n 
k-4 -cascade. One case is that two different points of 

the orbits of period k·4n lie on theY= h(X). The other 

case is that two different points of the orbits of period 

k·4n lie on theY =X. For example, the 4n-cascade is 

n the former case and the 6·4 -cascade is the latter case, 

where the basic orbit of period 6 is the orbit bifurcated 

from the orbit of period 3. n For the 4 -cascade, let us 

call the point which lies on the Y = h(X) line the initiaJ 

point which four points of which two points lie on Y=h(X) 

enclose. 

The intial point Z 0, the 1/4-way point Z n- 1 , the 
4 

1/2-way point Z n-I and the 3/4-way point Z n-1 of 
2 •4 3•4 

the orbit of period 4n enclose the initial point of the 

orbit of period 4 n- 1 ~ The 1/8-way point Z n- 2 , the 
2 • 4 

3/8-way point Z n- 2 , the 5/8-way point Z n- 2 and 
6•4 10•4 

the 7/8-way point Z n- 2 of the orbit of period 4n 
1 4 • 4 

enclose the 1/2-way point of the orbit of period 4n-1. 

By (4) ,X n- =X n~ 1 • Hence the X-components of 1/4-
4 1 3 • 4 

way point and 3/4-way point are equal. By (4), X n- 2 2 • 4 

=X n- 2 and X n-2 = X
10

•
4
n-2 

14•4 6•4 Hence the X-compo-

nents of 1/8-way point and 7/8-way point are equal and 
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so are the X-cornponents of 3/8-way point and 5/8-way 

point. The intersection point between Y=h(X) line and 

the line which joins the 1/4-way point and the 3/4-way 

point is Z. which is .[X n- 1 ,h(X n- 1 ) ], the intersectic 
1 'c 4 4 

point between the Y=h(X) line and the line which joins 

1/8-way point and 7/8-way point is Z which is [X n-
2,c 2·4 

h(X n- 2 )] and the intersection point between the Y=h(i 
2 • 4 -

line and the line which joins the 3/8-way point and the 

5/8-way point is Z which is [X n-2 ,h(X n- 2 )]. 
3 1 C 6•4£ 6•4 

For the 6·4n-cascade, let us call the point lying on the 

Y=X line which four points belonging to the orbit of 

period 6•4n+ 1 of which two points lie on Y=X enclose the 

initial point of an orbit of period 6·4n. By {5), 

X =Y n-l and x = x Hence the 3/4-
6·4n-1 18·4 IB·4n-I 6·4n- 1 • 

way point z is the reflection point of the 1/4-
1 a • 4 n- 1 

way point Z n 1 about the Y=X line. By (5) X -
6·4 - ' 3·4n-I-

Y X -Y X -y · 
21 • 4 n-1' 21 • 4 n-1 n-I' n-I- n-1 3·4 9•4 15•4 

and 

= Y n- 1 • Hence the 1/8-way point is there-
9 •.4 

flection point of the 7/8-way point about the Y=X line 

and the 3/8-way point is the reflection point of the 

5/8-way point about the Y=X line. The intersection poin· 

between the line Y=X and the line which joins 1/4-way 
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point and 3/4-way point is Z which is [(X n- 1 + 
1 1 C 6·4 

Y n- 1 )/2, (X n- 1 + Y n- 1 )/2], the intersection 
6•4 6·4 6·4 

point between the line Y=X and the line which joins l/8-

way point. and 7 /8-way point is Z which [X n- 1 + 
2 1 C 3•4 

Y n-1)/2, (X n- 1 + Y n- 1 )/2] and the intersection 
3·4 3•4 3·4 

point between the line Y=X and the line which joins 3/8-

way point and 5/8-way point is Z which is [(X n-l + 
3 1 C 9•4 

Y n- 1) /2' (X n- 1 + Y n- 1) /2 J • 
9•4 9•4 9•4 

n Let us define the following sequences for the 3 -

cascade. an-I-an 
Like the period-doubling cascade, on ::: a a . 

· n n+1 

where an is the nonintergrable parameter value at which 

the orbit of period k·3n is unstable. 

X
0
(n)- X

0
,c(n) 

the 

X-component of the initial point of the orbit of period 

k•3n and X
0 

c(n) is. the X-component of Z 0 c of the orbit 
' ' 

of period k•3n Sn(l) ::: Y 1 f~(n) - Y2/~n) , where 

Y (n+l) - Y (n+l) 
1/3 2/3 

Y (n) is the Y-cornponent of 1/3-way point of the orbit 
1/3 

of period k•3n and Y (n) is the Y-component of 2/3-way 
2/3 

point of the orbit of perfod k•3n. 

an ( 2) - X I (n) - X (n) 
1 2 1;2,c 

X
1
/Jn+l) - X (n+l) 

1/2,c 
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where X~(n) 1s the X-component of the l/2-way point of 
2 

the orbit of period k·3n and X, is the X-component of 
"'2,C 

Z, of the orbit of period k·3n, 
"'2,C 

Y (n) - Y (n) 
Sn ( 2 ) = l/6 s/6 

Y (n+l) - Y (n+l) 
1/6 S/6 

where Y I (n) lS 
1 6 

the 

Y-component of the 1/6-way point of the orbit of period 

k·3n and Y5 ;
6 

(n) is the Y-component of the 5/6-way 

point of the orbit of period k•3n. 

n For the 3 -cascade, it is observed that when n is 

an even number, both the initial point and the 1/2-way 

point of newly born orbit move left from the initial 

point and the 1/2-way point of the original orbit and 

move right by turns, and for an odd n (~3), the initial 

point of the newly born orbit moves left from the initiaJ 

point of the original orbit, as the 1/2-way point of the 

newly born orbit moves right from the 1/2-way point of 

the original orbit, and moves right as the 1/2-way point 

of the newly born orbit moves left by turns, as the non-

intergrable parameter a is varied. n For the 2·3 -and 

the 6·3n-cascades, it is observed that for an ·even n, the 

initial point and the 1/2-way point of the newly born 

orbit move in such a way that for an odd n, they move 
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for the 3n-cascade, and for an odd n (n~l) , they move 

in such a way that for an even n, they move for the 3n_ 

cascade. Hence, unlike the period-doubling cascade, 

the period-trebling an-and Sn-sequences converges alter-

nately as n-co. In other words, each of the an-and 

From Table l to Table 6 it is observed that a 1 is -17.9, 

a 2 is 2.45, S
1 

is 6.02 S
2
is -31.0. On the other hand, 

like the period-doubling sequence, the &~-sequence con­

verges as n ~ ro and the limit value o' is 20.18. 

Let us define the following new sequences. 

o (o) -
n 

a {I.e) 
n 

an(l,o) 

Sn(I,e) 

a - a 
2m-2 2m ' where n=2m 

a - a 
2m 2m+2 

a - a 
2m-1 2 m+1 

a - a 2ffi+l 2ffi+3 
, where n=2m+I 

Xo (2m) - X o ,c ( zm+2) where n=~m, - " , 
Xo ( 2m+2) - Xo c ( 2m+2) , 

Xo(2m+I) - Xo, c (2 m+1) 
- I where n=2m+1 

X o (2m-+ 3) - X o , c (z m+ 3) 

Y 1 (zm} - Y2 I 3 (2m). = 1 3 . ' where n=zm - I I 

Y 1/3 (2m+2) - Y2 13 < 2m+2 > 
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Y (2m+l)-Y (2m+l) 
Sn(l,o)- 11 3 2 1 3 where n = 2m+l 

Y (2m+3)-Y (2m+3) 
1/3 2/3 

X (2m) - X (2m) 
an ( 2 , e) - 1/2 1/2 'c -- where n=2m X (2m+2) - X ' 

1/2 1/2'c(2m+2) 

X (2m+l) - X ( 2m+l) 
an ( 2 , o) - 1/2 1/2, c where n=2m+l -- ' 

X (2m+3) - X (2m+3) 
1/2 1/2 'c 

y (2m) - y (2m) 
Sn(2,e) = 1j6 Sj6 

- where n=2m , 
Y (2m+2) 

1/6 
- Y ( 2m+2) 

5/6 

y (2m+ 1) - Y (2m+l) 
Sn(2,o) = 1/6 5/6 where n=2m+l - , 

Y (2m+3) - y (2m+3) 
1/6 5/6 

From Table 7 to Table 15 it 1s observed that etn(l,e)-, 

etn(l,o), etn(2,e) - and an(2,o) - se~uences converge to 

the same limit-value a(=a
1
·a2 ) which is -44.0, 

Sn(l,e)-, Sn(l,o)- Sn(2,e) - and Sn(2,o)- sequences also 

converge to the same limit-value S(=S 1 :• S2 ) which is -187 

and on(e) - and on(o)-sequences also converge to the same 

limit-value o which is 408 irrespective of k. 

Let us define the following sequences for the 4n-

cascade. 
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an- 1-an ______ , where an is the nonintergrable 

parameter value at which the orbit of period k·4n is 

unstable. 
X

0 
(n) - X

1 
(n) 

an (1) = ____ _,_ ___ ,_c ___ , where X
0 

(n) is 
X0 (n+l) - X

1 
(n+l) 

,c 

the X-component of the initial point of the orbit of 

period k~4n and X (n) is the X-component of Z
1 

of 
1, c , c 

X (n) - X
1 

(n) 
l/2 I C the orbit of period k•4n. an(2) -------------------------

X (n+l) - X (n+l) 
1 /2 1 I C 

where X~(n) 1s the X-component of the 1/2-way point of 

the orbit of period k•4n. 
X

2 
· {n) - X (n) 
c 3 ,c 

an(3) =----'--------------­
X (n+l) - X3 (n+l) 

2 1 C 1 C 

where X
2 

ls the X-component of Z2 of the orbit of ,c ,c 

period k•4n and X
3 

is the x-component of Z 3 of the 
,c lc 

orbit of period k•4n. Sn ( 1) -
Y (n) - Y (n) 

1/4 3/4 
--~------~------1 
Y (n+l) - Y I (n+l) 

1/4 3 4 

where Y (n) is the Y-component of the 1/4-way point 
1/4 

of the orbit of period k•4n and Y (n) is the Y-compo-
3/4 

nent of the 3/4-way point of the orbit of period k•4n. 

Y (n) - Y (n) 
Sn (2) = 11 8 7

/
8 

, where Y (n) is the 
Y (n+l) - Y (n+l) 11 8 

1 ;a 7 ;a 
Y-component of the 1/8-way point of the orbit of period 

k·4n and Y (n) is the Y-component of the 7/8-way 
7/8 
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point of the orbit of period k•4n. 

Y (n) - Y (n) 
Bn ( 3) - __ 3_/_8 _____ 5 '--/_8 ___ , where Y 

3
/

8 
(n) 

Y I (n+l) - Y (n+l) 
3, 8 5/8 

lS the 

Y-component of the 3/8-way point of the orbit of the 

period k 4n and Y , (n) is the Y-component of the 5/8-
SJ 8 

way point of the orbit of period k·4n 

For the 4n-cascade, it is observed that like the 

period-doubling bifurcation, the initial point of the 

newly born orbit moves away from the initial point of 

the original orbit which moves toward the 1/2-way point 

of the newly born orbit. It is also observed that 

before the resonance the initial point and the 1/2-way 

point of the newly born unstalbe orbit move toward the 

intial point of the original orbit and are emitted off 

the symmetry line by the initial point of the original 

orbit after the resonance, while two points of four 

points which enclose the 1/2-way point of the original 

orbit and lay off the symmetry line lie on the symmetry 

line and one point of the above two points moves away 

from the 1/2-way point of the original orbit which moves 

toward the other point. 

From Table 16 to Table 21 it is observed that on-

sequences converge to the limit-value o which is 24.5, 
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an(l)-, an(2)- and an(3)-sequences converge to the 

limit-value a which is -5.61 and Sn(l)-, Sn(2)- and 

Sn(3)- sequences converge to the limit-value S which 

is 14.3 irrespective of k. 

Let us calculate o for the 4n-cascade by the re-

normalization schem developed by B. Derrida andY. 

1 7 
Pomeau (the Equality of slope) . The Jacobian matrix 

n 
Mn of Tn about an orbit of period n is II Hi, where 

n i=1 
.rr Mi = (ih' (Xi)-~) and (Xi,Yi) is the ith element of 
l=l 

the orbit of period n. The eigenvalues of Mn is given 

by the equation A~ - Trl1n· An+l=O, where An is the eigen­

value of Mn. For the 4n-cascade, the idea of renormali-

zation is that the linearization of Tn around a point of 

the orbit of period n lS identical to the linearization 

of T
4
n around a point of the orbit of period 4n. For 

the orbit of period 1, TrM 1 = 2-2 Vl+a. 

For the orbit of period 4 which is born by the 1/4-res-

2 3/2 
onance of the orbit of period 1, TrM4 = -16a -32a +2. 

For n=l, TrM 1 (a) = TrM
4 
(a'), where a and a' are the 

nonintergrable parameter value at which the orbit of 

period 1 and the orbit of period 4 have the same res-

. 3/2 
idue R. Hence, ~l+a- 1 =8a' 2+16a' -1 

The recursion relation (8) provides an approximate 

value for a
00 

which is the accumulation point of an-
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sequence and of o. aoo ls the fixed point of the recur-

sian relation (8), whereas o is given by 

o = da/da' Ia 
co 

The fixed point aoo is 0.1467 and the numerical value 

is 0.1427. 

-2 Therefore the relative error is 2.8Xl0 

o = da/da'la) is 24.7 and the numerical value is 24.5. 
00 

-3 Hence the relative error is 8.2Xl0 • 
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IV. CONCLUSION AND DISCUSSION 

From our numerical work, it can be guessed that 

there exists a universal map under the operation of 

ninetupling and rescaling, not under the operation of 

trebling and rescaling for the k•3n-cascades, and there 

exists a universal map under the operation of quadrupl­

lng and rescaling for the k•4n-cascades. It seems that 

the universal rescaling constant o, a and S are 408, 

-44.0 and -187 for the k•3n-cascades and 24.5, -5.61 

ana 14.3 for the k·4n-cascade. By the k·rn cascade, 

infinite ordinary hyperbolic orbits which are the 

sources of chaos are born and infinite elliptic orbits 

which can be the basic orbit of the resonance including 

the period-doubling bifurcation are born. Hence the 

discovery of the universal scaling behavior of the 

period-trebling and.the period-guadrupling cascades 

is of great importance to an understanding of the noninter 

grable dynamics for which N independent analytic con­

stants of motion do not exist in the dynamic system of 

N degrees of freedom. From recent numerical works which 

contain the period-doubling bifurcation studies and our 

present work how invariant circles with rational winding 

numbers are destroyed can be understood more deeply than 

before. 
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Table 1 

n an o 'n 

1 1.250000000 20.24608463 

2 1.184948799 20.32153602 

3 1.181735773 20.18805088 

4 1.181577664 20.18782112 

5 1.181569832 20.18480928 

6 1.181569444 20.18483394 

7 1.181569425 

8 1.181569424 

Table 2 

n an(l) an(2} BnU) Bn (2) 
' 

2 -17.94807670 2.382765362 6.043232932 -31.65254818 

3 2.464334401 -17.96708285 . -31.14074300 6.020621327 

4 -17.92182852 2.452486664 6.023375256 -31.04739229 

5 2.453921972 -17.92745931 -31.03414165 6.016983385 

6 -17.89177108 2.453393967 6.017035267 -31.03296551 

7 2.458191868 -17.92621298 -31.02931961 6.017112896 

Table 1 and Table 2 contain the sequences for the 3n­

cascade. 



Table 3 

n o.n o 'n 

1 3.743333913 20.32963004 

2 3.732224438 20.28132436 

3 3.731677971 20.19099181 

4 3.731651026 20.18703699 

5 3.731649692 20.18486982 

6 3.731649626 

7 3.731649622 

Table 4 

n an (l} an{2) Sn(l} Sn(2) 

1 -20.41954178 2.633687289 5.308845695 -34.13025554 

2 2.424220383 -17.88404758 -31.72010133 6.159911725 

3 -17.94229048 2.461078837 6.034140995 -31.10581391 

4 2.453147278 -17.92777078 -31.04382625 6.018915472 

5 -17.91976143 2.453561405 6.016883488 -31.03476423 

6 2.452723605 -17.92626105 -31.03297569 6.017123273 

Table 3 and Table 4 contain the sequences for the 2•3n­

cascade. 



--------------

Table 5 

n an on 

1 1.273324540 20.23425621 

2 1.272975387 20.28140921 

3 1.272958132 20.18914267 

4 1.272957281 20.18704105 

5 1.272957239 

6 1.272957237 

Table 6 

n an(l) an(2) Sn ( l) Sn(2) 
1 

1 -20.87389724 2 •. J.~S~:-49260 5.057408454 -33.56936925 
' 

2 2.413444286 -17. 87'626509 -31.71609119 6.147558217 

3 -17.93627187 2.461736108 6.035321745 -31.10168975 

4 2.451945540 -17.96267506 -31.04228074 6.019324314 

5 -18.23324905 2.434675829 6.017748585 -31.05464845 

Table 5 and Table 6 contain the sequences for the 6•3n­

cascade. 



on (e) 

410.1247977 

407.4844741 

Table 7 

411.3758777 

407.5496709 

Table 8 

an(l,e) aD.(l,o) an(2,e) an(2,6) 

-44.23006285 -44.16537855 -42.81134268 -44.06403109 

-43.97876879 -43.90501019 -43.96685488 -43.98312051 

-43.98140618 -43.98006276 

Table 9 

-188.1907636 -187.5723808 -190.5680066 -186.9245922 

-186.9302809 -186~7335248 -186.8116436 -186.7248379 

-186.7045104 -186.7288570 

Table 7, Table 8 and Table 9 contain the sequences for 

the 3n-cascade. 



TABLE 10 

cSn(e) cSn(o) 

409.4101992 412.1791339 

407.5904648 

TABLE 11 

. a.n(1,e) a.n{1,o) a.n { 2 , e) 

-43.49606631 -49.50146940 -44.01405103 

-43.95981398 -44.01508105 -43.98688647 

-43.95222186 

TABLE 12 

Sn (l,e) Sn(l,o) Sn(2,e) 

-191.4035638 -168 .. 3971234 -191.6090678 

-186.7870856 -187.3228246 -186.7956226 

-186.7217990 

a.n2 ,o) 

-47.10098879 

-44.12165727 

-43.98318223 

Sn(2,o) 

-210.2393613 

-187.2232646 

-186.7400022 

Table 10, Table 11 and Table 12 contain the sequences 

for the 2~3n-cascade. 



TABLE 13 

on (e) CSn(o) 

409.3743406 410.3360495 

TABLE 14 

-43.28819285 -50.37798803 -44.00664727 -48.01474101 

-44.70693370 -43.97876181 -43.73329080 -44.21936580 

TABLE 15 

8rt(1,$) Bn(1,o) Sn(2,e) Sn(2,o) · 

-191.4168148 -160.4012277 -191.1994484 -206.3696518 

-181.8046410 -187.3501520 -186.9280005 -187.2111573 

Table 13, Table 14 and Table 15 contain the sequences 

for the 6~3n-cascade. 



'l'able 16 

n an c5n 

1 0.2174036214 23.43463686 

2 0.1459017237 25.02169181 

3 0.1428506034 24.45464723 

4 0.1427286644 24.47809120 

5 0.1427236780 

6 0.1427234743 

Table 17 

n an (1) etn (2) an (3) 
---~-- .... --, 

2 -5.487677767 -5.667174864 -4.580167687 

3 -5.612448528 -5.566557511 -5.991054023 

4 -5.6116719358 -5.630419126 -5.496737200 

5 -5.617899899 -5.611580858 -5.641655675 

Table 18 

n Sn (1) Sn <2> /'l) Sn \-' 

2 14.60256681 16.93454050 16.08334069 

3 14.32370750 13.49097296 13.61123264 

4 14.29781191 14.58909657 14.58738808 

5 14.27544874 14.20979309 14.21267481 

Table 16, Table 17 and Table 18 contain the sequences 

for the 4n-cascade. 



Table 19 

n. an On 

1 1.266917429 24.08347034 

2 1.266423335 24.96703899 

3 1.266402819 24.48424826 

4 1.266401997 

5 1.266401963 

Table 20 

n an(l) a.n(2) a.n (3) 

1 -5.982580185 -5.385514669 -6.986122518 

2 -5.589441110 -5.790629455 -4.624669760 

3 -5.614297500 -5.585121294 -5.928418441 

4 -5.612802380 -5.627649640 --5.525441173 

Table 21 

n Bn(l) Sn (2) Sn(3) 

1 14.14456488 12.03661396 14.17862736 

2 14.89470455 17.74990498 17.35061375 

3 14.36496253 13.66642442 13.75472335 

4 14.30044373 14.52217575 14.52593606 

Table 19, Table 20 and Table 21 contion the seauences 

for +-l'e. 6 .4n_cascade 




