
Chapter 4

Statistical Thermodynamics

• Maximum Entropy Principle

Consider an isolated thermodynamic system in equilibrium which sat-

isfies a given macroscopic condition characterized by a set of macro-

scopic quantities {yi} [= (Et, Nt, {xi, i = 1, . . . , n})], where y is a

macroscopic quantity of the total system or its subsystem and a kind of

constraints to the isolated system.

Ωt : No. of accessible microstates which satisfy the given macroscopic

condition.

Ωt = Ωt({yt})
i(microstates) : 1, . . . , Ωt

e.g., y = E or V of some subsystem

E : fixed, E ′ : fixed, Et = E − E ′ (4.1)

N : fixed, N ′ : fixed, Nt = N −N ′ (4.2)

V : fixed, V ′ : fixed, Vt = V − V ′ (4.3)
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The entropy of the system is given by

St = kB ln Ωt −→ St = St({yt}) (4.4)

Fundamental Statistical Postulate: Equal A Priori Weight

Pi = 1/Ωt i = 1, . . . , Ωt (4.5)

Let us consider a process in which some constraints of an isolated sys-

tem in equilibrium are removed. Then, after a sufficently long time, the

isolated system will approach to a new equilibrium state. Let’s denote

the number of accessible states of the initial equilibrium state and the

final equilibrium state as Ω
(i)
t and Ω

(f)
t , respectively. Then, generally

Ω
(f)
t ≥ Ω

(i)
t , since some constraints are removed. If Ω

(f)
t ≥ Ω

(i)
t , then the

process is said to be irreversible, while if Ω
(f)
t ≥ Ω

(i)
t , then the process is

said to be reversible. For example, let us consider the simplest case in

which a constraint y is removed. Then y can now change, and the (new)

equilibrium probablity distribution is given by P (ŷ) =
Ωt(ŷ)∑
y Ωt(y) from the

fundamental statistical postulate.

The state in which P (ŷ) is max. is most probable.

P (ŷ) : max −→ Ωt(ŷ) : max −→ St(ŷ) : max (4.6)

That is, the value of y in the final equilibrium state will be statistically

ŷ (St(ŷ): max).

Summary: If some constraints of an isolated system are removed, the

parameters of the system readjust themselves in such a way that its

entropy St({yi}) is max.; S
(f)
t ≥ S

(i)
t ; Entropy Maximum Principle
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Removal of some constraint y : Ω
(i)
t

New Equilibrium State : Ω
(f)
t

Ω
(f)
t ≥ Ω

(i)
t (4.7)

P (ŷ) ∝ Ωt(ŷ) (4.8)

Most Probable State : P (ŷ) : Max

−→ Ωt(ŷ) : Max −→ St(ŷ) : Max (4.9)

4.1 Thermal Interaction

Initial equilibrium state:

At = A + A′ : isolated (4.10)

Ei = fixed, E ′
i = fixed −→ Et = Ei + E ′

i : fixed (4.11)

V = fixed, V ′ = fixed −→ Vt = V + V ′ : fixed (4.12)

⇓ Thermal Int. between A&A′
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Ωt(E) = Ω(E) · Ω′(Et − E) (4.13)

↓
P (E) = C · Ωt(E) = C · Ω(E) · Ω′(Et − E) (4.14)

What is the most probable state?

P (E) : max, ⇔ Ωt(E) : max ⇔ St(E) : max (4.15)

St(E) = kB · ln Ωt(E) (4.16)

= S(E) + S ′(Et − E) (4.17)

S = S(E, {xi}, N) (4.18)

St(E) : max −→ ∂St

∂E
= 0,

∂2St

∂E2 < 0. (4.19)

∂St

∂E
=

∂S(E)

∂E
+

∂S ′(E ′)
∂E ′ · ∂E ′

∂E
(4.20)

=
∂S

∂E
− ∂S ′

∂E ′ = 0 (4.21)

∴ ∂S

∂E
=

∂S ′

∂E ′ : thermal equilibrium condition (4.22)

• Def. Temperature T

T ≡
[
∂S(E, {xi}, N)

∂E

]−1

(4.23)

∴ T = T ′ : thermal equilibrium condition (4.24)

e.g. Classical ideal gas

S = NkB ln V +
3

2
NkB ln E (4.25)

∂S

∂E
=

3

2
NkB · 1

E
=

1

T
(4.26)
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∴ E =
3

2
NkBT −→ e =

E

N
=

3

2
kBT (4.27)

Let us consider the case where

Ω(E) = C({xi}, N) · Eα·f (4.28)

α : some positive const. (O(α) = 1), f : degrees of freedom

S(E) = kB ln Ω (4.29)

= kB ln C + kB · αf · ln E (4.30)

∂S

∂E
= kB · αf

E
=

1

T
−→ E = f(αkBT ). (4.31)

∂2S

∂E2 = −αkBf

E2 < 0,
∂2S ′

∂E ′2 < 0 (4.32)

∴ ∂2St

∂E2 =
∂2S

∂E2 +
∂2S ′

∂E ′2 < 0 (4.33)

∂2S

∂E2 < 0 ⇐⇒ ∂

∂E

(
1

T

)
= − 1

T 2

∂T

∂E
< 0 (4.34)

∴
(

∂E

∂T

)

v

> 0 −→ Cv

(
≡ ∂E

∂T

)
> 0 (4.35)

↑ Heat capacity
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4S = Sf − Si , 4S ′ = S ′f − S ′i (4.36)

Q = 4E = Ef − Ei , Q′ = 4E ′ = E ′
f − E ′

i (4.37)

Q = Ef − Ei < 0

Q′ = E ′
f − E ′

i > 0


 −→ Q + Q′ = 0 (4.38)

4S < 0, 4S ′ > 0 −→ 4S +4S ′ > 0 (4.39)

Q < 0 =⇒ S(↓), Q′ > 0 =⇒ S ′(↑) (4.40)

4St > 0 (4.41)
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4.2 Heat Reservoir (heat bath)

• Def. Heat Reservoir

E

E ′ ¿ 1 =⇒ The system A′ is said to act as a heat

reservoir with respect to the smaller system A.

Suppose that the heat reservoir absorbs a heat Q′.

|Q′|max = E −→ |Q′| ¿ E ′ (4.42)

Ω(E ′) = C · E ′α′·f ′ −→ 1

T ′ =
∂S ′

∂E ′ =
α′ · f ′

E ′ · kB (4.43)

A′ : E ′ −→ E ′ = E ′ + Q′ ' E ′ : unchanged (4.44)

∂2S ′

∂E ′2 = − 1

T ′2 ·
∂T ′

∂E ′ = −kB · α
′ · f ′
E ′2 = − 1

T ′E ′ (4.45)

∴ ∂T ′

∂E ′

∣∣∣∣
E′

=
T ′

E ′ (4.46)

T ′(E ′) ∼= T ′(E ′) +
∂T ′

∂E ′

∣∣∣∣
E′

Q′ (4.47)

= T ′(E ′) + T ′(E ′) · Q
′

E ′ (4.48)

= T ′(E ′)
[
1 +

Q′

E ′

]
(4.49)

' T ′(E ′) (4.50)
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E

E ′ ¿ 1 =⇒ T ′ : unchanged (4.51)

S ′(E ′ + Q′) ∼= S ′(E ′) +
∂S ′

∂E ′

∣∣∣∣
E′
·Q′ +

1

2

∂2S ′

∂E ′2

∣∣∣∣
E′
·Q′2 (4.52)

4S ′ = S ′(E ′ + Q′)− S ′(E ′) (4.53)

=
1

T ′ ·Q′ − 1

2
· 1

T ′2 ·
∂T ′

∂E ′

∣∣∣∣
E′
·Q′2 (4.54)

=
Q′

T ′ −
kB

2
α′f ′

(
Q′

E ′

)2

(4.55)

' Q′

T ′ (4.56)

A similar relation holds for any system whose temperature is T and

which absorbs an infinitesimal amount of heat d−Q from other system at

a slightly different temperature by an infinitesimal quasi-static process.

ln Ω(E + d−Q)− ln Ω(E) =
∂ ln Ω(E)

∂E

∣∣∣∣
E

· d−Q (4.57)

∴ dS =
d−Q

T
for an infinitesimal quasi-static process. (4.58)

4.3 Equilibrium Conditions

At = A + A′ : isolated (4.59)

∴ Et = E + E ′ : fixed (4.60)
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S = S(E, {Xα}) (4.61)

Recall that

Xα = −
(

∂E

∂Xα

)

S

(4.62)

dS =
∂S

∂E
· dE +

∑
α

∂S

∂Xα
· dXα (4.63)

Consider an infinitesimal adabatic quasi-static process. −→ dS = 0

dE = −
∑

α

(
T · ∂S

∇Xα

)
· dXα = −

∑
α

Xα · dXα (4.64)

= −dW (4.65)

∴ ∂S

∂Xα
=

Xα

T
(4.66)

e.g. Classical ideal gas

S = NkB(ln V +
3

2
ln E) (4.67)

∂S

∂V
=

NkB

V
=

P

T
−→ PV = NkBT (4.68)

Now, let us consider a general quasi-static process.

dS =
∂S

∂E
dE +

∑
α

∂S

∂xα
· dxα (4.69)

=
1

T
(dE +

∑
α

Xα · dxα) (4.70)

=
1

T
(dE + dW ) (4.71)

=
dQ

T
: valid for any infinitesimal quasi-static process (4.72)

What is the equilibrium condition?

St(E, {Xα}) = S(E, {Xα}) + S ′(E ′, {X ′
α}) (4.73)

dSt =

(
∂S

∂E
− ∂S ′

∂E ′

)
· dE +

∑
α

(
∂S

∂Xα
− ∂S ′

∂X ′
α

)
· dXα (4.74)
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In equilibrium, St : max −→ dSt = 0

∴ ∂S

∂E
=

∂S ′

∂E ′ −→ T = T ′ (thermal equilibrium) (4.75)

∂S

∂Xα
=

∂S ′

∂X ′
α

−→ Xα = Xα
′
(mechanical equilibrium) (4.76)

4.4 Properties of the Entropy S

S = S(E, {Xi}) (4.77)

= kB · ln Ω(E, {Xi}) (4.78)

For an infinitesimal quasi-static process,

dS =
∂S

∂E
dE +

∑
α

∂S

∂Xα
· dXα (4.79)

=
1

T
dE +

∑
α

Xα

T
· dXα (4.80)

=
1

T
(dE + δW ) (4.81)

=
δQ

T
(4.82)

4S =

∫ f

i

dS =

∫ f

i

δQ

T
= Sf − Si (4.83)
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• S: thermodynamic function −→ dS : exact differential

S = S(E, {Xi}) −→ dS =
∂S

∂E
dE +

∑

i

∂S

∂Xi
· dXi (4.84)

∂S

∂E
=

1

T
,

∂S

∂Xi
=

Xi

T
(4.85)

• Maximum entropy principle

Isolated system

Initial equilibrium state −→ Final equilibrium state

↑

S : max

∴ 4S = Sf − Si ≥ 0 (4.86)

4S = 0 : reversible process (4.87)

4S > 0 : irreversible process (4.88)

Adiabatic (thermally insulation) quasi-static process:

4S = 0 (4.89)

∴ reversible process

• S = kB ln Ω

C.M. −→ δqi · δpi = h0 (resolution)

Ω =
1

hf
0

∫

E E+δE

Πidqi · dpi (4.90)

↓

4 - 11



S = kB ln

(∫

E E+δE

Πidqi · dpi

)
− kB · f · ln h0 (4.91)

= kB ln

(∫

E E+δE

Πidqi · dpi

)
+ S0 (4.92)

(some const indep. of Eδ{Xi})

h0(S) is not uniquely determined in C.M.

Q.M. −→ h0 = h0 (Plank const.)

S is uniquely determined

• Limiting behavior of S

S = kB ln Ω(E, {Xi}) (4.93)

Ω(E) ∼ (E − E0)
αf , O(α) = 1(α > 0) (4.94)

∂S

∂E
> 0 &

∂2S

∂E2 < 0 −→ O(S) ∼ f(E > E0) (4.95)

E(↓) −→ Ω(↓) & T (↓) (4.96)

E ∼ E0 −→

 T −→ 0+

Ω(E0) : very small


 (4.97)

→ at most O(Ω(E0)) ∼ f (4.98)
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∴ T → 0+ =⇒ E → E0 (ground state) (4.99)

S = kB ln Ω(E0) = S0 (4.100)

nondegenerate −→ Ω(E0) = 1 −→ S = 0 (4.101)

at most O(S) = ln f −→ O(S) = 0 (4.102)

S(E0)

S(E > E0)
= 0 (4.103)

∴ As T −→ 0+, S −→ S0 (4.104)

const. indep. of the atomic structure and their interactions of the system.

Let’s consider an interacting system which consists of N atoms.

H = H(q, p, {Xi}) −→ E0, E1, · · · (4.105)

As T −→ 0+, P (E) = 0(E > E0) (4.106)

↓

All degrees of freedom associated with N atoms are frogen (ordered state)

e.g. Nuclear spin entropy

Let’s consider a system which consists of atom having nuclear spin 1
2 .

−→µ ∝
−→
S

m
−→ µN ¿ µe (4.107)

very small

Even at a temp. T0 (' 10−3K), the nuclear spins: randomly oriented.

But, all degrees of freedom not involving nuclear spins: frogen at T0

∴ total entropy S0 ' kB · ln 2N (4.108)

T → 0+ =⇒ S → S0 (4.109)
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Note that S0 depends only on the kinds of the atomic nuclei, but which

is completely independent of the spatial arrangement of its atoms, of the

nature of their chemical combinations, or of the interactions between

them.

e.g. A system: one mole of Pb & one mole of S

A′ system: one mole of PbS

The properties of these two systems are very different, but they consist

of the same numbers and kinds of atoms.

∴ T −→ 0+, the two systems have the same entropy S0. (4.110)

T ∼ 10−6K, all the degrees of freedom associated (4.111)

with nuclear spins: frogen (ordered)

4.5 Thermodynamic Laws and Statistical Relations

0th law: Thermal equilibrium and condition (T )

Equilibriums:

1st law: Internal Energy U

An equilibrium macrostate can be characteriged by its internal energy

U .
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• For an isolated system, U = const.

• Energy exchange −→ dU = δQ− δW

2st law: Entropy S

An equilibrium macrostate can be characteriged by its entropy S.

• For an isolated system, 4 S ≥ 0

(Entropy maximum principle)

• Quasi-static process, dS =
δQ

T

3st law: Limiting behavior of S

As T → 0+, S → S0

(some consts. indep. of all external parameters)

◦ Statistical Relations

S = kB ln Ω(E, {Xi}) (4.112)

macroscopic quantities microscopic information
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