Chapter 4

Statistical Thermodynamics

e Maximum Entropy Principle
Consider an isolated thermodynamic system in equilibrium which sat-
isfies a given macroscopic condition characterized by a set of macro-
scopic quantities {y;} [= (Ey, Ny, {z;, ¢ = 1, ..., n})], where y is a
macroscopic quantity of the total system or its subsystem and a kind of

constraints to the isolated system.

Q) : No. of accessible microstates which satisfy the given macroscopic

condition.

Q= Q({ye})
i(microstates) : 1, ..., €

e.g., y = I/ or Vof some subsystem

a piston: clamped in a fixed position
and thermally insulation

A A’
E : fixed, E': fixed, By, = E — F' (4.1)
N :fixed, N : fixed, N, = N — N’ (4.2)
Vo fixed, V' fixed, V; =V =V’ (4.3)



The entropy of the system is given by
St = kB In Qt — St = St({gt}) (44)
Fundamental Statistical Postulate: Equal A Priori Weight

Let us consider a process in which some constraints of an isolated sys-
tem in equilibrium are removed. Then, after a sufficently long time, the
isolated system will approach to a new equilibrium state. Let’s denote
the number of accessible states of the initial equilibrium state and the
final equilibrium state as Qgi) and ng ), respectively. Then, generally
ng ) > Qgi), since some constraints are removed. If ng ) > Qgi), then the
process is said to be irreversible, while if ng ) > Qgi), then the process is
said to be reversible. For example, let us consider the simplest case in

which a constraint y is removed. Then y can now change, and the (new)

A,

equilibrium probablity distribution is given by P(7) = théi/()y) from the

fundamental statistical postulate.
The state in which P(g) is max. is most probable.
P(9) : max — (7)) : max — Sy(9) : max (4.6)
That is, the value of y in the final equilibrium state will be statistically
g (S¢(9): max).
Summary: If some constraints of an isolated system are removed, the

parameters of the system readjust themselves in such a way that its

entropy Si({y;}) is max.; ng ) > St(i) ; Entropy Maximum Principle



Removal of some constraint y : Qgi)

New Equilibrium State : ng )
Ql(tf ) > Qgi)
P(g) o< Qu(9)

Most Probable State : P(y) : Max

— Q(y) : Max — Si(9) : Max

4.1 Thermal Interaction

Initial equilibrium state:

adiabatic piston clamped
at a fixed position

E.V E, V'

A A’
A, = A+ A :isolated

E; = fixed, E! = fixed — FE; = E; + E| : fixed
V =fixed, V' = fixed — V; = V + V' : fixed
|l Thermal Int. between A& A’

nonadiabatic piston clamped
at a fixed position

E,V E',V’

(4.9)

(4.10)
(4.11)

(4.12)



0(E) = Q(E) - (B, — E) (4.13)

P(E)=C - Q(E) =C-QE) (E, - E) (4.14)

What is the most probable state?

P(E): max, & U (F): max < S(F): max (4.15)
S{(E) = kp-InQ(F) (4.16)
= S(E)+S(E,—E) (4.17)
S =S(E, {xi}, N) (4.18)
S 0%,

Si(E) : max — 9E = 0, 5 < 0. (4.19)

9S;  0S(E) 0S'(E') OF
0F ~ OE | 0B OF (4.20

as 05
= o= =0 (4.21)
as 05 R .

ST ap thermal equilibrium condition (4.22)

e Def. Temperature T’

dS(E, {z;}, N)1"
T = 4.2
S (123
. T =T : thermal equilibrium condition (4.24)

e.g. Classical ideal gas

S:nglnv—i-gNthlE (425)
oS 3 1 1
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.',EzéNkBT—>e: ’

E

— = —kpT 4.2
N 278 (4.27)
Let us consider the case where

Q(E) = C({z;}, N)- E*/ (4.28)

« : some positive const. (O(a) =1), f : degrees of freedom

S(E) = kpnQ (4.29)
= kplnC+kp-af -InFE (430)
0S af 1
O —kp- oL = = flaksT), (431)
2S  akpf 028
@ =T < 0, BYo <0 (4.32)

%S, 0*S  9*S
9 T am T aEe < 0 (4.33)

0*S o (1 1 0T
@<O<:>8_E<T>__ﬁa_E<o (4.34)
oF oF
1 Heat capacity
S A
as 1
AS oE T
AE az? <0
+ * -
E. E E




AE = AE'
AS<AS’ U
Ty T§
o8 _1
oE T
a°s
8E"
* - >
E, E B
AS=S8;-5 , NS =58 (4.36)
Q=AE=E;~E , Q=AE=E,-E (4.37)
T, T T,>T]
(E,.S,) (E!.S!)
—1—Q
\/
I I} T, ="T;
(E;,S;) (E%.S})
=F;—FE; <0
@="E —Q+Q =0 (4.38)
Q' =FE;,—E >0
AS <0, AS>0— AS+AS >0 (4.39)
Q<0=5(]), @ >0= 5(1) (4.40)
AS, >0 (4.41)



4.2 Heat Reservoir (heat bath)

iy @O

e Def. Heat Reservoir

< 1 = The system A’ is said to act as a heat

Dj|| Sl

reservoir with respect to the smaller system A.

Suppose that the heat reservoir absorbs a heat Q.

Q' max =F — |Q'| < F' (4.42)
, 1 aS/ Of/ . f/
1o f N _ )

QE)=C-E = A ol kp (4.43)
A" F — E'=F +@Q ~FE : unchanged (4.44)
%S’ 1 o1’ o - ff 1
0E7 = T2 0B . "B TEE 7B (4.45)

o1’ T’
' == 14
—. T
1(IN ~ (T /

T(E") = T'(F)+ 9E | Q (4.47)
= T'(E)+T'(F ) = (4.48)
= T'(E) { ] (4.49)
~ (4.50)



E
= < 1 =T : unchanged (4.51)

S'(F'+Q)=5'(F) + gg, . Q + % gQESQ . Q" (4.52)
NS = S(F+qQ)—-S'(F) (4.53)

_ % _ ’%Bo/ 7 (%)2 (4.55)

~ % (4.56)

A similar relation holds for any system whose temperature is 1" and
which absorbs an infinitesimal amount of heat d () from other system at

a slightly different temperature by an infinitesimal quasi-static process.

_ — InQ(E

W Q(E +dQ) — ma(E) = 2BEE) 40 (4.57)
oE |g

aQ e N

c.dS = T for an infinitesimal quasi-static process. (4.58)
4.3 Equilibrium Conditions
A A’

Ay = A+ A :isolated (4.59)
. Ey=FE+ E': fixed (4.60)



S =S(E, {Xa}) (4.61)

Ez—(ﬁi)s (4.62)

S = —

Recall that

dX, (4.63)

Consider an infinitesimal adabatic quasi-static process. — dS =0

_ oS _
dE = - (T- vm) dXa = =) Xo-dX,  (4.64)
= —dW (4.65)
S  X.
AT (4.66)

e.g. Classical ideal gas

3
S = Nkp(nV +>InE) (4.67)
oS Nkg P

Now, let us consider a general quasi-static process.

ds = a—EdE + za: . i (4.69)
= T(dE + za: X, - dzg) (4.70)
= %(dﬁ + dW) (4.71)

= 5 valid for any infinitesimal quasi-static process (4.72)
What is the equilibrium condition?

Si(E, {Xa}) = S(E, {Xa})+5'(E'7 {Xa}) (4.73)

as, = (95 0% E+Z 95\ ax (4.74)
T \oE 8E’ aX - 9X/, ° '
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In equilibrium, S; : max — dS; =0

oS 05’

5F = g — T =T’ (thermal equilibrium) (4.75)
0S8 05’ —-— =
v = v —s X, = Xa/ (mechanical equilibrium) (4.76)

4.4 Properties of the Entropy S

S = S(E, {X}) (4.77)
= kp-InQ(E, {X;}) (4.78)

For an infinitesimal quasi-static process,

05 0S
dS = a—EdE+za: aXa'dX“ (4.79)
1 Xa
= —dFE — - dX 4.
=d +§a: = - dX, (4.80)
1
— (A +6W) (4.81)
0Q
= = 4.82
- (4.82)
f
1
quasi-static process
f s
AS:/dS:/%:Sf—si (4.83)



e S: thermodynamic function — dS : exact differential

S—SE (X)) — das=2ap+ 3 05 X, (484)

OF 0X;
oS 1 oS  X;
— == = — 4.85
OE T ox, T ( )
e Maximum entropy principle
Isolated system
Initial equilibrium state — Final equilibrium state
T
S : max
SLAS = Sf — SZ > 0 (4.86)
AS =0 : reversible process (4.87)
AS >0 : irreversible process (4.88)
Adiabatic (thermally insulation) quasi-static process:
AS =0 (4.89)
.. reversible process
e S = kB In Q2
C.M. — dq; - dp; = hg (resolution)
1
hy JE E+6E

l



S = kgln (/ I1,dg; - de') —kp-f-Inhg (4.91)
E E+0E

= kpln (/ I1;dg; - dpl> + So (492)
E E+6E
(some const indep. of E6{X;})

ho(S) is not uniquely determined in C.M.

Q.M. — hg = hy (Plank const.)

S is uniquely determined

e Limiting behavior of S

S = kpInQ(E, {X:)) (4.93)
In Q2
A
Eo (ground-state energy) =&
Q(E) ~ (E — E))™, O(a) = 1(a > 0) (4.94)
oS 025
E(l) — Q1) & T(]) (4.96)
E~FE),— (4.97)
Q(Ey) : very small
— at most O(Q2(Ep)) ~ f (4.98)



. T — 0" = F — F (ground state) (4.99)

S = ]CB In Q(Eo) = S() (4100)
nondegenerate — Q(Ey) =1 — 5 =0 (4.101)
at most O(S)=Inf — O(S)=0 (4.102)
5(£Eo)
= 4.1
S(E > Ejy) 0 (4.103)
S As T — 07 S — S5 (4.104)

const. indep. of the atomic structure and their interactions of the system.
Let’s consider an interacting system which consists of N atoms.

H = H(q, p, {Xi}) — Eo, £, -+ (4.105)

As T — 0%, P(E)=0(F > Ey) (4.106)

l

All degrees of freedom associated with NV atoms are frogen (ordered state)

e.g. Nuclear spin entropy

1

Let’s consider a system which consists of atom having nuclear spin 5.

very small

Even at a temp. Tj (~ 1073 K), the nuclear spins: randomly oriented.

But, all degrees of freedom not involving nuclear spins: frogen at T

. total entropy Sy ~ kp - In2" (4.108)

T—0" = S — 9 (4.109)
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Note that Sy depends only on the kinds of the atomic nuclei, but which
is completely independent of the spatial arrangement of its atoms, of the
nature of their chemical combinations, or of the interactions between

them.
e.g. A system: one mole of Pb & one mole of S
A’ system: one mole of PbS

The properties of these two systems are very different, but they consist

of the same numbers and kinds of atoms.

. T — 0%, the two systems have the same entropy Sy. (4.110)

T ~ 107°K, all the degrees of freedom associated  (4.111)

with nuclear spins: frogen (ordered)

4.5 Thermodynamic Laws and Statistical Relations

Oth law: Thermal equilibrium and condition (7')

Equilibriums: @

1st law: Internal Energy U

An equilibrium macrostate can be characteriged by its internal energy

U.



e For an isolated system, U = const.

e Energy exchange — dU = 0Q) — oW

2st law: Entropy S

An equilibrium macrostate can be characteriged by its entropy S.

e For an isolated system, A S >0

(Entropy maximum principle)

5Q

e Quasi-static process, dS =

3st law: Limiting behavior of S

As T — 0%, S — Sy

(some consts. indep. of all external parameters)

o Statistical Relations

S =kpnQ(E, {X;}) (4.112)

macroscopic quantities microscopic information



