
Chapter 1

Fundamentals of Statistical Physics

• Aim of the Statistical Mechanics

We will discuss the basic physical concepts and methods appropriate

for the description of macroscopic systems consisting of very many par-

ticles such as gases, liquids, solids, electromagnetic radiation (photons),

and so on. Indeed, most physical, chemical, and biological systems, one

is generally not concerned with the detailed behaviors of each constituent

(atom or molecule). Instead, one is usually interested in the macroscopic

parameters characterizing the macroscopic system as a whole (e.g., vol-

ume, pressure, magnetic moment, thermal conductivity, etc.).

The study of macroscopic systems is probably the most active area of

modern physics research outside realm of high-energy physics, the main

purpose of which is to understand the fundamental interactions in nature.

In trying to discuss macroscopic systems, one faces a rather different task

which is no less challenging. Even when the interactions between individ-

ual atoms (in most cases, electromagnetic interactions) are well known,

the task of understanding the macroscopic systems is far from trivial.

We must note that even if the interactions between individual atoms are

rather simple, quite unexpected macroscopic phenomena may occur due

to the collective behavior of the atoms. For example, phase transition

(from a gas to a liquid) and biological growth and reproduction. Hence

the problem is not just one of carrying out complicated computations

(quantitative details). The main aim is, instead, to use one’s knowledge
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of basic physical laws to develop new concepts which can illuminate the

essential qualitative characteristics of such macroscopic systems.

In discussing macroscopic systems, we shall not recapitulate the his-

torical development of the various disciplines dealing with the physical

description of such systems. Instead we shall, from the outset, adopt a

modern point of view based on the microscopic fundamental laws and

some statistical postulates (i.e. Statistical Thermodynamics)

The aim of statistical mechanics is to derive all the equilibrium proper-

ties of a macroscopic system from the fundamental law(classical mechan-

ics or quantum mechanics) plus some statistical postulates. It merely

states what the equilibrium situation is for a given system. That is, it

does not describe the nonequilibrium properties of the system.
• Thermodynamic System

A macroscopic system composed of a large number of particles occupying

a large volume V .

Thermodynamic limit: N →∞, V →∞ s.t. N/V = n = finite const.

(1) Isolated System

No exchange of energy and particles between the system and it’s

surroundings

(2) Closed System

Exchange of only energy between the system and it’s surroundings
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(3) Open System

Exchange of energy and particles between the system and it’s

surroundings

• Specification of the state of a system

Let’s consider a Hamiltonian system of 3N degrees of freedom.
Classical Approximation

H = H(q, p), where (q, p) = (q1, · · · , q3N , p1, · · · , p3N) (1.1)

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, · · · , 3N (1.2)

6N-D Phase Space

(q(t), p(t)): a microscopic state (microstate) of the system

Divide the phase space into small cells of equal volume:

δqiδpi = h0 →
3N∏
i=1

δqiδpi = h3N
0 : Countable state.

Partial Information

However, it is practically impossible to obtain 6N initial conditions

for large N . We have usually only macroscopic quantities which can be
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obtained from experiment.

Macroscopic quantities: N, V, E ∼ E + ∆(∆ ¿ E).

A macroscopic condition of the system is characterized by macroscopic

quantities (N, V, E). Therefore, all the microstates on the energy surface

(H(q, p) = E) are accessible (or possible) states:

Ensemble

To describe the system statistically, let us consider an infinite number

of systems satisfying the same macroscopic condition. Such a collection

of systems is called an “ensemble.” The systems in the ensemble are

distributed over the various accessible states.

1.1 Microcanonical Ensemble

Fundamental Statistical Postulate (Equal A Priori Weight)

When an isolated system is in the thermodynamic equilibrium, its state

is equally likely to be in any microstate subject to the given macroscopic

conditions.
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Macroscopic Conditions: N, V,E ∼ E + ∆(∆ ¿ E).

From the fundamental law (Classical or Quantum Mechanics), we can

obtain accessible microstates of the thermodynamic system which satisfy

the given macroscopic conditions:

Accessible Microstates: 1, 2, · · · , Ω
Then, by the statistical postulate, we can obtain the probability dis-

tribution pi for the isolated system in equilibrium:

pi =
1

Ω
for all i, i = 1, · · · , Ω. (1.3)

Entropy S of the system

S ≡ kBlnΩ(E), (1.4)

where kB is the Boltzman’s constant. Note that the macroscopic quantity S

is obtained from the microscopic information Ω. This entropy S measures

the degree of “complexity” (or “randomness”) of the system

• Another Point of View (Maximum Entropy Principle)

Macroscopic condition : N, V,E ∼ E +4(4¿ E)

−→ accessible states : 1, 2, · · · , Ω
ni (occupation number): No. of subsystems in the ith microstate,

i = 1, · · · , Ω.

{ni} = (n1, n2, · · · , nΩ),
Ω∑

i=1

ni = n (1.5)

What is the most probable set {ni}?
Def. Thermodynamic Probability M of the set {ni}

M ≡ n!∏
i ni!

= nCn1
· n−n1

Cn2
· · · (1.6)
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Postulate : {ni} s.t. M({ni}) = max : most probable set

most probable state = equilibrium state

ln M = ln n!−
∑

i

ln ni! (1.7)

≈ n ln n−
∑

i

ni ln ni (Stirling Formula) (1.8)

=
∑

i

ni ln n−
∑

i

ni ln ni (1.9)

= −n
∑

i

ni

n
ln

ni

n
(1.10)

= −n
∑

i

pi ln pi, pi =
ni

n
. (1.11)

Def. Entropy S

S ≡ kB · ln M

n
= −kB

∑
i

pi · ln pi,

Ω∑
i=1

pi = 1. (1.12)

M : max. ⇐⇒ S : max.

dS = −kB

∑
i

(1 + ln pi)dpi = 0, (1.13)
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∑

i

dpi = 0. (1.14)

Using the undetmined multiplier’s method,

dS + λ
∑

i

dpi = 0, λ : some const. (1.15)

∴
∑

i

(1 + ln pi + λ)dpi = 0 (1.16)

∴ 1 + ln pi + λ = 0 −→ pi = const. (1.17)
Ω∑

i=1

pi = 1 −→ pi = 1/Ω : equal weight for all i (1.18)

S = −kB

∑

i

pi ln pi (1.19)

= −kB

Ω∑
i=1

1

Ω
ln

1

Ω
(1.20)

= kB ln Ω(E). (1.21)

Equal a Priori Weight + S ≡ kB ln Ω(E)

m
Thermodynamic Prob. M : max

↓

S ≡ −kB

Ω∑
i=1

pi ln pi (pi =
ni

n
) : max. under the condition,

Ω∑
i=1

pi = 1

• Summary

How to study the thermodynamic systems statistically?

1. Find all the accessible microstates which satisfy the given
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macroscopic condition from the fundamental law (the Classical or

Quantum mechanics).

Accessible Microstates: 1, 2, . . . , Ω.
2. Consider a statistical ensemble in which any subsystem satisfies the given

macroscopic condition.

Fundamental(or basic) Postulate:

Equal a priori Weight (pi = 1/Ω) + S ≡ kB ln Ω

m
S ≡ −kB

∑
i pi ln pi : max. under the condition

↓
pi = 1/Ω

3. Thermal Average (or Ensemble Average)

f : a thermodynamic quantity −→ f = f(i).

< f >=
∑

i

f(i)pi =
∑

i

f(i)/Ω (1.22)
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Classical Ideal Gas

Isolated System

H =
N∑

i=1

~pi
2

2m
(1.23)

~̇qi =
dH

d~pi
, ~̇pi = −dH

d~qi
, i = 1, · · · , N. (1.24)

isolated system −→ E = const.

∴
N∑

i=1

~pi
2

2m
= E (1.25)

↓
N∑

i=1

~pi
2 = 2mE = (

√
2mE)2

~pi = (pi,x, pi,y, pi,z) (1.26)

f(degrees of freedom) = 3N −→ dimension of the phase space = 6N

6N-D Phase Space

Partition the phase space into small cells of equal volume h3N
0 (=

∏3N
i=1 δqiδpi)
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to specify the state of the system.

Assume that we can measure the energy of the system E with the

precision ∆(∆ ¿ E).

Ω (E) : No. of states whose energy lie between E and E + ∆ = No. of

accessible states satisfying the macroscopic condition.

Φ (E) : No. of states whose energy lies below E.

Φ(E) =

∫
· · ·

∫ 3N∏
i=1

dqi · dpi/h
3N
0

0 ≤ qi ≤ L,H ≤ E −→
3N∑

i=1

p2
i ≤ 2mE (Macroscopic condition)

= V N ·
∫
· · ·

∫ 3N∏
i=1

dpi/h
3N
0 (

3N∑
i=1

p2
i ≤ 2mE) (1.27)

3N∑

i=1

p2
i

2m
= E −→

3N∑

i=1

p2
i = (

√
2mE)2 (1.28)

∴ Sphere of radius
√

2mE in the 3N-D space

Sphere in the 2D space −→ circle x2 + y2 = R2 −→ Vol = πR2 (1.29)
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Sphere in the 3D space −→ x2 + y2 + z2 = R2 −→ Vol =
4

3
πR3 (1.30)

...

In general, the volume of the sphere of radius R in the n−D space ∝ Rn

∴ Φ(E) ∝ V N · (
√

2mE)3N (1.31)

= C · V N · E3N/2 (1.32)

C : const. indep. of V &E (1.33)
No. of accessible states:

Ω(E) = Φ(E + ∆)− Φ(E)

' dΦ

dE
·∆

= C ·N · V N · E3N/2−1 ·∆ (1.34)

Entropy S :

S = kB · ln Ω(E)

= kB[ln C + ln N + N ln V + (
3N

2
− 1) ln E + ln ∆]

' NkB[ln V +
3

2
ln E +

ln N

N
+

ln(C ·∆)

N
]

= N · kB[ln V +
3

2
ln E] in the thermodynamic limit (1.35)

s =
S

N
= kB[ln V +

3

2
ln E] (1.36)
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Spin System

Consider N free localized spins

isolated system

each spin : h = −~µ · ~B

ε ≡ −µ ·B (1.37)

• Macroscopic condition : N = n+ + n−, E = εn+ − εn−

n+: no. of spins up, n−: no.of spin down

−→ n+ =
1

2
(N +

E

ε
), n− =

1

2
(N − E

ε
)

• No. of accessible states :

Ω(E) = NCn+
=

N !

n+! · n−!
(1.38)
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• Entropy :

S = kB ln Ω(E)

= kB ln
N !

n+!n−!

S = kB[ln N !− ln n+!− ln n−!]

' kB[N ln N −N − n+ ln n+ + n+ − n− ln n− + n−]

= −kB[n+ · ln n+

N
+ n− ln

n−
N

]

= −NkB[
n+

N
· ln n+

N
+

n−
N
· ln n−

N
]

p+ ≡ n+

N
=

1

2
[1 +

E

Nε
], p− =

n−
N

=
1

2
[1− E

Nε
] (1.39)

∴ S = −NkB[p+ · ln p+ + p− · ln p−]

↓
s =

S

N
= −kB[p+ · ln p+ + p− · ln p−] (1.40)

1.2 Interaction Between Thermodynamic Systems

Def. External parameter {xi, i = 1, · · · , n}

Macroscopically measurable independent parameters x1, x2, · · · and

xn which appear in the Hamiltonian H = H (q, p; {xi}) of the system ;

(q, p) = (q1, · · · , q3N , p1, · · · , p3N)

e.g., V,
−→
B ,

−→
E , · · ·

Gas system : 4pi · 4qi ∼ h0 −→ 4pi ∼ h0

L
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Spin system : µB

−µB

H −→ energy levels: ε1, ε2, · · · , εr, · · ·
εr = εr({xi}, N)

∴ Macroscopic quantities{yi} = {E, {xi}, N} (1.41)

Def. Macrostate

A state which satisfies the macroscopic condition characterized by the

given macroscopic quantities

Ω(No. of the accessible states) = Ω(E, {xi}, N) (1.42)

Let’s consider the case that two thermodynamic systems exchange en-

ergy without particle exchange:

Statistical Ensemble

n: No. of total subsystems

∃energy exchange between A & A′
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At = A + A′ : isolated

↓
E + E ′ = Et : fixed

N + N ′ = Nt : fixed

1.2.1 Thermal Interaction

Def. Thermal Interaction

Energy exchange with all the external parameters fixed

↓
Energy levels of each system are unchanged.

ni: No. of subsystems in the ith energy level
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• Initial equilibrium state

A & A′ : isolated, n = 1, 000

A : Ei = ε2, A′ : E ′
i = ε′3

Each subsystem is equally likely to be in each accessible microstate.

Et = ε2 + ε′3

⇓ Thermal Interaction

• Final equilibrium state

Each subsystem whose energy is εi is equally likely to be in the mi-

crostates which satisfy the macroscopic condition E = εi.

pi: probability that the energy of the system A is εi

pi = lim
n→∞

ni

n
(1.43)

∴ p1 =
1

10
, p2 =

9

10
. (1.44)
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Ef =
∑

i

pi · εi =
9

10
ε2 +

1

10
ε1 (1.45)

Def. Heat Q

Q ≡ Ef − Ei = 4E : the change 4E of the average energy of the

system A is called the heat Q absorbed by this system.

Likewise , E ′
f =

∑
i

p′i · ε′i =
1

10
ε′2 +

7

10
ε′3 +

2

10
ε′4

∴ Q′ = 4E ′ = E ′
f − E ′

i

However, the total system At (= A + A′) is isolated.

∴ Et, i = Ei + E ′
i = Et, f = Ef + E ′

f

↓
(Ef − Ei) + (Ef

′ − E ′
i) = Q + Q′ = 0

∴ Q = −Q′

Note that for thermal interaction, the energy levels and Ω(εi) of each

subsystem are unchanged, but ni’s or equivalently pi’s are changed.

1.2.2 Mechanical Interaction

• A system which cannot interact thermally with any other sys-

tem is said to be “thermally insulated (or isolated).”

• A process in which there is no thermal interaction is said to be

“adiabatic.”

Let’s consider an adiabatic process in which external parameters change.
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Since external parameters change, energy levels, Ω & ni’s can generally

change.
• Initial equilibrium state

Et, i = ε2, i + ε′3, i

⇓ Mechanical Interaction

P (ε1, f) =
1

20
, P (ε2, f) =

4

5
, P (ε3, f) =

3

20
(1.46)

∴ Ef =
ε1, f

20
+

4

5
ε2, f +

3

20
ε3, f (1.47)

4E = Ef−Ei: the change 4E of the average energy due to the external

parameter changes.

Def. Work W

W ≡ −4E : Work done by the system
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Likewise, 4E ′ = E ′
f − E ′

i

4E +4E ′ = 0 −→ W + W ′ = 0

1.2.3 General Interaction

thermal interaction + mechanical interaction

4E : the change in the average energy due to a general interaction

4xE : the change in the average energy due to external parameter

changes

↓
4E ≡ 4xE + Q = Q−W ; W = −4xE (1.48)

Both work and heat are a kind of energy transferred in different ways.

• 1st law of thermodynamics

An equilibrium macrostate of a system can be characterized by the

average energy E (called the “internal energy”) which has the following

properties:

(1) For an isolated system, E =const.

(2) Interaction −→ 4E = Q−W

( one macrostate −→ another macrostate )

• Infinitesimal general interactions

A process is said to be infinitesimal if it takes the system from an initial

microstate to a final macrostate which differs from the initial macrostate

only infinitesimally.
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1.2.4 Quasi-Static Process

A process is said to be quasi-static if it is carried out so slowly that it

remains arbitrarily close to equilibrium at all stages of the process.

r : a microstate −→ εr : the energy of the microstate r

εr = εr({xi}, N) (1.49)

pr : the probability that the system is in the state r

U = E =
∑

r

pr · εr (1.50)

Consider an infinitesimal adiabatic quasi-static process:

{xi} −→ {xi + dxi}. (1.51)

dW = −dE = −
∑

r

pr · dεr (1.52)

εr = εr (x1, , · · · , xn, N)

↓
dεr =

n∑
i=1

∂εr

∂xi
· dxi (1.53)
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∴ dW =
n∑

i=1

(−
∑

r

pr · ∂εr

∂xi
) · dxi (1.54)

• Def. Generalized force

Xi, r ≡ −∂εr

∂xi
: generalized force conjugate to the external

parameter xi in the state r

Xi =
∑

r

pr ·Xi, r : average generalized force conjugate to xi

∴ dW =
n∑

i=1

Xi · dxi (1.55)

dU = dE = −
∑

i

Xi · dxi (1.56)

∴ Xi = −(
∂U

∂xi
)s (1.57)

↓
Consider a finite adiabatic quasi-static process.

4W = Wf −Wi =

∫ f

path i

dW (1.58)

e.g. P − V work

dW = P · dV (1.59)
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