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F-F030 On the coupled chaotic bistable

Hwa-Kyun Park ,H.T.Moon The dy-

namics of coupled chaotic bistable systems including

systems

multiple saddle points are studied. Size instability
destroy the synchronization and the domain struc-
ture form spontaneously. We find that each domains
show two types of behavior: the amplitude death
and unsteady motion near the saddle points due to
multiple time scales of local dynamics. The statis-
tical natures of domain length are studied and ex-
plained using space mapping approach. The results
are tested for many chaotic bistable systems such as

Lorenz,Chua, and Dufifing oscillators.

momentum-conserved Hamiltonian Mean field
A2, ZEE(KAIST)

dynamical approach for measuring the temperature

Dynamical Temperature in

systems We present a
of a momentum-conserved Hamiltonian systems in
the microcanonical ensemble of thermodynamics. In
particular, we study the temperature of a Hamilto-
nian mean field system, which is a system of N fully
coupled classical particles and shows a second order
phase transition. And we study if the new-defined
temperature can be a good thermodynamic variable

in a system with a finite degree of freedom.
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synchronization of in-phase orbits in unidirec-

Experimental observation of

tionally coupled diode resonator  ZI¥Eej 2
Z.0|¥Z (otFohEn) Ho (2 ohEn)

tical diode resonators are unidirectionally coupled for

Two iden-

studying synchronization of in-phase orbits. Diode
resonator is a well-known ecircuit for demonstrating
chaos as well as various periodic motions by varying a
control parameter. Coupling strength of the coupled
circuits could be changed using a feedback ampli-
fier. Periodic orbits of the response system became
successively in-phase synchronized with those of the
drive system as coupling strength is increased at the
fixed control parameter. Experimental results seem
to follow the theoretical results on synchronization
of dissipatively coupled one-dimensional quadratic
maps. Furthermore, we had observed chaos synchro-
nization above the critical control parameter. Such
in-phase synchronization showed a hysteresis depend-
ing on the sweeping direction of the coupling con-
stant, which was not expected in theoretical study
of the coupled maps. In addition, fine structures of
synchronization are different from theoretical results

from the coupled maps.

Global Effects of The Riddling

Bifurcations in Coupled Chaotic Systems ¢
S LY (Z L)

tions in coupled chaotic systems with invariant sub-

We consider riddling bifurca-

spaces. Through a riddling bifurcation, a first pe-
riodic saddle, embedded in the chaotic attractor on
an ivariant subspace, becomes transversely unstable,

and then the chaotic attractor loses its asymptotic



stability. However, the global effects of such local
riddling bifurcations depend on whether these rid-
dling bifurcations may or may not induce “contact
bifurcations” between the chaotic attractor and its
basin boundary. When such a contact bifurcation
occurs, an “absorbing area”, acting as a bounded
trapping vessel and surrounding the chaotic attrac-
tor, disappears, and then the basin of the chaotic
attractor becomes globally riddled with a dense set
of holes, belonging to the basin of another attractor.
On the other hand, if such a contact bifurcation does
not take place, then the absorbing area persists, and
hence the basin of the chaotic attractor becomes only
locally riddled.

Characterization of Global Ef-

fects of The Blow-Out Bifurcations oAk
2E (2R)

a coupled chaotic system when a chaotic attractor

Blow-out bifurcation occurs in

on an invariant synchronization subspace becomes
transversely unstable. As a result of the blow-out bi-
furcation, a new asynchronous attractor, surrounded
by an absorbing area acting as a bounded trapping
vessel, may be developed from the synchronization
subspace. Note that the newly-born asynchronous
attractor may be chaotic or hyperchaotic, depend-
ing on the global dynamics. We characterize this
global effect of the blow-out bifurcation in terms of
unstable asvnchronous periodic orbits inside the ab-
sorbing area. It is thus found that a chaotic (hy-
perchaotic) attractor with one (two) positive Lya-
punov exponent(s) appears when the magnitude of
a suitably-weighted second Lyapunov exponent of
a group of asynchronous periodic saddles is larger
(smaller) than that of a group of asynchronous pe-
riodic repellers. Bifurcation mechanisms for the ap-
pearance of asynchronous unstable periodic orbits in-
side the absorbing area are also discussed in detail.
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