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stability. However, the global effects of such local
riddling bifurcations depend on whether these rid-
dling bifurcations may or may not induce “contact
bifurcations” between the chaotic attractor and its
basin boundary. When such a contact bifurcation
occurs, an “absorbing area”, acting as a bounded
trapping vessel and surrounding the chaotic attrac-
tor, disappears, and then the basin of the chaotic
attractor becomes globally riddled with a dense set
of holes, belonging to the basin of another attractor.
On the other hand, if such a contact bifurcation does
not take place, then the absorbing area persists, and
hence the basin of the chaotic attractor becomes only
locally riddled.
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a coupled chaotic system when a chaotic attractor

Blow-out bifurcation occurs in

on an invariant synchronization subspace becomes
transversely unstable. As a result of the blow-out bi-
furcation, a new asynchronous attractor, surrounded
by an absorbing area acting as a bounded trapping
vessel, may be developed from the synchronization
subspace. Note that the newly-born asynchronous
attractor may be chaotic or hyperchaotic, depend-
ing on the global dynamics. We characterize this
global effect of the blow-out bifurcation in terms of
unstable asvnchronous periodic orbits inside the ab-
sorbing area. It is thus found that a chaotic (hy-
perchaotic) attractor with one (two) positive Lya-
punov exponent(s) appears when the magnitude of
a suitably-weighted second Lyapunov exponent of
a group of asynchronous periodic saddles is larger
(smaller) than that of a group of asynchronous pe-
riodic repellers. Bifurcation mechanisms for the ap-
pearance of asynchronous unstable periodic orbits in-
side the absorbing area are also discussed in detail.
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