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Mechanism for the intermittent route to strange nonchaotic attractors
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Intermittent strange nonchaotic attractors~SNAs! appear typically in quasiperiodically forced period-
doubling systems. As a representative model, we consider the quasiperiodically forced logistic map and inves-
tigate the mechanism for the intermittent route to SNAs using rational approximations to the quasiperiodic
forcing. It is found that a smooth torus transforms into an intermittent SNA via a phase-dependent saddle-node
bifurcation when it collides with a new type of ‘‘ring-shaped’’ unstable set.
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I. INTRODUCTION

Recently, much attention has been paid to the study
quasiperiodically forced systems because they generic
can have strange nonchaotic attractors~SNAs! @1#. SNAs
were first described by Grebogiet al. @2# and have been ex
tensively investigated both numerically@3–16# and experi-
mentally @17#. SNAs exhibit properties of regular as well a
chaotic attractors. Like regular attractors, their dynamics
nonchaotic in the sense that they do not have a pos
Lyapunov exponent; such as typical chaotic attractors, t
exhibit a fractal phase space structure. Furthermore, S
are related to the Anderson localization in the Schro¨dinger
equation with a spatially quasiperiodic potential@18#, and
they may have a practical application in secure commun
tion @19#. Therefore, dynamical transitions in quasiperio
cally forced systems have become a topic of considera
current interest. However, the mechanisms of their app
ance, as a system parameter is varied, are much less
than those of unforced or periodically forced systems.

Here, we are interested in the dynamical transition
SNAs accompanied by intermittent behavior, as reported
Ref. @12#. As a parameter passes a threshold value, a sm
torus abruptly transforms into an intermittent SNA. Near t
transition point, the intermittent dynamics on the SNA w
characterized in terms of the average interburst time and
Lyapunov exponent. This route to an intermittent SNA
quite general and has been observed in a number of qu
eriodically forced period-doubling maps and flows~e.g., see
Refs. @13,14#!. It has been suggested@15# that the observed
intermittent behavior results through an interaction with
unstable orbit. However, in the previous work, such an
stable orbit was not located, and thus the bifurcation mec
nism for the intermittent transition remains unclear.

This paper is organized as follows. In Sec. II, we inves
gate the underlying mechanism for the intermittent transit
in the quasiperiodically forced logistic map which we rega
as a representative model for quasiperiodically forc
period-doubling systems. Using rational approximatio
~RAs! to the quasiperiodic forcing, we observe a new type
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invariant unstable set, which will be referred to as a ‘‘rin
shaped’’ unstable set in accordance with its geometry. W
a smooth torus~corresponding to an ordinary quasiperiod
attractor! collides with this ring-shaped unstable set, a tra
sition to an intermittent SNA is found to occur through
‘‘phase-dependent saddle-node’’ bifurcation. In a future p
per @20#, it will be shown that other dynamical transition
such as interior, boundary, and band-merging crises may
occur through an interaction with the ring-shaped unsta
set. Consequently, the ring-shaped unstable sets play a
tral role for these typical dynamical transitions. We also n
that these kinds of dynamical transitions seem to be ‘‘univ
sal,’’ in the sense that they occur in typical quasiperiodica
forced period-doubling systems such as the quasiperiodic
forced Hénon map, ring map, and pendulum@20,21#. Finally,
a summary is given in Sec. III.

II. INTERMITTENT TRANSITION TO STRANGE
NONCHAOTIC ATTRACTORS

We investigate the mechanism for the intermittent route
SNAs in the quasiperiodically forced logistic mapM @5#:

M :H xn115~a1« cos 2pun!xn~12xn!

un115un1v ~mod 1!,
~1!

where xP@0,1#, uPS1, a is the nonlinearity parameter o
the logistic map, andv and « represent the frequency an
amplitude of the quasiperiodic forcing, respectively. We
the frequency to be the reciprocal of the golden meanv
5(A521)/2. The intermittent transition is then investigate
using RAs. For the inverse golden mean, its rational appro
mants are given by the ratios of the Fibonacci numbers,vk
5Fk21 /Fk , where the sequence of$Fk% satisfies Fk11
5Fk1Fk21 with F050 andF151. Instead of the quasip
eriodically forced system, we study an infinite sequence
periodically forced systems with rational driving frequenci
vk . We assume that the properties of the original systemM
may be obtained by taking the quasiperiodic limitk→`.
Using this technique, a transition from a smooth torus to
intermittent SNA is found to occur through a collision with
new type of ring-shaped unstable set.
©2003 The American Physical Society03-1
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The quasiperiodically forced logistic mapM is noninvert-
ible because its Jacobian determinant becomes zero alon
critical curve,L05$x50.5,uP@0,1)%. Critical curves of rank
k, Lk(k51,2, . . . ), arethen given by the images ofL0, @i.e.,
Lk5Mk(L0)]. Segments of these critical curves can be us
to define a bounded trapping region of the phase sp
called an ‘‘absorbing area,’’ inside which, upon entering, t
jectories are henceforth confined@22#. It is found that the
newly born intermittent SNA fills the absorbing area. Hen
the critical curves determine the global structure of the SN

Figure 1~a! shows a phase diagram in thea-« plane. Each
phase is characterized by the Lyapunov exponentsx in thex
direction as well as the phase sensitivity exponentd. The
exponentd measures the sensitivity with respect to the ph
of the quasiperiodic forcing, and was introduced in Ref.@6#
to characterize the strangeness of an attractor of a quasi
odically driven system. A smooth torus that has a nega
Lyapunov exponent without phase sensitivity (d50) exists
in the region denoted byT and shown in light gray. Upon
crossing the solid line, the smooth torus becomes unst
and bifurcates to a smooth doubled torus in the region

FIG. 1. ~a! Phase diagram in thea-« plane. Regular, chaotic
SNA, and divergence regimes are shown in light gray, black, g
~or dark gray!, and white, respectively. To show the region of ex
tence ~gray! of the intermittent SNA occurring betweenT ~light
gray! and the chaotic attractor region~black!, a small box near
(a,«)5@3.38,«* (50.584 726 781)# is magnified. Through an inter
action with the ring-shaped unstable set born when passing
dashed line, typical dynamical transitions such as the intermitte
~route a) and the interior~routesb and c; the dotted line is an
interior crisis line! and boundary~routesd ande) crises may occur.
Here, the torus and the doubled torus are denoted byT and 2T and
the solid line represents a torus-doubling bifurcation curve wh
terminal point is marked with the cross.~b! Smooth torus inside an
absorbing area with boundary formed by segments of the crit
curvesLk (k51, . . . ,5) ~the dots indicate where these segme
connect! for a53.38 and«50.5847.~c! SNA filling the absorbing
area fora53.38 and«50.584 75. For other details, see the text
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noted by 2T. Chaotic attractors with positive Lyapunov ex
ponents exist in the region shown in black. Between th
regular and chaotic regions, SNAs that have nega
Lyapunov exponents with high phase sensitivity (d.0) exist
in the regions shown in gray and dark gray. Consistent w
their positive phase sensitivity exponentd, these SNAs are
observed to have a fractal structure@6#. Here, we restrict our
considerations only to the intermittent SNAs that exist in t
thin gray region@e.g., see a magnified part in Fig. 1~a!#. ~In
the dark-gray region, nonintermittent SNAs, born throu
other mechanisms, such as gradual fractalization@10# and
torus collision@5#, exist.! This phase diagram is typical fo
quasiperiodically forced period-doubling systems@12–
16,20,21#, and its main interesting feature is the existence
the ‘‘tongue’’ of quasiperiodic motion that penetrates into t
chaotic region and separates it into upper and lower pa
We also note that this tongue lies near the terminal po
~denoted by the cross! of the torus-doubling bifurcation
curve. When crossing the upper boundary of the tongue
smooth torus transforms into an intermittent SNA that exi
in the thin gray region. Hereafter, this intermittent route
SNAs will be referred to as routea @see Fig. 1~a!#.

As an example, we consider the casea53.38. Figure 1~b!
shows a smooth torus withsx520.059 for«50.584 7 in-
side an absorbing area whose boundary is formed by
ments of the critical curvesLk (k51, . . . ,5) ~the dots indi-
cate where these segments connect!. We also note that the
smooth unstable torusx50 and its first preimagex51 form
the basin boundary of the smooth torus in theu-x plane.
However, as « passes a threshold value«*
(50.584 726 781), a transition to an intermittent SNA o
curs. As shown in Fig. 1~c! for «50.584 75, the newly-born
intermittent SNA withsx520.012 andd519.5 appears to
fill the absorbing area, and its typical trajectory spends m
of its time near the former torus with sporadic large bur
away from it. This intermittent transition may be expected
have occurred through the collision of the smooth attract
torus with an unstable orbit. However, the smooth unsta
torus x50 cannot interact with the smooth stable torus b
cause it lies outside the absorbing area. Hence, we se
inside the absorbing area for an unstable orbit that mi
collide with the smooth stable torus.

Using RAs we find a new type of ring-shaped unstable
that causes the intermittent transition through a collision w
the smooth torus. When passing the dashed curve in
1~a!, such a ring-shaped unstable set appears via a ph
dependent saddle-node bifurcation. This bifurcation has
counterpart in the unforced case.~The dashed line is numeri
cally obtained for a sufficiently large levelk510 of the
RAs.! For each RA of levelk, a periodically forced logistic
map with rational driving frequencyvk has a periodic or a
chaotic attractor that depends on the initial phaseu0 of the
external forcing. Then the union of all attractors for differe
u0 gives thekth approximation to the attractor in the quas
periodically forced system. As an example, consider the
of low level k56. As shown in Fig. 2~a! for a53.246 and
«50.446, the RA to the smooth torus~denoted by a black
line!, consisting of stable orbits with periodF6 (58), exists
inside an absorbing area bounded by segments of the cri
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MECHANISM FOR THE INTERMITTENT ROUTE TO . . . PHYSICAL REVIEW E67, 056203 ~2003!
curvesLk (k51, . . . ,4). Note also that a ring-shaped un
stable set, born via a phase-dependent saddle-node bif
tion and composed of eight small rings, lies inside the
sorbing area. At first, each ring consists of the stable~shown
in black! and unstable~shown in gray! orbits with forcing
periodF6 (58) @see the inset in Fig. 2~a!#. However, as the
parameters increase such rings evolve, as shown in Fig.~b!
for a53.26 and«50.46. For fixed values ofa and «, the
phaseu may be regarded as a ‘‘bifurcation parameter.’’ Asu
changes, a chaotic attractor appears through an infinite
quence of period-doubling bifurcations of stable periodic
bits in each ring, and then it disappears through a collis
with the unstableF6-periodic orbit @see the inset in Fig
2~b!#. Thus, the attracting part~shown in black! of each ring
consists of the union of the originally stableF6-periodic at-
tractor and the higher 2nF6-periodic (n51,2, . . . ) andcha-
otic attractors born through the period-doubling process.
the other hand, the unstable part~shown in gray! of each ring
is composed of the union of the originally unstab
F6-periodic orbit@e.g., the lower gray line in the inset in Fig
2~b!# born via a saddle-node bifurcation and the destabili
F6-periodic orbit@e.g., the upper gray line in the inset in Fi
2~b!# born through a period doubling bifurcation.~As will be
seen below, only the originally unstableF6-periodic orbit
may interact with the stableF6-periodic orbit in the RA to
the smooth torus through a saddle-node bifurcation.! With
further increase in the parameters, both the size and

FIG. 2. Smooth torus and ring-shaped unstable set in the R
level 6 for ~a! a53.246 and«50.446, ~b! a53.26 and«50.46,
and ~c! a53.326 and«50.526. ~d! Smooth torus and ring-shape
unstable set in the RA of level 8 fora53.326 and«50.526. Both
the smooth torus~denoted by a black line! and the ring-shaped
unstable set~composed of rings! exist inside the absorbing are
with boundary formed by portions of the critical curvesLk (k
51, . . . ,4)~the dots indicate where these portions connect!. For the
RA of levelk, each ring is composed of the attracting part~shown in
black! and the unstable part~shown in gray and consisting of un
stableFk-periodic orbits!. As the levelk increases, the unstable pa
becomes dominant, since the attracting part becomes neglig
small. For more details, see the text.
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shape of the rings change, and for sufficiently large para
eters, each ring consists of a large unstable part~shown in
gray! and a small attracting part~shown in black!, as shown
in Fig. 2~c! for a53.326 and«50.526. For the same param
eter values as in Fig. 2~c!, we increase the level of the RA t
k58. Then the number of rings (5336) increases signifi-
cantly, and the unstable part@shown in gray and consisting o
unstable orbits with periodF8 (521)] becomes dominan
because the attached attracting part~shown in black! be-
comes negligibly small@see Fig. 2~d!#. In this way, as the
level k increases, the ring-shaped unstable set consists
larger number of rings with a smaller attracting part~i.e., as
the level k is increased, the unstable part of each ring b
comes more and more dominant!. Hence, it is conjectured
that, in the quasiperiodic limit, these ring-shaped unsta
sets might form a complicated invariant unstable set co
posed of only unstable orbits.

We now use RAs to explain the mechanism for the int
mittent transition occurring in Figs. 1~b! and 1~c! for a
53.38. Figures 3~a! and 3~b! show that, inside the absorbin
area, the ring-shaped unstable set~shown in gray! lies very
close to the smooth torus~shown in black! for «50.586 in
the RA of level k58. As « passes a threshold value«8
(50.586 366), a phase-dependent saddle-node bifurca
occurs through the collision of the smooth torus and the ri
shaped unstable set. As a result ‘‘gaps,’’ where no orbits w
period F8 (521) exist, are formed. A magnified gap
shown in Fig. 3~c! for «50.5864. Note that this gap is filled

of

ly

FIG. 3. ~a! Smooth torus and ring-shaped unstable set in the
of level 8 (F8521) for a53.38 and«50.586. The ring-shaped
unstable set~shown in gray! lies very close to the smooth toru
~denoted by a black line! inside the absorbing area with bounda
formed by segments of the critical curvesLk (k51, . . . ,5)~the dots
indicate where these segments connect!. A magnified view near
(uF8 ,x)5(0.61,0.698) is given in~b!. ~c! and ~d!. The eighth RA
to the intermittent SNA fora53.38 and«50.586 4. The RA to the
SNA is composed of the union of the periodic component and
intermittent chaotic component, where the latter occupies the
gaps inu and is vertically bounded by portions of the critical curv
Lk (k51, . . . ,5) @a magnified gap nearuF850.61 is shown in~c!#.
For more details, see the text.
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KIM, LIM, AND OTT PHYSICAL REVIEW E 67, 056203 ~2003!
by intermittent chaotic attractors together with orbits w
periods higher thanF8 embedded in very small windows. A
shown in Fig. 3~d!, the RA to the whole attractor consists
the union of the periodic component and the intermitt
chaotic component, where the latter occupies the 21 gap
u and is vertically bounded by segments of the critical cur
Lk (k51, . . . ,5). However, the periodic component dom
nates: the average Lyapunov exponent (^sx&520.09) is
negative, wherê•••& denotes the average over the wholeu.
We note that Fig. 3~d! resembles Fig. 1~c!, although the level
k58 is low. Increasing the level tok515, we find that the
threshold value«k at which the phase-dependent saddle-no
bifurcation occurs converges to the quasiperiodic limit«*
(50.584 726 781) in an algebraic manner,uD«ku;Fk

2a ,
whereD«k5«k2«* and a.2.2. In the quasiperiodic limit
k→`, the RA to the attractor has a dense set of gaps tha
filled by intermittent chaotic attractors and bounded by p
tions of the critical curves. Thus, an intermittent SNA, co
taining the ring-shaped unstable set and filling the absorb
area, appears, as shown in Fig. 1~c!.

In addition to the transition to an intermittent SNA, w
also find that as« passes another threshold value«c
(50.5848), the SNA transforms into a chaotic attractor w
a positive Lyapunov exponent. Using the RA, this transit
to chaos may be explained. For each RA to the attractor
angle averaged Lyapunov exponent^sx& is given by the sum
of the ‘‘weighted’’ Lyapunov exponents of its periodic an
chaotic components,Lp and Lc , ~i.e., ^sx&5Lp1Lc),
whereLp(c)[M p(c)^sx&p(c) , andM p(c) and ^sp(c)& are the
Lebesgue measure inu and average Lyapunov exponent
the periodic~chaotic! component, respectively. After passin
a threshold value where the magnitude ofLp and Lc are
balanced, the chaotic component becomes dominant,
hence a chaotic attractor appears.
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III. SUMMARY

Using the RAs we have investigated the mechanism
the intermittent route to SNAs in the quasiperiodically forc
logistic map. It has been found that when a smooth to
makes a collision with a new type of ring-shaped unsta
set, a transition to an intermittent SNA occurs via a pha
dependent saddle-node bifurcation. In a future paper@20#, it
will be shown that other typical transitions such as inter
@routesb andc in Fig. 1~a!# and boundary@routesd ande in
Fig. 1~a!# crises may also occur near the main tong
through an interaction with the ring-shaped unstable set@20#.
Furthermore, as« decreases toward zero, similar tongu
appear successively near the terminal points of the hig
order torus-doubling bifurcations, and band-merging cri
may also occur through a collision with the ring-shaped u
stable set@20#. Consequently, ring-shaped unstable sets p
a central role for dynamical transitions occurring near
tongues. Finally, we note that these kinds of dynamical tr
sitions seem to be ‘‘universal,’’ in that we observe that th
occur in typical quasiperiodically forced period-doublin
systems of different nature, such as the quasiperiodic
forced Hénon map, ring map, and pendulum@20,21#.
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