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Mechanism for the intermittent route to strange nonchaotic attractors
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Intermittent strange nonchaotic attractqiSNAs) appear typically in quasiperiodically forced period-
doubling systems. As a representative model, we consider the quasiperiodically forced logistic map and inves-
tigate the mechanism for the intermittent route to SNAs using rational approximations to the quasiperiodic
forcing. It is found that a smooth torus transforms into an intermittent SNA via a phase-dependent saddle-node
bifurcation when it collides with a new type of “ring-shaped” unstable set.

DOI: 10.1103/PhysRevE.67.056203 PACS nunier05.45.Ac, 05.45.Df, 05.45.Pq

[. INTRODUCTION invariant unstable set, which will be referred to as a “ring-
shaped” unstable set in accordance with its geometry. When

Recently, much attention has been paid to the study of smooth torugcorresponding to an ordinary quasiperiodic
quasiperiodically forced systems because they genericallgttractoy collides with this ring-shaped unstable set, a tran-
can have strange nonchaotic attract@®NAs) [1]. SNAs  sition to an intermittent SNA is found to occur through a
were first described by Grebogt al.[2] and have been ex- ‘pPhase-dependent saddle-node” bifurcation. In a future pa-
tensively investigated both numericallg—16] and experi- Per[20], it will be shown that other dynamical transitions
mentally[17]. SNAs exhibit properties of regular as well as such as interior, boundary, and band-merging crises may also
chaotic attractors. Like regular attractors, their dynamics igccur through an interaction with the ring-shaped unstable
nonchaotic in the sense that they do not have a positiveet. Consequently, the ring-shaped unstable sets play a cen-
Lyapunov exponent; such as typical chaotic attractors, thefal role for these typical dynamical transitions. We also note
exhibit a fractal phase space structure. Furthermore, SNA®at these kinds of dynamical transitions seem to be “univer-
are related to the Anderson localization in the Sdimger ~ sal,” in the sense that they occur in typical quasiperiodically
equation with a spatially quasiperiodic potentjaB], and  forced period-doubling systems such as the quasiperiodically
they may have a practical application in secure communicaforced Heon map, ring map, and pendulj0,21]. Finally,
tion [19]. Therefore, dynamical transitions in quasiperiodi- & summary is given in Sec. lll.
cally forced systems have become a topic of considerable
current interest. However, the _mechgnisms of their appear- || \NTERMITTENT TRANSITION TO STRANGE
ance, as a system paramete_r is varied, are much less clear NONCHAOTIC ATTRACTORS
than those of unforced or periodically forced systems.

Here, we are interested in the dynamical transition to We investigate the mechanism for the intermittent route to
SNAs accompanied by intermittent behavior, as reported ifSNAs in the quasiperiodically forced logistic map[5]:
Ref.[12]. As a parameter passes a threshold value, a smooth
torus_abruptl_y transf(_)rms ir_lto an interm_ittent SNA. Near the Xns+1=(a+e oS 2m0,) X, (1—X)
transition point, the intermittent dynamics on the SNA was : 0 =+ d 1
characterized in terms of the average interburst time and the n+1= Oht o (mod 1),
Lyapunov exponent. This route to an intermittent SNA is
quite general and has been observed in a number of quasipherexe[0,1], 6 S, ais the nonlinearity parameter of
eriodically forced period-doubling maps and floyesg., see the logistic map, and» and e represent the frequency and
Refs.[13,14). It has been suggest¢d5] that the observed amplitude of the quasiperiodic forcing, respectively. We set
intermittent behavior results through an interaction with anthe frequency to be the reciprocal of the golden mean,
unstable orbit. However, in the previous work, such an un=(y/5—1)/2. The intermittent transition is then investigated
stable orbit was not located, and thus the bifurcation mechaising RAs. For the inverse golden mean, its rational approxi-
nism for the intermittent transition remains unclear. mants are given by the ratios of the Fibonacci numbers,

This paper is organized as follows. In Sec. Il, we investi-=F,_,/F,, where the sequence dfF,} satisfiesF.
gate the underlying mechanism for the intermittent transition=F, +F,_; with F;=0 andF;=1. Instead of the quasip-
in the quasiperiodically forced logistic map which we regarderiodically forced system, we study an infinite sequence of
as a representative model for quasiperiodically forcedoeriodically forced systems with rational driving frequencies
period-doubling systems. Using rational approximationsw,. We assume that the properties of the original systém
(RASs) to the quasiperiodic forcing, we observe a new type ofmay be obtained by taking the quasiperiodic lirkit: .

Using this technique, a transition from a smooth torus to an
intermittent SNA is found to occur through a collision with a
*Electronic address: sykim@kangwon.ac.kr- new type of ring-shaped unstable set.
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0.66 noted by ZI. Chaotic attractors with positive Lyapunov ex-
ponents exist in the region shown in black. Between these
regular and chaotic regions, SNAs that have negative
Lyapunov exponents with high phase sensitividg<0) exist
in the regions shown in gray and dark gray. Consistent with
their positive phase sensitivity exponefit these SNAs are
observed to have a fractal structlifd. Here, we restrict our
considerations only to the intermittent SNAs that exist in the
\ thin gray regione.g., see a magnified part in Figal]. (In
2.97 3.27 3.57 the dark-gray region, nonintermittent SNAs, born through
a other mechanisms, such as gradual fractalizafib®] and
torus collision[5], exist) This phase diagram is typical for
guasiperiodically forced period-doubling systenj42—
16,20,2], and its main interesting feature is the existence of
the “tongue” of quasiperiodic motion that penetrates into the
chaotic region and separates it into upper and lower parts.
We also note that this tongue lies near the terminal point
. (denoted by the crogsof the torus-doubling bifurcation
0.0 : g curve. When crossing the upper boundary of the tongue, a
smooth torus transforms into an intermittent SNA that exists
in the thin gray region. Hereafter, this intermittent route to
FIG. 1. (a) Phase diagram in tha-e plane. Regular, chaotic, gNAs will be referred to as route [see Fig. 13)].
SNA, and divergence_ regimes are shown in light gray, black, gray  Asan example, we consider the case3.38. Figure b)
(or dark gray, and white, respectively. To show the region of exis- shows a smooth torus withr,= —0.059 fore=0.5847 in-

terg;e Sn?othzf é;g;?ée;rgirgigrs;gpf q?mﬁ;zging gﬂgfi(”ﬂ;r side an absorbing area whose boundary is formed by seg-
gray a haod cgiaiack), X ments of the critical curveky (k=1, . ..,5) (the dots indi-
(a,e)=[3.38¢* (=0.584 726 781) is magnified. Through an inter- ate where these segments connedfe also note that the
action with the ring-shaped unstable set born when passing the 9 o ;

mooth unstable torus=0 and its first preimage=1 form

dashed line, typical dynamical transitions such as the intermittenc . .
(route @) and the interior(routesb and c; the dotted line is an 1€ basin boundary of the smooth torus in the plane.

interior crisis ling and boundaryroutesd ande) crises may occur. However, as & passes a threshold values™
Here, the torus and the doubled torus are denote@ agd 2r and ~ (=0.584726781), a transition to an intermittent SNA oc-
the solid line represents a torus-doubling bifurcation curve whos€Urs. As shown in Fig. (t) for e =0.584 75, the newly-born
terminal point is marked with the crosé) Smooth torus inside an  intermittent SNA witho,=—0.012 ands=19.5 appears to
absorbing area with boundary formed by segments of the criticafill the absorbing area, and its typical trajectory spends most
curvesL, (k=1,...,5) (the dots indicate where these segmentsof its time near the former torus with sporadic large bursts
connect for a=3.38 ande =0.5847.(c) SNA filling the absorbing  away from it. This intermittent transition may be expected to
area fora=3.38 ands =0.584 75. For other details, see the text. have occurred through the collision of the smooth attracting
torus with an unstable orbit. However, the smooth unstable
The quasiperiodically forced logistic méy is noninvert-  torusx=0 cannot interact with the smooth stable torus be-
ible because its Jacobian determinant becomes zero along thause it lies outside the absorbing area. Hence, we search
critical curve,Ly={x=0.5,0€[0,1)}. Critical curves of rank inside the absorbing area for an unstable orbit that might
k, Ly(k=1,2,...), arehen given by the images &f,, [i.e.,  collide with the smooth stable torus.
L,=MX(Lo)]. Segments of these critical curves can be used Using RAs we find a new type of ring-shaped unstable set
to define a bounded trapping region of the phase spacé#hat causes the intermittent transition through a collision with
called an “absorbing area,” inside which, upon entering, tra-the smooth torus. When passing the dashed curve in Fig.
jectories are henceforth confingd2). It is found that the 1(a), such a ring-shaped unstable set appears via a phase-
newly born intermittent SNA fills the absorbing area. Hence ,dependent saddle-node bifurcation. This bifurcation has no
the critical curves determine the global structure of the SNAcounterpart in the unforced cas&he dashed line is numeri-
Figure Xa) shows a phase diagram in thes plane. Each cally obtained for a sufficiently large levéd=10 of the
phase is characterized by the Lyapunov expomgrin thex  RAs.) For each RA of levek, a periodically forced logistic
direction as well as the phase sensitivity exponénfThe  map with rational driving frequency, has a periodic or a
exponents measures the sensitivity with respect to the phasehaotic attractor that depends on the initial phégef the
of the quasiperiodic forcing, and was introduced in R6f.  external forcing. Then the union of all attractors for different
to characterize the strangeness of an attractor of a quasipe#iy gives thekth approximation to the attractor in the quasi-
odically driven system. A smooth torus that has a negativgeriodically forced system. As an example, consider the RA
Lyapunov exponent without phase sensitiviig=0) exists  of low level k=6. As shown in Fig. &) for a=3.246 and
in the region denoted by and shown in light gray. Upon ¢=0.446, the RA to the smooth tordenoted by a black
crossing the solid line, the smooth torus becomes unstablie), consisting of stable orbits with peridey (=8), exists
and bifurcates to a smooth doubled torus in the region deinside an absorbing area bounded by segments of the critical
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FIG. 3. (a) Smooth torus and ring-shaped unstable set in the RA

FIG. 2. Smooth torus and ring-shaped unstable set in the RA off |evel 8 (Fy=21) for a=3.38 ande=0.586. The ring-shaped
level 6 for (a) a=3.246 ands =0.446, (b) a=3.26 ande=0.46,  ynstable setshown in gray lies very close to the smooth torus
and(c) a=3.326 ands =0.526. (d) Smooth torus and ring-shaped (genoted by a black linenside the absorbing area with boundary
unstable set in the RA of level 8 far=3.326 ande=0.526. Both  formed by segments of the critical curvies(k=1, . . . ,5)(the dots
the smooth torugdenoted by a black lineand the ring-shaped jngicate where these segments conheét magnified view near
unstable sefcomposed of ringsexist inside the absorbing area (gF, x)=(0.61,0.698) is given irib). (c) and (d). The eighth RA
with boundary formed by portions of the critical curveg (K to the intermittent SNA fom=3.38 ands =0.586 4. The RA to the
=1,...,4)(the dots indicate where these portions connéarthe  gNA is composed of the union of the periodic component and the
RAof levelk, each ring is composed of the attracting fiattown in - intermittent chaotic component, where the latter occupies the 21
black and the unstable pafshown in gray and consisting of un- gaps in and is vertically bounded by portions of the critical curves
stableF-periodic orbit3. As the levek increases, the unstable part | (k=1, ... 5)[a magnified gap neatFg=0.61 is shown ir(c)].
becomes dominant, since the attracting part becomes negligiblgor more details, see the text.
small. For more details, see the text.

shape of the rings change, and for sufficiently large param-
curvesLy (k=1,...,4). Note also that a ring-shaped un- eters, each ring consists of a large unstable srown in
stable set, born via a phase-dependent saddle-node bifuragray) and a small attracting patshown in black, as shown
tion and composed of eight small rings, lies inside the abin Fig. 2(c) for a=3.326 and:=0.526. For the same param-
sorbing area. At first, each ring consists of the stébl®wn  eter values as in Fig.(2), we increase the level of the RA to
in black and unstablgshown in gray orbits with forcing k=8. Then the number of rings<(336) increases signifi-
periodFg (=8) [see the inset in Fig.(2)]. However, as the cantly, and the unstable pashown in gray and consisting of
parameters increase such rings evolve, as shown in Y. 2 unstable orbits with periodFg (=21)] becomes dominant
for a=3.26 ande =0.46. For fixed values of ande, the  because the attached attracting patiown in black be-
phased may be regarded as a “bifurcation parameter.”&s comes negligibly smalfsee Fig. 2d)]. In this way, as the
changes, a chaotic attractor appears through an infinite séevel k increases, the ring-shaped unstable set consists of a
guence of period-doubling bifurcations of stable periodic or-larger number of rings with a smaller attracting pde., as
bits in each ring, and then it disappears through a collisiorihe levelk is increased, the unstable part of each ring be-
with the unstableFg-periodic orbit [see the inset in Fig. comes more and more dominanHence, it is conjectured
2(b)]. Thus, the attracting patshown in black of each ring that, in the quasiperiodic limit, these ring-shaped unstable
consists of the union of the originally stalifg-periodic at- sets might form a complicated invariant unstable set com-
tractor and the higher"F4-periodic (h=1,2,...) andcha-  posed of only unstable orbits.
otic attractors born through the period-doubling process. On We now use RAs to explain the mechanism for the inter-
the other hand, the unstable p&hown in gray of each ring  mittent transition occurring in Figs. () and Xc) for a
is composed of the union of the originally unstable =3.38. Figures &) and 3b) show that, inside the absorbing
F¢-periodic orbit[e.g., the lower gray line in the inset in Fig. area, the ring-shaped unstable &#town in gray lies very
2(b)] born via a saddle-node bifurcation and the destabilizeatlose to the smooth torushown in black for £=0.586 in
F¢-periodic orbit[e.g., the upper gray line in the inset in Fig. the RA of levelk=8. As ¢ passes a threshold valug
2(b)] born through a period doubling bifurcatiof®s willbe  (=0.586 366), a phase-dependent saddle-node bifurcation
seen below, only the originally unstabkes-periodic orbit  occurs through the collision of the smooth torus and the ring-
may interact with the stablEg-periodic orbit in the RA to  shaped unstable set. As a result “gaps,” where no orbits with
the smooth torus through a saddle-node bifurcatiovith period Fg (=21) exist, are formed. A magnified gap is
further increase in the parameters, both the size and thehown in Fig. 3c) for e =0.5864. Note that this gap is filled
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by intermittent chaotic attractors together with orbits with . SUMMARY

periods higher thakg embedded in very small windows. As

shown in Fig. 8d), the RA to the whole attractor consists of  Using the RAs we have investigated the mechanism for
the union of the periodic component and the intermittenthe intermittent route to SNAs in the quasiperiodically forced
chaotic component, where the latter occupies the 21 gaps iagistic map. It has been found that when a smooth torus
¢ and is vertically bounded by segments of the critical curvesnakes a collision with a new type of ring-shaped unstable
Lk (k=1,...,5). However, the periodic component domi- set, a transition to an intermittent SNA occurs via a phase-
nates: the average Lyapunov exponefirg=—0.09) is  dependent saddle-node bifurcation. In a future p&pe, it
negative, wherg- - -) denotes the average over the whéle || pe shown that other typical transitions such as interior
We note that Fig. @) resembles Fig. (t), although the level [routesb andc in Fig. 1(a)] and boundaryroutesd ande in
k=8 is low. Increasing the level tk=15, we find that the Fig. 1(a)] crises may also occur near the main tongue
threshold value, at which the phase-dependent saddle—nodehrough an interaction with the ring-shaped unstablé 2@t
bifurcation occurs converges to the quasiperiodic liefit ¢\, ipermore, as: decreases toward zero, similar tongues
(=0.584726 781)* in an algebraic mann¢fe|~Fi . annear successively near the terminal points of the higher-
whereAe=e—e* anda=2.2. In the quasiperiodic limit 4o, torus-doubling bifurcations, and band-merging crises

k=0, the RA to the attractor has a dense set of gaps that al'r‘ﬁay also occur through a collision with the ring-shaped un-

filled by intermittent chaotic attractors and bounded by por- N
tions of the critical curves. Thus, an intermittent SNA, con-Stable sef20]. Consequently, ring-shaped unstable sets play
taining the ring-shaped unstable set and filling the absorbin
area, appears, as shown in Figc)1

a central role for dynamical transitions occurring near the

gongues. Finally, we note that these kinds of dynamical tran-
In addition to the transition to an intermittent SNA, we sitions seem to be “universal,” in that we observe that they

also find that ase passes another threshold valug occur in typieal quasiperiodically forced period—dqub!ing

(=0.5848), the SNA transforms into a chaotic attractor withSyStems of different nature, such as the quasiperiodically

a positive Lyapunov exponent. Using the RA, this transitionforced Heon map, ring map, and pendulyi20,21].

to chaos may be explained. For each RA to the attractor, its

angle averaged Lyapunov exponéat) is given by the sum

of the “weighted” Lyapunov exponents of its periodic and ACKNOWLEDGMENTS
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