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We study the effect of network structure on the stochastic spiking coherence (i.e., collective
coherence emerging via cooperation of noise-induced neural spikings) in an inhibitory population
of subthreshold neurons (which cannot fire spontaneously without noise). Previously, stochastic
spiking coherence was found to occur for the case of global coupling. However, “sparseness” of a
real neural network is well known. Hence, we investigate the effect of sparse random connectivity
on the stochastic spiking coherence by varying the average number of synaptic inputs per neuron
Msyn. From our numerical results, stochastic spiking coherence seems to emerge if Msyn is larger
than a threshold M∗

syn whose dependence on the network size N seems to be quite weak. This
stochastic spiking coherence may be well visualized in a raster plot of neural spikes. For a coherent
case, partially-occupied “stripes” (composed of spikes and indicating collective coherence) appear.
As Msyn is decreased from N − 1 (globally-coupled case), the average occupation degree of spikes
increases very slowly. On the other hand, the average pacing degree between spikes (representing
the precision of spike timing) decreases slowly, but near M∗

syn its decrease becomes very rapid.
This decrease in the pacing degree can also be well seen through merging of multiple peaks in
the interspike interval histograms. Due to the effect of the pacing degree, the degree of stochastic
spiking coherence decreases abruptly near the threshold M∗

syn.
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I. INTRODUCTION

Recently, much attention has been paid to coherent
brain rhythms [1,2]. Coherent oscillations in neural sys-
tems may be used for efficient sensory processing (e.g.,
visual binding) [3]. This kind of neural coherence is also
correlated with pathological rhythms associated with
neural diseases (e.g., epileptic seizures and tremors in
Parkinson’s disease) [4]. Here, we are interested in these
coherent neural oscillations.

Neural circuits in major parts of the brain are com-
posed of a few types of excitatory principal cells and
diverse types of inhibitory interneurons. Interneuron di-
versity increases the computational power of principal
cells [1,5]. The mechanisms of coherent brain rhythms
have been much investigated, and three types of coher-
ence mechanisms for chemical synapses have been found
[2,6]. Historically, the first coherence mechanism is just
recurrent excitation between principal cells [7]. How-
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ever, if the decay time of the synaptic interaction is
sufficiently long, mutual inhibition between interneurons
(rather than excitation) may synchronize individual neu-
ral firings [8, 9]. By giving a coherent oscillatory out-
put to the principal cells, interneuronal networks play
the role of backbones (i.e., pacemakers) for many brain
rhythms such as the thalamocortical spindle rhythms [10,
11] and the fast gamma rhythms in the hippocampus and
the neocortex [12–15]. If the feedback between the exci-
tatory and the inhibitory populations is strong enough,
neural coherence occurs via the “cross-talk” between the
two populations [14–17].

Most previous works exploring the mechanisms of neu-
ral coherence by chemical synapses were done in neu-
ral systems consisting of spontaneously firing (i.e., self-
oscillating) suprathreshold neurons. For this case, neural
coherence occurs through cooperation of regular firings
of suprathreshold neurons. In contrast, neural systems
consisting of subthreshold neurons have received little at-
tention in the exploration of coherence mechanism. Un-
like the suprathreshold case, a subthreshold neuron can-
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not fire spontaneously without noise. Recently, stochas-
tic spiking coherence (i.e., collective coherence emerging
via cooperation of noise-induced spikings) was observed
in a population of pulse-coupled excitatory subthresh-
old neurons [18,19]. This kind of work may be regarded
as a “subthreshold version” of neural coherence through
mutual excitation.

In this paper, we are concerned with the subthreshold
version of neural coherence via mutual inhibition. For
the case of global coupling where each neuron is cou-
pled to all the other ones with equal strength, stochastic
spiking coherence was found to occur in an inhibitory
population of subthreshold neurons [20]. For this case, a
fast collective small-amplitude oscillation emerges from
sparsely synchronized neurons discharging at a lower fre-
quency. These sparsely synchronized oscillations have
been intensively investigated in other types of neural net-
works [21], and they are believed to be associated with
fast cortical rhythms with irregular and sparse neural dis-
charges [2]. However, in a real brain, each neuron is cou-
pled to only a certain number of neurons, which is much
smaller than the total number of neurons. Due to the
“sparseness” of the network architecture, the stochastic
spiking coherence (seen in the globally-coupled case) is
expected to be reduced or destroyed. Models often as-
sume that the coupling between neurons is random [17,
22–24]. In Sec. II, we investigate the effect of sparse
random connectivity on the stochastic spiking coherence
by varying the average number of synaptic inputs per
neuron Msyn in an inhibitory ensemble of N randomly
coupled subthreshold ML neurons. The emergence of the
stochastic spiking coherence seems to persist only if Msyn

is larger than a threshold M∗
syn whose dependence on the

network size N seems to be quite weak. We character-
ize the stochastic spiking coherence (seen well in a raster
plot of neural spikes) in terms of a statistical-mechanical
spike-based coherence measure Ms (introduced by con-
sidering the occupation pattern and the pacing pattern
of spikes in the stripes in the raster plot [20]). As Msyn is
decreased from N−1 (corresponding to the case of global
coupling), the average pacing degree between spikes (de-
noting the precision of spike timing) decreases slowly, but
near M∗

syn, its value drops very rapidly while the average
occupation degree of spikes increases very slowly over the
whole coherent region. The decrease in the pacing de-
gree can also be well seen through merging of multiple
peaks in the interspike interval (ISI) histograms. Due to
the effect of the pacing degree, the degree of stochastic
spiking coherence decreases abruptly near the threshold
M∗

syn. In Sec. III, a summary is given.

II. EFFECT OF SPARSE RANDOM
CONNECTIVITY ON STOCHASTIC

SPIKING COHERENCE

We consider a large inhibitory population of N ran-
domly coupled subthreshold neurons. As an element

in our neural system, we choose the conductance-based
Morris-Lecar (ML) neuron model, originally proposed to
describe the time-evolution pattern of the membrane po-
tential for the giant muscle fibers of barnacles [25–27].
The population dynamics in this neural network is gov-
erned by the following set of differential equations:

C
dvi

dt
= −Iion,i + IDC + Dξi − Isyn,i, (1a)

dwi

dt
= φ

(w∞(vi)− wi)
τR(vi)

, (1b)

dsi

dt
= αs∞(vi)(1− si)− βsi, i = 1, · · · , N, (1c)

where

Iion,i = ICa,i + IK,i + IL,i (2a)
= gCam∞(vi)(vi − VCa) + gKwi(vi − VK)

+gL(vi − VL), (2b)

Isyn,i =
J

Msyn

N∑

j(6=i)

wijsj(t)(vi − Vsyn), (2c)

m∞(v) = 0.5 [1 + tanh {(v − V1)/V2}] , (2d)
w∞(v) = 0.5 [1 + tanh {(v − V3)/V4}] , (2e)
τR(v) = 1/ cosh {(v − V3)/(2V4)} , (2f)

s∞(vi) = 1/[1 + e−(vi−v∗)/δ]. (2g)

Here, the state of the ith neuron at a time t (measured in
units of ms) is characterized by three state variables: the
membrane potential vi (measured in units of mV), the
slow recovery variable wi representing the activation of
the K+ current (i.e., the fraction of open K+ channels),
and the synaptic gate variable si denoting the fraction
of open synaptic ion channels. In Eq. (1a), C represents
the capacitance of the membrane of each neuron, and the
time evolution of vi is governed by four kinds of source
currents.

The total ionic current Iion,i of the ith neuron con-
sists of the calcium current ICa,i, the potassium current
IK,i, and the leakage current IL,i. Each ionic current
obeys Ohm’s law. The constants gCa, gK , and gL are
the maximum conductances for the ion and the leakage
channels, and the constants VCa, VK , and VL are the
reversal potentials at which each current is balanced by
the ionic concentration difference across the membrane.
Since the calcium current ICa,i changes much faster than
the potassium current IK,i, the gate variable mi for the
Ca2+ channel is assumed to always take its saturation
value m∞(vi). On the other hand, the activation variable
wi for the K+ channel approaches its saturation value
w∞(vi) with a relaxation time τR(vi)/φ, where τR has a
dimension of ms and φ is a (dimensionless) temperature-
like time scale factor.

Each ML neuron is also stimulated by using the com-
mon DC current IDC and an independent Gaussian white
noise ξi [see the 2nd and the 3rd terms in Eq. (1a)] sat-
isfying 〈ξi(t)〉 = 0 and 〈ξi(t) ξj(t′)〉 = δij δ(t− t′), where
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〈· · · 〉 denotes the ensemble average. The noise ξ is a
parametric one that randomly perturbs the strength of
the applied current IDC , and its intensity is controlled
by using the parameter D.

The last term in Eq. (1a) represents the synaptic cou-
pling of the network. A (postsynaptic) neuron i receives
a synaptic input from another (presynaptic) neuron j
with a connection probability Psyn (= Msyn/N), where
Msyn is the average number of synaptic inputs per neu-
ron. Isyn,i of Eq. (2c) represents such a synaptic cur-
rent injected into the ith neuron. Here, {wij} is the
connectivity matrix. wij = 1 if the neuron j is presy-
naptic to the neuron i; otherwise, wij = 0. Then, the
number of synaptic inputs to the neuron i is given by
Mi =

∑N
j(6=i) wij , with Msyn = 〈Mi〉. The coupling

strength is controlled by the parameter J , and Vsyn is
the synaptic reversal potential. We use Vsyn = −80 mV
for the inhibitory synapse. The synaptic gate variable
s obeys the 1st-order kinetics of Eq. (1c) [11,12]. Here
the normalized concentration of synaptic transmitters,
activating the synapse, is assumed to be an instanta-
neous sigmoidal function of the membrane potential with
a threshold v∗ in Eq. (2g), where we set v∗ = 0 mV and
δ = 2 mV. The transmitter release occurs only when the
neuron emits a spike (i.e., its potential v is larger than
v∗). For the inhibitory GABAergic synapse (involving
the GABAA receptors), the synaptic channel opening
rate, corresponding to the inverse of the synaptic rise
time τr, is α = 10 ms−1, and the synaptic closing rate
β, which is the inverse of the synaptic decay time τd,
is β = 0.1 ms−1 [17]. Hence, Isyn rises fast and decays
slowly.

The ML neuron may exhibit either type-I or type-
II excitability, depending on the system parameters
[26]. Throughout this paper, we consider the case of
type-II excitability where gCa = 4.4 mS/cm2, gK =
8 mS/cm2, gL = 2 mS/cm2, VCa = 120 mV, VK =
−84 mV, VL = −60 mV, C = 20 µF/cm2, φ = 0.04,
V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, and V4 =
30 mV. As IDC passes a threshold in the absence
of noise, each single type-II ML neuron begins to fire
with a nonzero frequency that is relatively insensitive
to the change in IDC [28,29]. Numerical integration of
Eq. (1) is done using the Heun method [30] (with the
time step ∆t = 0.01 ms), which is similar to the second-
order Runge-Kutta method, and data for (vi, wi, si)
(i = 1, . . . , N) are obtained with the sampling time in-
terval ∆t = 1 ms. For each realization of the stochas-
tic process in Eq. (1), we choose a random initial point
[vi(0), wi(0), si(0)] for the ith (i = 1, . . . , N) neuron with
uniform probability in the range of vi(0) ∈ (−70, 50),
wi(0) ∈ (0.0, 0.6), and si(0) ∈ (0.0, 1.0).

We consider an inhibitory population of N randomly
coupled subthreshold ML neurons for IDC = 87 µA/cm2

and D = 20 µA ·ms1/2/cm2 and set the coupling
strength as J = 3 mS/cm2. (Hereafter, for convenience,
we omit the dimensions of IDC , D, and J .) In a real

Fig. 1. (a) Plots of the order parameter versus the connec-
tion probability Psyn (= Msyn/N) and (b) plots of the order
parameter versus the average number of synaptic inputs Msyn

per neuron in an inhibitory population of N randomly cou-
pled subthreshold ML neurons for IDC = 87 µA/cm2, D = 20

µA ·ms1/2/cm2, and J = 3 mS/cm2.

brain, each neuron is coupled to only a certain num-
ber of neurons, which is much smaller than the total
number of neurons N . By varying the sparseness de-
gree of the network architecture, we study the effect of
the sparse random connectivity on the stochastic spiking
coherence. Emergence of collective spiking coherence in
the inhibitory population may be well described by using
the (population-averaged) global potential

VG(t) =
1
N

N∑

i=1

vi(t). (3)

In the thermodynamic limit (N →∞), a collective state
becomes coherent if ∆VG(t) (= VG(t) − VG(t)) is non-
stationary (i.e., an oscillating global potential VG ap-
pears for a coherent case), where the overbar represents
the time average. Otherwise (i.e., when ∆VG is station-
ary), it becomes incoherent. Thus, the mean square de-
viation of the global potential VG (i.e., time-averaged
fluctuations of VG),

O ≡ (VG(t)− VG(t))2, (4)

plays the role of an order parameter used for describing
the coherence-incoherence transition [31]. For the coher-
ent (incoherent) state, the order parameterO approaches
a non-zero (zero) limit value as N goes to the infinity.
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We first examine which one of the two parameters, Psyn

(i.e., the connection probability per neuron) and Msyn

(i.e., the average number of random synaptic inputs per
neuron), plays an appropriate role as a “sparseness” pa-
rameter for describing the coherent transition. For this
examination, we make plots of the order parameter ver-
sus both Psyn and Msyn. Figure 1(a) shows plots of the
order parameter versus Psyn for N = 102, 103, and 104.
We note that as N is increased 10 times, the thresh-
old value at which the order parameter begins to drop
is decreased by a factor of about 1/10. In this way,
the threshold value of Psyn for the transition depends
strongly on N ; hence, Psyn is not an appropriate sparse-
ness parameter for the coherent transition. On the other
hand, there seems to exist a threshold M∗

syn (' 45) for
the coherent transition, whose dependence on N seems
to be quite weak [see Fig. 1(b)]. For Msyn < M∗

syn, inco-
herent states exist because the order parameter O tends
to zero as N →∞. However, as Msyn passes the thresh-
old M∗

syn, coherent states appear. Hence, Msyn seems to
be an appropriate sparseness parameter. For this case,
the total number of synaptic inputs grows linearly as N
(∼N). On the other hand, if a fixed critical value P ∗syn

exists independently of N , the total number of synaptic
inputs increases very quickly (∼N2). If one compares
the two cases based on the economy of synapse connec-
tivity, it is easy to understand why the brain has evolved
by choosing the case of M∗

syn rather than P ∗syn [5].
By decreasing Msyn from N − 1 (corresponding to the

case of global coupling), we investigate the sparseness
effect on the stochastic spiking coherence (seen well in
a raster plot of neural spikes) in N (= 103) randomly
coupled inhibitory subthreshold ML neurons. For the
case of global coupling, partially-occupied “stripes” (in-
dicating collective coherence) appear in the raster plot
[see Fig. 2(a1)]; only a fraction (about 1/10) of the total
neurons fire in each stripe. A fast regularly oscillating
global potential VG emerges via cooperation of irregular
individual potentials. Local maxima of VG appear at the
centers of the stripes in the raster plot. When compared
with the individual potentials, the amplitude of VG is
much decreased while its frequency fG is much increased.
For this coherent case, individual neurons exhibit inter-
mittent spikings phase-locked to VG at random multiples
of the period of VG [e.g., see the potential v1 of the first
neuron in Fig. 2(b1)]. In addition to these coherent inter-
mittent spiking phases, coherent hopping phases (show-
ing coherent small subthreshold oscillations) appear in
most of the global cycles. After the occurrence of each
spiking, recovery from a hyperpolarized state to a rest-
ing state is made during the next global cycle. Hence,
a “preparatory” phase without spiking and hopping (for
preparation for generation of the next spike or hopping)
follows each spiking phase (see the gray parts). Stochas-
tic spike skipping (arising from stochastic phase locking)
in the individual potential may be seen well in the ISI his-
togram. Multiple peaks appear at multiples of the period
TG of the global potential VG [see Fig. 2(c1)]. However,

Fig. 2. Raster plots, the individual and the global po-
tentials, and the interspike interval (ISI) histograms in an
inhibitory population of N(= 103) randomly coupled sub-
threshold ML neurons for IDC = 87 µA/cm2, D = 20

µA ·ms1/2/cm2, and J = 3 mS/cm2. Raster plots and the
global potential VG for Msyn = (a1) 999 (global coupling),
(a2) 100, (a3) 47, (a4) 10, and (a5) 5. Individual potential
v1 of the first neuron for Msyn = (b1) 999 (global coupling),
(b2) 100, (b3) 47, (b4) 10, and (b5) 5. Vertical dashed lines
in (b1) – (b3) represent the times at which local minima of
VG appear, and the preparatory cycles are shown in gray. ISI
histograms for Msyn = (c1) 999 (global coupling), (c2) 100,
(c3) 47, (c4) 10, and (c5) 5; each ISI histogram is composed
of 5 × 104 ISIs, and the bin size for the histogram is 5 ms.
Vertical dotted lines in (c1) – (c3) denote integer multiples of
the global period TG of VG.

due to appearance of preparatory cycles, the 1st peak of
the histogram appears at 2 TG (not TG). Hence, indi-
vidual neurons fire mostly in alternate global cycles. In
this way, sparsely synchronized neurons exhibit mixed-
mode oscillations with two well-separated frequencies, a
fast subthreshold hopping frequency imposed by the col-
lective network frequency and a lower firing frequency of
individual neurons.

As shown in Fig. 2(a2), the degree of stochastic spik-
ing coherence seems to persist at least until Msyn = 100
(corresponding to about 1/10 of the value of Msyn for
the globally-coupled case). Hence, the individual poten-
tial v1 and the ISI histogram for Msyn = 100 are simi-
lar to those for the global-coupling case. However, near
the threshold M∗

syn, the stripes become more smeared,
so the degree of stochastic spiking coherence (i.e., the
amplitude of VG) decreases rapidly [e.g., see Fig. 2(a3)].
The smearing of stripes is associated with merging of
peaks in the ISI histogram, as shown in Fig. 2(c3).
For Msyn < M∗

syn, incoherent states appear [e.g., see
Figs. 2(a4) – 2(a5)]. As a result of complete merging,



-2844- Journal of the Korean Physical Society, Vol. 59, No. 4, October 2011

Fig. 3. Statistical-mechanical spike-based coherence mea-
sure in an inhibitory population of N(= 103) randomly cou-
pled subthreshold ML neurons for IDC = 87 µA/cm2, D = 20

µA ·ms1/2/cm2, and J = 3 mS/cm2. (a) Plot of the average
occupation degree 〈Oi〉 versus the average number of synaptic
inputs Msyn, (b) plot of the average pacing degree 〈Pi〉 versus
Msyn, and (c) plot of the spike-based coherence measure Ms

versus Msyn.

only a single peak appears in the ISI histogram, as shown
in Figs. 2(c4) – 2(c5). Because the average value of the
ISIs decreases, more intermittent spikings appear in v1

[e.g., see Figs. 2(b4) – 2(b5)].
We also characterize the collective coherence in terms

of a “statistical-mechanical” spike-based coherence mea-
sures. As shown in Figs. 2(a1) – 2(a5), collective coher-
ence may be well visualized in a raster plot of spikes. For
a coherent case, the raster plot is composed of partially-
occupied stripes (indicating collective coherence). To
measure the degree of the collective coherence seen in
the raster plot, a new spike-based measure Ms was in-
troduced by considering the occupation pattern and the
pacing pattern of the spikes in the stripes [20]. Particu-
larly, the pacing degree between spikes (representing the
precision of spike timing) is determined in a statistical-
mechanical way by quantifying the average contribution
of microscopic individual spikes to the global potential
VG. The spiking coherence measure Mi of the ith stripe
is defined by the product of the occupation degree Oi of
spikes (representing the density of the ith stripe) and the
pacing degree Pi of spikes (denoting the smearing of the
ith stripe):

Mi = Oi · Pi. (5)

The occupation degree Oi in the ith stripe is given by
the fraction of spiking neurons:

Oi =
N

(s)
i

N
, (6)

where N
(s)
i is the number of spiking neurons in the ith

stripe. For full occupation, Oi = 1 while for the partial
occupation, Oi < 1. The pacing degree Pi of each mi-
croscopic spike in the ith stripe can be determined in a
statistical-mechanical way by taking into consideration
its contribution to the macroscopic global potential VG.
Each global cycle of VG begins from its left minimum,
passes the central maximum, and ends at the right mini-
mum; the central maxima coincide with centers of stripes
in the raster plot [see Figs. 2(a1) – 2(a3)]. An instan-
taneous global phase Φ(t) of VG is introduced via linear
interpolation in the two successive subregions forming a
global cycle. The global phase Φ(t) between the left min-
imum (corresponding to the beginning point of the ith
global cycle) and the central maximum is given by

Φ(t) = 2π(i− 3/2) + π

(
t− t

(min)
i

t
(max)
i − t

(min)
i

)

for t
(min)
i ≤ t < t

(max)
i (i = 1, 2, 3, . . . ), (7)

and Φ(t) between the central maximum and the right
minimum (corresponding to the beginning point of the
(i + 1)th cycle) is given by

Φ(t) = 2π(i− 1) + π

(
t− t

(max)
i

t
(min)
i+1 − t

(max)
i

)

for t
(max)
i ≤ t < t

(min)
i+1 (i = 1, 2, 3, . . . ), (8)

where t
(min)
i is the beginning time of the ith global cycle

(i.e., the time at which the left minimum of VG appears
in the ith global cycle) and t

(max)
i is the time at which the

maximum of VG appears in the ith global cycle. Then,
the contribution of the kth microscopic spike in the ith
stripe occurring at the time t

(s)
k to VG is given by cos Φk,

where Φk is the global phase at the kth spiking time
[i.e., Φk ≡ Φ(t(s)k )]. A microscopic spike makes the most
constructive (in-phase) contribution to VG when the cor-
responding global phase Φk is 2πn (n = 0, 1, 2, . . . ) while
it makes the most destructive (anti-phase) contribution
to VG when Φi is 2π(n− 1/2). By averaging the contri-
butions of all microscopic spikes in the ith stripe to VG,
we obtain the pacing degree of spikes in the ith stripe:

Pi =
1
Si

Si∑

k=1

cos Φk, (9)

where Si is the total number of microscopic spikes in the
ith stripe. By averaging Mi of Eq. (5) over a sufficiently
large number Ns of stripes, we obtain the spike-based
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coherence measure Ms:

Ms =
1

Ns

Ns∑

i=1

Mi. (10)

By varying Msyn, we follow 3 × 103 stripes and mea-
sure the degree of collective spiking coherence in terms
of 〈Oi〉 (average occupation degree), 〈Pi〉 (average pac-
ing degree), and Ms for 17 values of Msyn in the co-
herent region, and the results are shown in Figs. 3(a) –
3(c). As Msyn is decreased, the average occupation de-
gree 〈Oi〉 (denoting the average density of stripes in the
raster plot) increases slowly, but its values are very small
(〈Oi〉 < 0.15); only a fraction (less than 3/20) of the total
neurons fire in each stripe [see Figs. 2(a1) – 2(a3)]. This
partial occupation results from stochastic spike skipping
of individual neurons and is seen well in the multi-peaked
ISI histograms [see Figs. 2(a1) – 2(a3)]. On the other
hand, with decreasing Msyn, the average pacing degree
〈Pi〉 decreases slowly, but near M∗

syn, its decrease be-
comes very rapid. This tendency may be understood
from the change in the structure of the ISI histograms.
As Msyn is decreased, merging of multiple peaks occurs;
hence, the average pacing degree of the stripes becomes
worse with decreasing Msyn. Consequently, the degree
of stochastic spiking coherence decreases abruptly near
the threshold M∗

syn.
Finally, we examine the dependence of M∗

syn on D and
IDC . For the globally-coupled case, coherent states ap-
pear in the range of D∗

l (' 9.4) < D < D∗
h(' 33.4) for

IDC = 87 (refer to Fig. 2(a) in Ref. 20). As D is increased
from D∗

l , the order parameter O increases abruptly at
first, showing onset of coherence, because noise stimu-
lates collective coherence between neural spikings. Then,
the values of the order parameter become nearly the
same over a large range of intermediate D, but for large
D, the order parameter decreases because noise spoils
spiking coherence. In the above, we consider a coher-
ent case of D = 20. We examine the effect of random
sparse connectivity on stochastic spiking coherence for
other values of D in the coherent region. Near D∗

l , the
occupation degree of spikes in the raster plot is low for
the case of global coupling, as shown in Fig. 4(a1) for
D = 10. As Msyn is decreased, the inhibition for each
neuron is decreased; hence, the occupation degree in-
creases (see the cases of Msyn = 200 and 30), leading
to an increase in the coherence degree (i.e., the ampli-
tude of VG increases). However, with further decrease in
Msyn, the coherence degree begins to decrease because
the pacing degree becomes worse, as shown in the case
of Msyn = 15. For this case of D = 10, M∗

syn ' 11.
As D is increased, the value of M∗

syn tends to increase;
M∗

syn ' 20 and 92 for D = 15 and 27, respectively [see
Figs. 4(b1) – 4(b5) and Figs. 4(c1) – 4(c5)]. We also
examine the dependence of M∗

syn on IDC . As the value
of IDC is decreased, not only the coherent range of D,
but also the degree of coherence is found to be decreased.
For comparison with the above case of IDC = 87, we con-

Fig. 4. Raster plots of spikes and global potentials VG

in a population of N(= 103) randomly coupled subthresh-
old ML neurons for J = 3 mS/cm2: (a1) – (a5) D = 10

µA ·ms1/2/cm2, (b1) – (b5) D = 15 µA ·ms1/2/cm2, (c1) –

(c5) D = 27 µA ·ms1/2/cm2 for IDC = 87 µA/cm2, and (d1)

– (d5) D = 20 µA ·ms1/2/cm2 IDC = 84 µA/cm2.

sider the case of IDC = 84 where coherent states exist in
a range of D∗

l (' 12.7) < D < D∗
h(' 29.6). For D = 20,

the raster plots of spikes and the global potentials VG are
shown in Figs. 4(d1) – 4(d5). For this case, the value of
M∗

syn(' 97) is larger than that (' 45) for the above case
of IDC = 87 and D = 20. Like the case of IDC = 87,
the value of M∗

syn also tends to increase with increas-
ing D in the coherent region. In this way, the value of
M∗

syn depends on both D and IDC . However, we empha-
size that just the existence of a threshold M∗

syn rather
than its specific value is important for the emergence of
stochastic spiking coherence in sparsely coupled random
networks.

III. SUMMARY

We have investigated the effect of sparse connectiv-
ity on the stochastic spiking coherence by varying Msyn

(i.e., the average number of synaptic inputs per neuron)
in an inhibitory ensemble of N randomly coupled sub-
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threshold ML neurons. Emergence of stochastic spiking
coherence seems to persist only if Msyn is larger than
a threshold value M∗

syn whose dependence on N seems
to be quite weak. This stochastic spiking coherence has
been characterized in terms of a statistical-mechanical
spike-based measure. With decreasing Msyn, the aver-
age pacing degree between spikes decreases slowly, but
near M∗

syn its value drops very rapidly while the average
occupation degree of spikes increases very slowly over
the whole coherent region. The decrease in the pacing
degree results in merging between multiple peaks in the
ISI histograms. Due to the decrease in the pacing degree,
the degree of stochastic spiking coherence (seen well in a
raster plot of spikes) decreases abruptly near the thresh-
old M∗

syn. This kind of weak inhibitory coherence, which
emerges from sparsely synchronized oscillations of sub-
threshold neurons, might be associated with fast cortical
rhythms with irregular and sparse neural discharges.
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(1996); N. Brunel and V. Hakim, Neural Comput. 11,
1621 (1999).

[24] X.-J. Wang, D. Golomb and J. Rinzel, Proc. Natl. Acad.
Sci. 92, 5577 (1995); N. Brunel, J. Comput. Neurosci. 8,
183 (2000).

[25] C. Morris and H. Lecar, Biophys. J. 35, 193 (1981).
[26] J. Rinzel and B. Ermentrout, Methods in Neural Mod-

eling: from Ions to Networks, edited by C. Koch and I.
Segev (MIT Press, Cambridge, 1998), p. 251.

[27] K. Tsumoto, H. Kitajima, T. Yoshinaga, K. Aihara and
H. Kawakami, Neurocomputing 69, 293 (2006).

[28] A. L. Hodgkin, J. Physiol. 107, 165 (1948).
[29] E. M. Izhikevich, Int. J. Chaos 10, 1171 (2000).
[30] M. S. Miguel and R. Toral, Instabilities and Nonequi-

librium Structures VI, edited by J. Martinez, R. Tie-
mann and E. Tirapegui (Kluwer Academic Publisher,
Dordrecht, 2000), p. 35.

[31] S. C. Manrubia, A. S. Mikhailov and D. H. Zanette,
Emergence of Dynamical Order (World Scientific, Sin-
gapore, 2004).


