
17

Progress of Theoretical Physics, Vol. 106, No. 1, July 2001

Universal Bicritical Behavior of Period Doublings in
Unidirectionally Coupled Oscillators

Sang-Yoon Kim,1,∗) Woochang Lim1 and Youngtae Kim2

1Department of Physics, Kangwon National University, Chunchon
Kangwon-Do 200-701, Korea

2Department of Molecular Science and Technology, Ajou University, Suwon
Kyunggi-Do 442-749, Korea

(Received March 1, 2001)

We study the bicritical behavior of period doublings in unidirectionally coupled oscillators
to confirm the universality of the bicriticality in an abstract system of two unidirectionally
coupled one-dimensional (1D) maps. A transition to hyperchaos occurs (i.e., a hyperchaotic
attractor with two positive Lyapunov exponents appears) when crossing a bicritical point
where two Feigenbaum critical lines of a period-doubling transition to chaos in the two
subsystems meet. Using both a “residue-matching” renormalization group method and a
direct numerical method, we make an analysis of the scaling behavior near the bicritical point.
It is thus found that the second response subsystem exhibits a new type of non-Feigenbaum
critical behavior, while the first drive subsystem is in the usual Feigenbaum critical state.
Note that the bicritical scaling behavior is the same as that in the unidirectionally coupled
1D maps. We thus suppose that bicriticality may be observed generally in real systems,
consisting of period-doubling subsystems with a unidirectional coupling.

§1. Introduction

Period-doubling transitions to chaos have been extensively studied in a one-
parameter family of 1D unimodal maps. As the control parameter is varied, the
1D map undergoes a period-doubling cascade, leading to chaos. Feigenbaum has
developed a renormalization group (RG) method, and discovered universal scaling
behavior near the accumulation point of such a period-doubling cascade. 1) The uni-
versality of the Feigenbaum criticality has been confirmed in a large number of real
physical systems and ordinary differential equations. 2) For example, nonlinear oscil-
lators such as the forced Duffing oscillator 3) and the Rössler oscillator 4) belong to
the Feigenbaum universality class.

Recently, great effort has been made in studies of coupled systems, consisting
of period-doubling subsystems, in an attempt to generalize the study of this type to
high-dimensional nonlinear systems. 3) - 9) Here we are interested in bicritical scaling
behavior of period doublings in unidirectionally coupled systems. These unidirec-
tionally coupled systems are usually used as models for open flow systems. 10) A
new kind of non-Feigenbaum scaling behavior has been found in an abstract system
of two unidirectionally coupled 1D maps near a bicritical point where two Feigen-
baum critical lines of a period-doubling transition to chaos in the two subsystems
meet. 7), 8) In this paper we study the bicritical scaling behavior of period doublings
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in unidirectionally coupled oscillators to confirm the universality of the bicriticality
in an abstract system of two unidirectionally coupled 1D maps.

One of the representative nonlinear oscillators that undergoes period-doubling
cascades is the forced double-well Duffing oscillator (DWDO). 11) In this paper we in-
vestigate a system consisting of two forced DWDOs with unidirectional coupling. For
this unidirectionally coupled system, the drive subsystem acts on the response sub-
system, but the response subsystem does not influence the drive subsystem. Hence
the two unidirectionally coupled DWDOs have a skew product structure. 12) For a
single forced DWDO, when the forcing amplitude A is increased, the asymmetric
periodic orbits arising from the two stable equilibrium points of the double-well
potential exhibit period-doubling cascades, leading to chaos, as in the 1D map. 1)

However, as A is increased further, reversals of period-doubling cascades occur, in
contrast to the monotone behavior of the 1D map. Hereafter, the former cascade,
creating periodic orbits, will be called the “forward cascade”, while the latter one,
destroying periodic orbits, will be called the “backward cascade”. The types of scal-
ing behavior at accumulation points of both the forward and backward cascades
are the same as those for the 1D map case. Note also that this kind of antimono-
tone behavior of the concurrent creation and destruction of periodic orbits has been
observed in many other physical systems. 13)

Here we follow the sequence of period doublings in two unidirectionally coupled
DWDOs by varying the two control parameters A and B of the two subsystems for
a fixed value of the coupling parameter C. Scaling behavior is thus investigated near
a bicritical point (Ac, Bc), where two Feigenbaum critical lines of period-doubling
transitions to chaos in the two subsystems meet. Note that this bicritical point
corresponds to the border of chaos in both subsystems. Hence, when crossing such a
bicritical point, a hyperchaotic attractor with two positive Lyapunov exponents 14)

appears; i.e., a transition to hyperchaos occurs. Varying A or B, each subsystem
in the unidirectionally coupled DWDOs may undergo forward and backward period-
doubling cascades, leading to chaos. As a result of this antimonotone behavior, four
bicritical points exist in the A-B plane, in contrast to the unidirectionally coupled
1D maps exhibiting monotone behavior. 7), 8) Employing both a RG method and a
direct numerical method, we investigate the scaling behavior near each bicritical
point, and find that the response subsystem exhibits a new kind of non-Feigenbaum
scaling behavior, while the drive subsystem is in the usual Feigenbaum critical state.
Note that this bicritical scaling behavior is the same as that in an abstract system of
two unidirectionally coupled 1D maps. 7), 8) Furthermore, to examine the universality
of such bicriticality, we also investigate another unidirectionally coupled system,
consisting of two autonomous Rössler oscillators, 15) and find the same bicritical
scaling behavior. Hence, we suppose that such bicriticality is a generic phenomenon,
occurring in many real systems consisting of period-doubling subsystems.

This paper is organized as follows. We first introduce two unidirectionally cou-
pled DWDOs in §2, and then discuss the stability and bifurcations of periodic orbits.
In particular, a convenient real quantity, called the “residue”, 16) is used to charac-
terize the stability of periodic orbits and their bifurcations. In §3, using both a
residue-matching RG method and a direct numerical method, we investigate scaling
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behavior near the bicritical points, and find non-Feigenbaum scaling behavior in the
second response subsystem. Note that this bicritical behavior is the same as that
in two unidirectionally coupled 1D maps. To examine the universality of the bicrit-
icality, unidirectionally coupled Rössler oscillators are also investigated. Finally, a
summary is given in §4.

§2. Stability and bifurcations of periodic orbits

In this section, we first discuss the stability of period orbits in the four-dimensional
(4D) Poincaré map of the two unidirectionally coupled DWDOs, using the Floquet
theory. 17) Bifurcations associated with the stability and Lyapunov exponents are
then discussed.

A single DWDO can be described by two first-order ordinary differential equa-
tions, 18)

ẋ = y, (1a)
ẏ = fA(x, y, t), (1b)

where fA(x, y, t) = −γy + x− x3 +A cosωt, γ is the damping coefficient, A cosωt is
a driving force with amplitude A and frequency ω, and the overdot denotes differ-
entiation with respect to time t. Two identical DWDOs are then coupled together
with a unidirectional coupling type:

ẋ1 = y1, (2a)
ẏ1 = fA(x1, y1, t), (2b)
ẋ2 = y2 + C(x2 − x1), (2c)
ẏ2 = fB(x2, y2, t) + C(y2 − y1). (2d)

Here, A and B are the driving amplitudes of the external driving forces of the two
DWDOs and C is a coupling parameter. For this unidirectionally coupled system,
the first master DWDO with state variables x1 and y1 can be regarded as a driving
equation for the second slave or response DWDO with state variables x2 and y2
through the coupling term. These unidirectionally coupled DWDOs are symmetric
with respect to the transformation S, defined as

S : x1 → −x1, y1 → −y1, x2 → −x2, y2 → −y2,

t→ t+
T

2

[
T (period) =

2π
ω

]
, (3)

as this leaves Eq. (2d) invariant. If an orbit z(t)[≡ (z1(t), z2(t))], where zi = (xi, yi)
(i = 1, 2), is invariant under S, then it is called a symmetric orbit. Otherwise, it is
called an asymmetric orbit and has its conjugate orbit Sz(t).

The phase space of the two unidirectionally coupled DWDOs is five dimensional,
with coordinates x1, y1, x2, y2, and t. Since the unidirectionally coupled DWDOs
are periodic in t, it is convenient to regard time as a circular coordinate (with mod
T ) in the phase space. We then consider the surface of a section, the x1-y1-x2-y2
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hypersurface, at times t = mT (m: integer). The phase space trajectory intersects
this hypersurface in a sequence of points. This sequence of points corresponds to a
mapping on the 4D hypersurface. This map plot of an initial orbit point z(0) can be
computed by stroboscopically sampling the orbit points z(m) at the discrete time
mT . We call the transformation z(m) → z(m + 1) the Poincaré map, and write
z(m + 1) = P (z(m)). This 4D Poincaré map (symmetric with respect to S) may
have many attractors for fixed parameter values. For A = B and C = 0, it breaks
up into two uncoupled identical two-dimensional (2D) maps possessing symmetry
with respect to S. If each uncoupled 2D map has either an asymmetric stable orbit
z [= (x, y)] or its conjugate orbit z∗, then the composite 4D map has one of the
four pairs of orbits (z, z), (z∗, z∗), (z, z∗), and (z∗, z). For the first and second (third
and fourth) pairs, the 2D uncoupled maps have the same (different) kind of orbits.
Hereafter, the corresponding pairs will be called the “same (different) pairs”. To
classify the orbits in the composite 4D map, we should also take the phase shift
between the uncoupled 2D maps into consideration. If each 2D map has a stable
orbit of period 2n, then the composite 4D map has 2n different states distinguished by
the phase shift N (N = 0, · · · , 2n−1). Note that this multistability is preserved when
the coupling is introduced, at least while its value is sufficiently small. Hereafter, an
orbit will be called an orbit of type Ns(d) if it corresponds to the same (different)
pair and there exists a phase shift N between the state variables z1 and z2 of the first
and second 2D maps [i.e., z1(m) = z2(m + N)] when we come to the point C = 0
and A = B.

The linear stability of a q-periodic orbit of the 4D Poincaré map P , such that
P q(z(0)) = z(0), is determined from the linearized-map matrix M [≡ DP q(z(0))]
of P q at an orbit point z(0). Here P q represents the q-times iterated map. Us-
ing the Floquet theory, 17) the matrix M can be obtained by integrating the lin-
earized differential equations for small perturbations with four initial perturbations,
(δx1, δy1, δx2, δy2) = (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1) over the period
q. Since an unidirectionally coupled system has a skew product structure, 12) the
linearized-map matrix M has the semiblock form

M =

(
M1 0
M3 M2

)
, (4)

where 0 is the 2 × 2 null matrix. Hence, in order to determine the eigenvalues of
M , it is sufficient to solve the eigenvalue problems of the two 2× 2 submatrices M1

and M2, independently. Here M1(A) and M2(B,C) determine the stability of the
drive and response subsystems, respectively. Note also that the first submatrix M1

is just the linearized Poincaré map of the DWDO, 18) and the coupling affects only
the second submatrix M2.

The eigenvalues λi,1 and λi,2 of Mi (i = 1, 2) are called the Floquet (stability)
multipliers. They characterize the stability of the ith subsystem. Note also that the
first pair of Floquet multipliers, (λ1,1, λ1,2), is just the pair of Floquet multipliers
of the uncoupled DWDO, 18) and the coupling affects only the second pair of Flo-
quet multipliers, (λ2,1, λ2,2). By using the Liouville formula, 19) we obtain constant
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Jacobian determinants D1 and D2 of the submatricesM1 andM2, respectively, where

D1 = e−γq, D2 = e−(γ−2C)q. (5)

Hence the ith pair of Floquet multipliers lies either on the circle of radius
√
Di or on

the real axis in the complex plane. A periodic orbit becomes stable when all its four
Floquet multipliers lie inside the unit circle in the complex plane (i.e., their moduli
are less than unity). Here we consider the case of Di < 1; D1 is always less than
unity, while D2 becomes less than unity for C < γ/2. Then, the two pairs of Floquet
multipliers never cross the unit circle in the complex plane, except at the real axis,
and hence Hopf bifurcations do not occur. Consequently, a stable periodic orbit can
lose its stability only when a Floquet multiplier λi passes through 1 or −1 on the
real axis.

A more convenient real quantity Ri (i = 1, 2), called the residue 16) and defined
by

Ri ≡
1 +Di − Ti

2(1 +Di)
, (6)

is used to characterize the stability of periodic oscillations in the ith subsystem. Here
Di and Ti are the determinant and trace of the submatrix Mi, respectively. Then
the Floquet multipliers λi can be expressed in terms of Ri as follows:

λi =
(1 +Di)

2

(
1− 2Ri ± 2

√
(Ri −R∗

i,1)(Ri −R∗
i,2)

)
, (7)

where

R∗
i,1 =

(1−
√
Di)2

2(1 +Di)
, R∗

i,2 =
(1 +

√
Di)2

2(1 +Di)
. (8)

For R∗
i,1 < Ri < R∗

i,2, Floquet multipliers occur in complex-conjugate pairs (λi, λ
∗
i )

on the circle of radius
√
Di, while they come in real pairs (λi,Di/λi) on the real

axis for Ri < R∗
i,1 or R > R∗

i,2. Note also that the Floquet multipliers can cross
the unit circle only at the real axis (i.e., at λi = 1 or −1). For λi = 1 and −1,
the values of Ri are 0 and 1, respectively. Hence, when 0 < Ri < 1, the pair of
Floquet multipliers λi lies inside the unit circle. As Ri decreases through 0 (i.e., a
Floquet multiplier λi increases through 1), the periodic orbit loses its stability via a
saddle-node or pitchfork bifurcation. Contrastingly, as Ri increases through 1 (i.e., a
Floquet multiplier decreases through −1), it becomes unstable via a period-doubling
bifurcation. (For more detailed discussion of bifurcations, refer to Ref. 21).)

Finally, we briefly discuss Lyapunov exponents 22) of an orbit in the 4D Poincaré
map P . The two submatrices M1 and M2 of M determine the Lyapunov exponents
(σ1,1, σ1,2) and (σ2,1, σ2,2), characterizing the average exponential rates of divergence
of nearby orbits in the first and second subsystems, respectively, where σi,1 ≥ σi,2

for i = 1, 2. Since the two submatrices have the constant Jacobian determinants
given in Eq. (5), the two pairs of Lyapunov exponents satisfy σ1,1 + σ1,2 = −2γ
and σ2,1 + σ2,2 = −γ + 2C. Note also that the first pair of Lyapunov exponents,
(σ1,1, σ1,2), is just the pair of Lyapunov exponents of the uncoupled DWDO, 18) and
the coupling affects only the second pair of Lyapunov exponents, (σ2,1, σ2,2).
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§3. Universal bicritical behavior of period doublings

In this section, by varying the two control parameters A and B of the two sub-
systems for a fixed value of the coupling parameter C, we study the bicritical scaling
behavior in the two unidirectionally coupled DWDOs with γ = 0.2 and ω = 2.8.
When crossing a bicritical point, corresponding to a border of chaos in both sub-
systems, a transition to hyperchaos occurs; i.e., a hyperchaotic attractor with two
positive Lyapunov exponents appears. Varying a control parameter A or B, each
subsystem in the unidirectionally coupled DWDOs may undergo forward and back-
ward period-doubling cascades. As a consequence of this antimonotone behavior,
four bicritical points exist in the A-B plane, in contrast with the unidirectionally
coupled 1D maps exhibiting monotone behavior. Using both the residue-matching
RG method and a direct numerical method, we investigate various scaling behavior
near each bicritical point. A new type of non-Feigenbaum scaling behavior is thereby
found in the second response subsystem. To examine the universality of the bicriti-
cality, we also study two unidirectionally coupled Rössler oscillators. Note that this
bicritical scaling behavior in unidirectionally coupled oscillators is the same as that
in an abstract system of unidirectionally coupled 1D maps. 7), 8)

We now fix the coupling parameter as C = −0.1 and study period-doubling
bifurcations by increasing B from zero. Hence the periodic orbits that exist from
B = 0 become the “mother” orbits for such period-doubling cascades. These mother
orbits are orbits of type “0s”, because they are in-phase (phase-shift N = 0) and
consist of the same pairs when coming to A = B and C = 0 (refer to §2 for type of
orbits).

As in the case of the uncoupled DWDO, 18) when A is increased, the asymmet-
ric fixed points of the Poincaré map P , arising from the stable equilibrium points
(x = ±1) of the double-well potential, exhibit period-doubling cascades, leading to
chaos, in the first subsystem. However, as A is further increased, reversals of period-
doubling cascades occur. This kind of antimonotone behavior of the concurrent cre-
ation and destruction of periodic orbits contrasts with the monotone behavior of the
1D map. 1) The forward cascade, creating periodic orbits, and the backward cascade,
destroying periodic orbits, in the first subsystem are shown in Fig. 1(a). Similarly,
as B is increased, for a fixed A, the second subsystem also exhibits antimonotone
behavior, as shown in Fig. 1(b).

Figure 2 displays stability diagrams of asymmetric periodic orbits. Each stable
region is labelled by a pair of numbers, (q1, q2), where q1 and q2 are the periods
of oscillations in the first and second subsystems, respectively. The first subsystem
exhibits a forward period-doubling cascade, creating periodic orbits, at the vertical
straight lines, where R1 = 1. These period doublings accumulate at a critical line,
denoted by the vertical dashed line located at A = AF∞ (= 1.834 473 233). However,
as A is further increased, a backward period-doubling cascade, destroying periodic
orbits, also occurs in the first subsystem at the vertical straight lines, where R1 =
1. These period doublings accumulate at another critical line, denoted also by a
vertical dashed line and located at A = AB∞ (= 4.245 906 614). When crossing a
vertical dashed critical line, a transition to chaos occurs in the first subsystem. For
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Fig. 1. Antimonotone behavior of the first and

second subsystems for C = −0.1. (a) The
forward and backward period-doubling cas-

cades in the first subsystem. (b) The for-

ward and backward period-doubling cas-

cades in the second subsystem for A = 0.5.

small values of the parameter B, the
second subsystem exhibits a forced re-
sponse whose period is the same as that
of the first subsystem. As B is in-
creased for a fixed value of A, the sec-
ond subsystem also undergoes forward
and backward period-doubling cascades
at the non-vertical solid lines, where
R2 = 1, accumulating at the criti-
cal lines denoted by non-vertical dashed
lines. When crossing a non-vertical crit-
ical line, a transition to chaos takes
place in the second subsystem. Note
that the vertical and non-vertical crit-
ical lines meet at four bicritical points,
denoted by solid circles, corresponding
to the threshold of chaos in both sub-
systems. Consequently, when crossing a
bicritical point, a hyperchaotic attractor
with two positive Lyapunov exponents
appears.

To analyze the scaling behavior near
the bicritical points, we first develop a
residue-matching RG method, equating
the residues of the orbit of level n (pe-
riod 2n) to those of the orbit of the
next level, n + 1. The basic idea of
the residue-matching RG method is to
associate a pair of values (A′, B′) for
each (A,B) such that P (n+1)

(A′,B′) locally re-

sembles P (n)
(A,B), where P

(n) is the 2nth-

iterated map of P (i.e., P (n) = P 2n
). Here A and B are the control parameters of the

two subsystems, and the coupling parameter C is fixed. A simple way to implement
this idea is to linearize the maps in the neighborhood of their respective fixed points
and equate the corresponding residues, characterizing their stability. This residue-
matching RG method can be regarded as a generalized version of the eigenvalue-
matching RG method that has been successfully used in the two unidirectionally-
coupled 1D maps. 8) Note also that residue matching in slightly different contexts
has also been used to study the breakup of invariant circles in area-preserving twist
maps. 20)

Consider two successive orbits of period 2n and 2n+1, {z(m)} and {z′(m)}, such
that

z(m) = P (n)
(A,B)(z(m)), z′(m) = P (n+1)

(A′,B′)(z
′(m)), (9)
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Fig. 2. Stability diagram of asymmetric periodic orbits for C = −0.1. Each stable region is la-
beled by a pair of numbers (q1, q2), where q1 and q2 are the periods of oscillations in the first

and second subsystems, respectively. The vertical (nonvertical) solid lines represent the period-

doubling bifurcation lines in the first (second) subsystem, and the uppermost dotted lines denote

the saddle-node bifurcation lines in the second subsystem. When crossing the vertical and non-

vertical dashed lines, transitions to chaos occur in the first and second subsystems, respectively.

Note that these critical lines meet at the four bicritical points, denoted by the solid circles, which

correspond to the border of chaos in both subsystems. Furthermore, the open circles denote

the points, corresponding to the threshold of instability in both subsystems, where R1 = 1 and

R2 = 1. Such open circles also accumulate at the lower-left bicritical point.

where z = (z1, z2) and zi = (xi, yi). Here the state variable z1 of the first subsystem
depends only on A, but the state variable z2 of the second subsystem is dependent
on both A and B. Linearizing P (n) and P (n+1) at z(m) and z′(m), respectively, we
obtain

DP
(n)
(A,B) =

2n∏
m=1

DP(A,B)(z(m)), DP
(n+1)
(A′,B′) =

2n+1∏
m=1

DP(A′,B′)(z
′(m)), (10)

whereDP is the linearized Poincaré map of P . Then the eigenvalues of the linearized-
map matrices, called the Floquet multipliers, determine the stability of the periodic
orbits. However, as explained in §2, it is more convenient to use the residues R1

and R2, defined in Eq. (6), to characterize the stability of periodic oscillations in
the first and second subsystems, respectively. The recurrence relations for the old
and new parameters are then given by equating the residues of level n, R1,n(A) and
R2,n(A,B), to those of level n+ 1, R1,n+1(A′) and R2,n+1(A′, B′):

R1,n(A) = R1,n+1(A′), (11a)
R2,n(A,B) = R2,n+1(A′, B′). (11b)
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The fixed point (A∗, B∗) of the renormalization transformation (11b),

R1,n(A∗) = R1,n+1(A∗), (12a)
R2,n(A∗, B∗) = R2,n+1(A∗, B∗), (12b)

gives the bicritical point (Ac, Bc), corresponding to the border of chaos in both
subsystems, for a fixed C. By linearizing the renormalization transformation at the
fixed point (A∗, B∗), we obtain

(
∆A
∆B

)
=


 ∂A

∂A′

∣∣∣∗ ∂A
∂B′

∣∣∣∗
∂B
∂A′

∣∣∣∗ ∂B
∂B′

∣∣∣∗

( ∆A′

∆B′

)
(13)

= ∆n

(
∆A′

∆B′

)
, (14)

where

∆n = Γ−1
n Γn+1, (15)

Γn =


 dR1,n

dA

∣∣∣∗ 0
∂R2,n

∂A

∣∣∣∗ ∂R2,n

∂B

∣∣∣∗

 , (16)

Γn+1 =


 dR1,n+1

dA′

∣∣∣∗ 0
∂R2,n+1

∂A′

∣∣∣∗ ∂R2,n+1

∂B′

∣∣∣∗

 . (17)

Here Γ−1
n is the inverse of Γn, and the asterisk denotes the fixed point (A∗, B∗).

After some algebra, we obtain analytic formulas for the eigenvalues δ1,n and δ2,n of
the matrix ∆n,

δ1,n =
dR1,n+1

dA′

∣∣∣∗
dR1,n

dA

∣∣∣∗
, (18a)

δ2,n =
∂R2,n+1

∂B′

∣∣∣∗
∂R2,n

∂B

∣∣∣∗
. (18b)

As n → ∞, the eigenvalues of level n, δ1,n and δ2,n, approach their limiting val-
ues, δ1 and δ2, which are just the parameter scaling factors in the first and second
subsystems, respectively.

In addition to the parameter scaling factors, we can also obtain the orbital scaling
factors. To look for simple scaling in the phase space at the bicritical point (A∗

n, B
∗
n)

of level n, we first locate the most rarefied region by choosing a 2n-periodic orbit
point z(n)(0) that has the largest distance from its nearest orbit point z(n)(2n−1)
[= P 2n−1

(z(n)(0))]. Then, the local rescaling factors of the state variables are simply
given by

αx1,n =
dx1,n

dx1,n+1
, αy1,n =

dy1,n

dy1,n+1
, (19a)
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αx2,n =
dx2,n

dx2,n+1
, αy2,n =

dy2,n

dy2,n+1
, (19b)

where

dx1,n ≡ x(n)
1 (0)− x(n)

1 (2n−1), dy1,n ≡ y(n)
1 (0)− y(n)

1 (2n−1), (20a)

dx2,n ≡ x(n)
2 (0)− x(n)

2 (2n−1), dy2,n ≡ y(n)
2 (0)− y(n)

2 (2n−1). (20b)
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Fig. 3. Plots of (a) the first residue R1,n(A) as

a function of A and (b) the second residue

R2,n(A
∗
5, B) as a function of B for the cases

n = 5, 6. In (a), the intersection point, de-

noted by the solid circle, of the two curves

R1,5 and R1,6 gives the point (A
∗
5, R

∗
1,5) of

level 5. As n → ∞, (A∗
n, R∗

1,n) converges

to its limit point, (A∗, R∗
1). Similarly, in

(b), the intersection point, denoted also

by the solid circle, of the two successive

curves R2,5(A
∗
5, B) and R2,6(A

∗
5, B) gives

the point (B∗
5 , R∗

2,5) of level 5. As n → ∞,
(B∗

n, R∗
2,n) also approaches its limit point,

(B∗, R∗
2).

As n → ∞, both the rescaling factors
αx1,n and αy1,n of level n converge to
the orbital scaling factor α1 in the first
subsystem, while αx2,n and αy2,n con-
verge to the orbital scaling factor α2 in
the second subsystem.

Using the above described residue-
matching RG method, we make an
analysis of the scaling behavior near
the lower-left bicritical point (Ac, Bc)
[=(AF∞, 1.849 69)], corresponding to the
forward-forward period-doubling cas-
cades in the first-second subsystems (see
Fig. 2). Figure 3 displays some RG re-
sults obtained by matching the residues
of intermediate level n = 5, 6. Plots
of the first residue R1,n(A) versus A
for the cases n = 5, 6 are shown in
Fig. 3(a). Note that the intersection
point, denoted by the solid circle, of
the two curves R1,5(A) and R1,6(A)
gives the point (A∗

5,R∗
1,5), where A

∗
5 and

R∗
1,5 are the critical point and critical

residue of level 5 in the first subsystem,
respectively. As shown in Eq. (18a),
the ratio of the slopes of the curves,
R1,5 and R1,6, for A = A∗

5 gives the
parameter scaling factor δ1,5 of level
5 in the first subsystem. Similarly,
Fig. 3(b) displays plots of the second
residue R2,n(A∗

5, B) versus B for the
cases n = 5, 6. The intersection point,
denoted also by the solid circle, of the
two curves R2,5(A∗

5, B) and R2,6(A∗
5, B)

gives the point (B∗
5 ,R∗

2,5), where B
∗
5 and

R∗
2,5 are the critical point and critical

residue of level 5 in the second subsys-
tem, respectively. As shown in Eq. (18b), the ratio of the slopes of the curves,



Universal Bicritical Behavior of Period Doublings 27

R2,5(A∗
5, B) and R2,6(A∗

5, B), for B = B
∗
5 gives the parameter scaling factor δ2,5 of

level 5 in the second subsystem. Increasing the level up to n = 9, we first solve
Eq. (12b) to obtain the bicritical point (A∗

n, B
∗
n) of level n and a pair of critical

residues (R∗
1,n,R∗

2,n) of level n. Next, using Eqs. (18) and (19b), we obtain the
parameter and orbital scaling factors of level n, respectively. Then, as the level n
is increased, the sequences of the critical points, critical residues, parameter and
orbital scaling factors of level n converge to their limit values.

The RG results for the first drive subsystem are listed in Table I. As n is
increased, the sequence of values of the parameter scaling factor δ1,n converges to the
limit value δ1 (� 4.669), and the sequences of values of the orbital scaling factors αx1,n

and αy1,n approach the same limit value α1 (� −2.5). Note that these limit values
δ1 and α1 agree well with Feigenbaum constants δ (= 4.669 · · ·) and α (= −2.502 · · ·)
for 1D maps. 1) When n is increased, the sequence of the critical residue R∗

1,n also
converges to the limit value R∗ (� 1.3). As shown in Eq. (5), the determinant D1

of the linearized-map matrix M1 for the q-periodic (q = 2n) orbit of level n goes
to zero as n → ∞. Then, one can easily see from Eq. (7) that the pair of critical
Floquet multipliers (λ∗1,1, λ

∗
1,2) becomes (1− 2R∗

1, 0). Note also that the value of λ
∗
1,1

(� −1.6) agrees well with the 1D critical Floquet multiplier λ∗ (= −1.601 · · ·). 1)
Consequently, the first drive subsystem comes to be in the usual Feigenbaum critical
state.

However, the scaling behavior in the second response subsystem exhibits a new
type of non-Feigenbaum scaling behavior, as shown in Table II. As n is increased,
the sequence of values of the parameter scaling factor δ2,n approaches the limit value
δ2 (� 2.39), and the sequences of values of the orbital scaling factors αx2,n and

Table I. Sequences of the critical point, the first critical residue, the parameter and orbital scaling

factors, {A∗
n}, {R∗

1,n}, {δ1,n}, {αx1,n}, and {αy1,n}, in the first subsystem, obtained using the
residue-matching RG method.

n A∗
n R∗

1,n δ1,n αx1,n αy1,n

4 1.834 472 170 1.299 61 4.683 13 −1.814 −2.254
5 1.834 473 248 1.300 65 4.668 18 −2.670 −2.565
6 1.834 473 231 1.300 57 4.669 49 −2.443 −2.482
7 1.834 473 235 1.300 65 4.668 91 −2.528 −2.512
8 1.834 473 233 1.300 45 4.668 99 −2.493 −2.500
9 1.834 473 234 1.300 96 4.669 12 −2.506 −2.504

Table II. Sequences of the critical point, the second critical residue, the parameter and orbital

scaling factors, {B∗
n}, {R∗

2,n}, {δ2,n}, {αx2,n}, and {αy2,n}, in the second subsystem, obtained
using the residue-matching RG method.

n B∗
n R∗

2,n δ2,n αx2,n αy2,n

4 1.849 576 1.072 1 2.453 −1.14 −1.43
5 1.849 658 1.080 8 2.409 −1.69 −1.56
6 1.849 694 1.089 9 2.406 −1.38 −1.45
7 1.849 689 1.086 4 2.401 −1.58 −1.53
8 1.849 691 1.089 5 2.399 −1.45 −1.48
9 1.849 690 1.088 1 2.391 −1.54 −1.51
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αy2,n converge to the same limit value α2 (� −1.5). Note that these limit values
δ2 and α2 agree well with the scaling factors δ2 (= 2.392 · · ·) and α2 (= −1.505 · · ·)
in the second response subsystem for unidirectionally-coupled 1D maps. 7), 8) When
n is increased, the sequence of the critical residue R∗

2,n also converges to the limit
value R∗ (� 1.09), and hence the corresponding pair of critical Floquet multipliers
(λ∗2,1, λ

∗
2,2) becomes (1−2R∗

2, 0) [� (−1.18, 0)]. Here the value of λ∗2,1 also agrees well
with the second critical Floquet multiplier λ∗2 (= −1.178 · · ·) in the second response
subsystem for the unidirectionally-coupled 1D maps. 7), 8) Consequently, the bicritical
scaling behavior in the unidirectionally coupled DWDOs becomes the same as that
in the unidirectionally coupled 1D maps.

To confirm the RG results, we also investigated the bicritical scaling behavior
with a direct numerical method. Consider a pair of the parameter values (An, Bn),
at which the periodic orbit of level n (period 2n) has the residues R1,n = R2,n = 1.
Note that the point (An, Bn) corresponds to the threshold of instability in both
subsystems. Some such points are denoted by open circles in Fig. 2. Then the
sequence of values of (An, Bn) converges to the lower-left bicritical point (Ac, Bc),
denoted by the solid circle, as the level n is increased. To locate this bicritical point
with a satisfactory precision, we directly follow the orbits of period 2n up to level
n = 10, and obtain the sequences of both the parameters (An, Bn) and the orbit
points zn [= (z1,n, z2,n)] whose distance from its nearest orbit point is maximal,
where zi,n = (xi,n, yi,n) (i = 1, 2).

The types of asymptotic scaling behavior of the above sequences near the lower-
left bicritical point were investigated in both subsystems. Note that the scaling
behavior in the first drive subsystem is obviously the same as that in the uncoupled
DWDO. 18) Hence, as in the uncoupled DWDO, the sequences {An}, {x1,n}, and
{y1,n} converge to their limit values AF∞ (= 1.834 473 234), x∗1 (= 0.663 451 6), and
y∗1 (= 0.990 119 2) geometrically with the 1D asymptotic ratios, respectively:

An −AF
∞ ∼ δ−n

1 , x1,n − x∗1 ∼ α−n
1 , y1,n − y∗1 ∼ α−n

1 . (21)

Here the limit values are obtained using the superconverging method, 23) and the
scaling factors δ1 and α1 are just the Feigenbaum constants δ (= 4.669 · · ·) and α (=
−2.502 · · ·) for the 1D maps, respectively. However, the second response subsystem
exhibits non-Feigenbaum scaling behavior. The sequences {Bn},{x2,n}, and {y2,n}
also converge geometrically to their limit values Bc (= 1.849 69), x∗2 (= 0.660 87), and
y∗2 (= 0.989 91), where the limit values are also obtained using the superconverging
method. To obtain the convergence rates of the sequences, we define the scaling
factors of level n as

δ2,n ≡ Bn−1 −Bn

Bn −Bn+1
, αx2,n ≡ x2,n−1 − x2,n

x2,n − x2,n+1
, αy2,n ≡ y2,n−1 − y2,n

y2,n − y2,n+1
. (22)

The sequence {δ2,n} is listed in Table III, and it seems to converge to the limit value
δ2 (∼ 2.39) obtained using the RG method. Both the sequences {αx2,n} and {αy2,n}
also seem to approach the same limit value α2 (� −1.5) obtained using the RG
method.
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Table III. Sequences of the parameter and or-

bital scaling factors, {δ2,n}, {αx2,n}, and
{αy2,n}, in the second subsystem, obtained
by directly following the “self-similar” pa-

rameter and orbital sequences.

n δ2,n αx2,n αy2,n

5 1.30 −1.491 −1.691
6 1.34 −1.615 −1.494
7 2.73 −1.495 −1.572
8 2.24 −1.547 −1.497
9 2.56 −1.498 −1.530

To demonstrate the parameter scal-
ing, we study the “topography” of the
parameter plane. Figure 4 displays the
phase diagrams near the lower-left bi-
critical point. States in the parame-
ter plane are determined by calculating
their Lyapunov exponents. The white
areas correspond to periodic states, and
the numbers denote the periods. The
vertical and horizontal dashes denote
chaotic states in the first and second
subsystems, respectively, and crosses correspond to hyperchaotic states with two
positive Lyapunov exponents. The pictures in Figs. 4(b) and (c) were obtained by
magnifying the regions in the small boxes in the previous pictures by the scaling
factor δ1 for the A axis and δ2 for the B axis. Note that each successive picture
reproduces the previous one with an accuracy that increases with the depth of res-
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Fig. 4. Phase diagrams near the lower-left bicritical point for C = −0.1. States in the parameter
plane are determined by their Lyapunov exponents. The white areas correspond to periodic

states and the numbers denote the periods. Vertical and horizontal dashes denote chaotic states

in the first and second subsystems, respectively, and crosses correspond to hyperchaotic states

with two positive Lyapunov exponents. The pictures in (b) and (c) were obtained by magnifying

the regions in the small boxes in the previous pictures by the scaling factor δ1 for the A axis

and δ2 for the B axis. Each successive picture reproduces the previous one with an accuracy

increasing with the depth of resolution.
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olution. Hence, the configuration of states in Fig. 4 demonstrates the parameter
scaling near the bicritical point.

For further evidence of scaling, we also compare the hyperchaotic attractors,
shown in Fig. 5, for three values of the pair (A,B) near the lower-left bicriti-
cal point (Ac, Bc). Figure 5(a) displays the 2D projection of a hyperchaotic at-
tractor onto the x1-x2 plane with the origin shifted at (x∗1, x∗2) for A = A

(1)
c +

∆A and B = B
(1)
c + ∆B, where ∆A = 0.0008 and ∆B = 0.0035. This hyper-

chaotic attractor has two positive Lyapunov exponents, σ1,1 � 0.021 and σ2,1 �
0.0048. To observe scaling, we first rescale ∆A and ∆B with the parameter scal-

Fig. 5. Hyperchaotic attractors for the three values of (A, B) near the lower-left bicritical point

(Ac, Bc) for C = −0.1. In (a), (A, B) = (A
(1)
c +∆A, B

(1)
c +∆B) (∆A = 0.0008, ∆B = 0.0035),

in (b) and (c), (A, B) = (A
(1)
c + ∆A/δ1, B

(1)
c + ∆B/δ2), and in (d) and (e), (A, B) = (A

(1)
c +

∆A/δ2
1 , B

(1)
c + ∆B/δ2

2). The picture in (c) is obtained by magnifying the region in the small

box in (b) with the scaling factors α1 for the x1 axis and α2 for the x2 axis. Similarly, we also

obtain the picture (e) by magnifying the region inside the small box in (d) with the scaling

factors α2
1 for the x1 axis and α2

2 for the x2 axis. Comparing the pictures in (a), (c), and (e),

we can see that each successive magnified picture reproduces the previous one with an accuracy

corresponding to the depth of resolution.
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ing factors δ1 and δ2, respectively. The 2D projection of the attractor for the
rescaled parameter values A = Ac + ∆A/δ1 and B = Bc + ∆B/δ2 is shown in
Fig. 5(b). It is also the hyperchaotic attractor with σ1 � 0.011 and σ2 � 0.0024.

Fig. 6. (a) Two overlapped period-doubling

cascades in the second subsystem for A =

1.8 and C = −0.1. The first cascade start-
ing from B = 0 is associated with orbits

of type 0s, while the second one starting

from B = 1.257 83 is associated with or-

bits of type 3s. (b) Stability diagram of

asymmetric orbits of type 3s for C = −0.1.
Here each stable region is labelled by the

pair of numbers (q1, q2), where q1 and q2

denote the periods of oscillation in the first

and second subsystems, respectively. The

lower dotted line represents a saddle-node

bifurcation line, at which a period-q attrac-

tor of type 3s is born. The two (vertical

and non-vertical) critical lines, denoted by

the dashed lines, of period-doubling transi-

tions to chaos meet at the bicritical point,

denoted by the solid circle.

We next magnify the region in the small
box (containing the origin) by the scal-
ing factor α1 for the x1 axis and α2 for
the x2 axis, thereby obtaining the mag-
nified picture in Fig. 5(c). Note that the
picture in Fig. 5(c) reproduces the previ-
ous one in Fig. 5(a) approximately. Re-
peating the above procedure once more,
we obtain the two pictures in Figs. 5(d)
and (e). That is, Fig. 5(d) displays the
hyperchaotic attractor with σ � 0.0063
and σ2 � 0.0013 for A = Ac + ∆A/δ21
and B = Bc + ∆B/δ22. Magnifying the
region in the small box with the scal-
ing factors α2

1 for the x1-axis and α2
2 for

the x2-axis, we also obtain the magni-
fied picture in Fig. 5(e), which repro-
duces the previous one in Fig. 5(c) with
increased accuracy.

We now turn to a brief discussion
of the behavior exactly at the lower-left
bicritical point. There exists an infi-
nite number of unstable periodic orbits
with period 2n, forming the skeleton of
the bicritical attractor. The orbit points
z1,n and z2,n that are maximally distant
from their nearest orbit points in the
first and second subsystems are found
to converge geometrically to their limit
points z∗1 and z∗2 with the asymptotic ra-
tios α1 and α2. The residues R1,n and
R2,n of the orbits with period 2n are also
found to converge to the critical residues
R∗

1 and R
∗
2.

In addition to the above consid-
ered case of the lower-left bicritical
point, we also study the scaling be-
havior near the three other bicritical
points, the lower-right bicritical point at
(AB∞, 2.025 63), the upper-left bicritical
point at (AF∞, 4.532 51), and the upper-
right bicritical point at (AB∞, 4.233 32).
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The types of scaling behavior near these bicritical points are thus found to be the
same as those near the lower-left bicritical point.

To this point, we have studied the bicritical behavior of only in-phase periodic
orbits with phase shift N = 0. However, as mentioned in §2, there may exist many
other types of out-of-phase orbits which appear via saddle-node bifurcations. Note
that these out-of-phase orbits exhibit the same types of bicritical scaling behavior.
As an example, we consider the case of A = 1.8, at which the first drive system is
in the period-4 state. A bifurcation diagram for the second response subsystem is
shown in Fig. 6(a). As we see, there are two overlapped period-doubling cascades,
each of which begins from the period-4 cycle, because it is just the period of the
external driving forcing produced by the first subsystem. The orbits in the first
period-doubling cascade starting from B = 0 are orbits of type 0s, because they
are in-phase (phase shift N = 0) and consist of the same pairs when coming to
A = B and C = 0. The orbits in the second period-doubling cascade beginning from
B = 1.257 83, at which an out-of-phase period-4 attractor is born via a saddle-node
bifurcation, are orbits of type 3s because they are out-of-phase with phase shiftN = 3
and consist of the same pair. Figure 6(b) displays the stability diagram associated
with out-of-phase orbits of type 3s. Note that the structure of this stability diagram
is the same as that in the lower-left stability diagram in Fig. 2 for the case of in-phase
orbits. The scaling behavior near the bicritical point denoted by the solid circle is
also found to be the same as that for the case of in-phase orbits.

To examine the coupling effect on the bicritical behavior, we also consider a
system consisting of two DWDOs with a unidirectional coupling of general type,
described by

ẋ1 = y1, (23a)
ẏ1 = fA(x1, y1, t), (23b)
ẋ2 = y2 + g1(x1, y1, x2, y2), (23c)
ẏ2 = fB(x2, y2, t) + g2(x1, y1, x2, y2), (23d)

where fA(x, y, t) = −γy+x−x3+A cosωt, and A and B are the control parameters
of the two subsystems. For this unidirectionally coupled system, the first DWDO
with state variables x1 and y1 is a master subsystem driving the second slave or
response DWDO with state variables x2 and y2 through the generalized coupling
terms g1 and g2. The bicritical behavior is investigated for the cases of the following
six types of couplings:

g1 = C(x2 − x1), g2 = C(y2 − y1), (24a)
g1 = C(x2 − x1), g2 = 0, (24b)
g1 = 0, g2 = C(y2 − y1), (24c)
g1 = 0, g2 = C(x2 − x1), (24d)
g1 = C(x2

2 − x2
1), g2 = C(y

2
2 − y21), (24e)

g1 = C(x3
2 − x3

1), g2 = C(y
3
2 − y31). (24f)
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Fig. 7. Stability diagram of asymmetric peri-

odic orbits for the third type of coupling

with g1 = 0 and g2 = C(y2 − y1) for

C = −0.1. Here each stable region is
labelled by the pair of numbers (q1, q2),

where q1 and q2 denote the periods of os-

cillation in the first and second subsys-

tems, respectively. The two (vertical and

non-vertical) critical lines, denoted by the

dashed lines, of period-doubling transitions

to chaos meet at the bicritical point, de-

noted by the solid circle. Note that the

structure of this stability diagram is the

same as that of the lower-left stability dia-

gram for the first type of coupling.

Here C is a coupling parameter. The
first type of coupling is the coupling con-
sidered in Eq. (2d), and all couplings are
dissipative, except for that in Eq. (24d).
It is thus found that the types of scaling
behavior near the bicritical points are
the same, irrespective of the type of cou-
plings, although the type of the mother
orbits for the period-doubling cascades
depends on the type of couplings. That
is, the types of bicritical behavior be-
come the same, whether the couplings
are dissipative or not. As an example,
consider the third type of coupling in
Eq. (24c). Figure 7 shows the stabil-
ity diagram of asymmetric periodic or-
bits for C = −0.1. We first note that
the structure of this stability diagram is
the same as that in the lower-left stabil-
ity diagram in Fig. 2 for the first type
of coupling. The scaling behavior near
the bicritical point denoted by the solid
circle is also found to be the same as
that for the first type of coupling, al-
though the type of mother orbits is dif-
ferent from that for the first type of cou-
pling. For this case, the type of mother
orbits that exist from B = 0 is “2d”, be-
cause they are out-of-phase orbits with phase-shift N = 2 and consist of different
pairs when coming to A = B and C = 0 (refer to §2 for the types of orbits).

To this point, we have fixed the value of the damping parameter to γ = 0.2. To
examine the damping effect on the bicritical behavior, we consider three other cases
γ = 0.3, 0.4, and 0.5. Figure 8 displays the stability diagrams for the orbits of type
0s that exist from B = 0. The structure of these stability diagrams is the same as
that in the lower-left stability diagram in Fig. 2 for the case of γ = 0.2. Note also
that the scaling behavior near the bicritical points denoted by solid circles is the
same as that for the case of γ = 0.2, irrespective of the value of γ.

Finally, to examine the universality of the bicriticality we investigate another
unidirectionally coupled system consisting of two autonomous Rössler oscillators,
described by

ẋ1 = y1 − z1, (25a)
ẏ1 = x1 + ay1, (25b)
ż1 = bz1(x1 − c1) (25c)
ẋ2 = y2 − z2 + ε(x2 − x1), (25d)
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Fig. 8. Stability diagrams of asymmetric orbits of type 0s for (a) γ = 0.3 and ω = 2.8, (b) γ = 0.4

and ω = 2.75, and (c) γ = 0.5 and ω = 2.65. Here each stable region is labelled by the

pair of numbers (q1, q2), where q1 and q2 denote the periods of oscillation in the first and

second subsystems, respectively. The two (vertical and non-vertical) critical lines, denoted by

the dashed lines, of period-doubling transitions to chaos in each stability diagram meet at the

bicritical point, denoted by the solid circle.

ẏ2 = x2 + ay2 + ε(y2 − y1), (25e)
ż2 = bz2(x2 − c2) + ε(z2 − z1), (25f)

where a = b = 0.2, ci (i = 1, 2) is the control parameter of the ith subsystem, and
ε is the coupling parameter between the two subsystem. For this unidirectionally
coupled system, the first Rössler oscillator with state variables x1, y1, and z1 is a
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Fig. 9. Stability diagram of in-phase orbits for

ε = −0.01 for the unidirectionally coupled
Rössler oscillators. Here each stable region

is labelled by the pair of numbers (q1, q2),

where q1 and q2 denote the periods of os-

cillation in the first and second subsys-

tems, respectively. The two (vertical and

non-vertical) critical lines, denoted by the

dashed lines, of period-doubling transitions

to chaos in each stability diagram meet at

the bicritical point, denoted by the solid

circle.

master subsystem driving the second re-
sponse Rössler oscillator with state vari-
ables x2, y2, and z2 through the cou-
pling term. Figure 9 displays the sta-
bility diagram for the in-phase orbits
when ε = −0.01. We first note the
“universal” structure of the stability di-
agram (compare the stability diagram in
Fig. 9 with the lower-left stability di-
agram in Fig. 2). The scaling behav-
ior near the bicritical point denoted by
the solid cicle is also found to be the
same as that for unidirectionally cou-
pled Duffing oscillators. Consequently,
we find that completely different unidi-
rectionally coupled systems exhibit the
same universal bicritical behavior.

§4. Summary

To confirm the universality of the
bicriticality in an abstract system of two
unidirectionally coupled 1D maps, we
have studied the bicritical scaling be-
havior of period doublings in two uni-
directionally coupled DWDOs. As the
control parameters are varied, the first and second subsystems may undergo forward
and backward period-doubling cascades, leading to chaos. Then, the critical lines
of period-doubling transitions to chaos in the two subsystems meet at four bicritical
points. When crossing a bicritical point, corresponding to the threshold of chaos
in both subsystems, a transition to hyperchaos occurs (i.e., a hyperchaotic attrac-
tor with two Lyapunov exponents appears). Using both the residue-matching RG
method and a direct numerical method, we have investigated scaling behavior near
the bicritical points, and found a new kind of non-Feigenbaum scaling behavior in the
response subsystem. To examine the universality of the bicritical scaling behavior,
another unidirectionally coupled system consisting of autonomous Rössler oscillators
has also been investigated. Note that the types of bicritical scaling behavior of these
unidirectionally coupled oscillators are the same as those in two unidirectionally cou-
pled 1D maps. We thus hypothesize that the bicriticality occurs generally in a large
class of unidirectionally coupled systems consisting of period-doubling subsystems.
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