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Parameter-Mismatching Effect on the Attractor Bubbling
in Coupled Chaotic Systems
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We investigate the effect of parameter mismatch on weak synchronization in unidirectionally cou-
pled invertible Hénon maps. Due to the existence of positive local transverse Lyapunov exponents,
a weakly stable synchronized attractor (SCA) becomes sensitive with respect to the variation of the
mismatching parameter. As in coupled noninvertible one-dimensional maps, a quantifier, called the
parameter sensitivity exponent (PSE), that measures the “degree” of such parameter sensitivity,
is introduced. In terms of these PSEs, we characterize the parameter-mismatching effect on the
attractor bubbling occurring in the regime of weak synchronization.
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Recently, because of its potential practical applica-
tions (e.g., see [1]), the phenomenon of synchronization
in coupled chaotic systems has become a field of intensive
research. When identical chaotic systems synchronize, a
synchronous chaotic attractor (SCA) exists on an invari-
ant subspace of the whole phase space [2]. If the SCA is
stable against a perturbation transverse to the invariant
subspace, it may become an attractor in the whole phase
space. Such transverse stability of the SCA is intimately
associated with transverse bifurcations of periodic sad-
dles embedded in the SCA [3–5]. If all periodic saddles
are transversely stable, the SCA becomes asymptotically
stable, and then we have “strong” synchronization. How-
ever, as the coupling parameter passes through a thresh-
old value, a periodic saddle first becomes transversely
unstable through a local bifurcation. Then, trajectories
may be locally repelled from the invariant subspace when
they visit the neighborhood of the transversely unstable
periodic repeller. Thus, we have “weak” synchroniza-
tion. For this case, transient intermittent bursting or
basin riddling may occur depending on the global dy-
namics [4, 5]. Here, we are interested in the bursting
case.

In a real situation, a small mismatch between the
subsystems that destroys the invariant subspace is un-
avoidable. For the bursting case, any small mismatching
results in a continual sequence of intermittent bursts,
where the long period of the nearly synchronous state
(laminar phase) is randomly interrupted by the short-
time burst (burst phase). This attractor bubbling
demonstrates the sensitivity of the weakly stable SCA
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with respect to the variation of the mismatching parame-
ter. Recently, to characterize such parameter sensitivity,
we have introduced a quantifier, called the parameter
sensitivity exponent (PSE) measuring the “degree” of
the parameter sensitivity in coupled noninvertible one-
dimensional (1D) maps [6]. Here, we extend the method
of characterizing the parameter sensitivity in terms of
PSEs to high-dimensional invertible systems, and char-
acterize the effect of parameter mismatch on the attrac-
tor bubbling.

As a representative model for the Poincaré maps of
coupled chaotic oscillators, we consider unidirectionally
coupled invertible Hénon maps:

T :
{

xn+1 = F(xn,yn) = f(xn, a),
yn+1 = G(xn,yn) = f(yn, b) + cg(yn,xn), (1)

where xn [= (x(1)
n , x

(2)
n )] and yn [= (y(1)

n , y
(2)
n )] are state

variables of the subsystems at a discrete time n, local
dynamics in each subsystem with a control parameter p
(p = a, b) is governed by the Hénon map

f(x, p) = (f(x(1), a)−x(2), β x(1)); f(x, a) = 1−a x2,(2)

c is a coupling parameter between the two subsystems,
and g(x,y) is a coupling function of the form

g(x,y) = (g(x(1), y(1)), 0); g(x, y) = y2 − x2. (3)

For this unidirectionally coupled system with a constant
Jacobian determinant β2 (|β| < 1), the first, master
Hénon map with state variables x can be regarded as
a driver for the second, slave or response Hénon map
with state variables y through the coupling term. Here,
we fix the value of β at β = 0.1.
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For the case of identical Hénon maps (i.e., a = b),
there is an invariant synchronization plane, x(1) = y(1)

and x(2) = y(2), in the x(1)−x(2)−y(1)−y(2) phase space.
However, in the presence of a mismatching between the
two Hénon maps, the synchronization plane is no longer
invariant. To take into consideration such a mismatching
effect, we introduce a small mismatching parameter ε in
the coupled Hénon maps of Eq. (1), such that

b = a− ε, (4)

and consider an orbit {(xn,yn)} starting from an initial
point on the synchronization plane (i.e., x0 = y0). As
the strength of the local transverse repulsion from the
synchronization plane increases, the SCA becomes more
and more sensitive with respect to the variation of ε.
Such parameter sensitivity of the SCA for ε = 0 may be
characterized by calculating the derivative of the trans-
verse variable un (= xn − yn), denoting the deviation
from the synchronization plane, with respect to ε (i.e.
∂un+1
∂ε

∣∣∣
ε=0

= ∂xn+1
∂ε

∣∣∣
ε=0
− ∂yn+1

∂ε

∣∣∣
ε=0

). By using Eq. (1),
we may obtain a recurrence relation

∂un+1

∂ε

∣∣∣∣
ε=0

= r(x∗n)
∂un
∂ε

∣∣∣∣
ε=0

+ fa(x∗n, a), (5)

where ∂un
∂ε

∣∣
ε=0

=
(
∂u(1)

n

∂ε

∣∣∣
ε=0

,
∂u(2)

n

∂ε

∣∣∣
ε=0

)
, and the 2 × 2

matrix r(x∗n) is given by

r(x∗n) ≡
(
fx(1)(x(1)∗

n , a)− c h(x(1)∗
n ) −1

β 0

)
(6)

and

fa(x∗n, a) =
(
fa(x(1)∗

n , a)
0

)
. (7)

Here, fx and fa are the derivatives of f(x, a) with respect
to x and a, {(x∗n,y∗n)} is a synchronous orbit with x∗n =
y∗n for ε = 0, and h(x) is a reduced coupling function
defined by [7]

h(x) ≡ ∂g(x, y)
∂y

∣∣∣∣
y=x

. (8)

Hence, starting from an initial orbit point (x∗0,y
∗
0) on the

synchronization plane, we may obtain derivatives at all
points of the orbit:

∂uN
∂ε

∣∣∣∣
ε=0

=
N∑
k=1

RN−k(x∗k)fa(x∗k−1, a) +RN (x∗0)
∂u0

∂ε

∣∣∣∣
ε=0

,(9)

where RM (x∗m) =
∏M−1
i=0 r(x∗m+i) is a product of the

“transverse Jacobian matrices” r(x) determining the sta-
bility against a perturbation transverse to the synchro-
nization plane and R0 = I (identity matrix). One can

easily show that the eigenvalues, λT,1M (x∗m) and λT,2M (x∗m)
(|λT,1M (x∗m)| > |λT,2M (x∗m)|), of RM (x∗m) are associated
with local (M -time) transverse Lyapunov exponents σT,1M

and σT,2M (σT,1M > σT,2M ) of the SCA that are averaged over
M synchronous orbit points starting from x∗m as follows:

σT,iM (x∗m) =
1
M

ln |λT,iM (x∗m)|, (i = 1, 2). (10)

Thus, λT,1M and λT,2M become local (transverse stability)
multipliers that determine local sensitivity of the motion
during a finite time M . As M → ∞, σT,1M approaches
the largest transverse Lyapunov exponent σ1

T that de-
notes the average exponential rate of divergence of an
infinitesimal perturbation transverse to the SCA. Eq. (9)
reduces to

∂uN
∂ε

∣∣∣∣
ε=0

= SN (x∗0) ≡
N∑
k=1

RN−k(x∗k)fa(x∗k−1, a), (11)

because ∂u0
∂ε

∣∣
ε=0

= 0. In the case of weak synchroniza-
tion, there are transversely unstable periodic repellers
embedded in the SCA. When a typical trajectory visits
neighborhoods of such repellers, it has segments expe-
riencing local repulsion from the synchronization plane.
Thus, the distribution of largest local transverse Lya-
punov exponents σT,1M for a large ensemble of trajectories
and largeM may have a positive tail. For the segments of
a trajectory exhibiting a positive largest local Lyapunov
exponent (σT,1M > 0), the largest local transverse mul-
tipliers λT,1M [= ± exp(σT,1M M)] can be arbitrarily large,
and hence the partial sums S(i)

N (i = 1, 2) may be ar-
bitrarily large. This implies unbounded growth of the

derivatives ∂u
(i)
N

∂ε

∣∣
ε=0

(i = 1, 2) as N tends to infinity,
and consequently the weakly stable SCA may have a pa-
rameter sensitivity.

As an example, we consider the SCA for a = 1.8 in
unidirectionally coupled Hénon maps. A strongly stable
SCA exists in the interval of ct,l (= −2.9) < c < ct,r
(= −0.7). For this case of strong synchronization, there
is no parameter sensitivity, because all periodic saddles
embedded in the SCA are transversely stable. However,
when the coupling parameter c passes a threshold value
ct,r, a saddle fixed point first becomes transversely un-
stable via a period-doubling bifurcation, and then the
SCA becomes weakly stable. For this case, the weakly
stable SCA has a parameter sensitivity, because of local
transverse repulsion of the periodic repellers embedded
in the SCA. Thus, however small the parameter mis-
matching ε, a persistent intermittent bursting, called
attractor bubbling, occurs, as shown in Figs. 1(a) and
1(b) for c = −0.62 and ε = 0.001. As c is varied away
from ct,r, transversely unstable periodic repellers appear
successively in the SCA through transverse bifurcations.
Then, the degree of the parameter sensitivity of the SCA
increases, because of the increase in the strength of local
transverse repulsion of the periodic repellers.
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Fig. 1. Effect of parameter mismatch with ε = 0.001 on the
chaos synchronization for a = 1.8 and c = −0.62. Projections
of a bubbling attractor onto (a) the x(1)−y(1) plane, and (b)

the x(2)−y(2) plane. (c) Log-log plot of parameter sensitivity

functions Γ
(1)
N and Γ

(2)
N for a = 1.8 and c = −0.62. Each Γ

(i)
N

(i = 1, 2) is well fitted with a dashed line with slope 2.15.

To quantitatively characterize the parameter sensitiv-
ity of the SCA, we iterate Eqs. (1) and (5) starting from
an initial orbit point (x∗0,y

∗
0) on the synchronization

plane and ∂u0
∂ε

∣∣
ε=0

= 0, and then we obtain the partial
sum SN (x∗0) of Eq. (11). The quantity SN [= ∂uN

∂ε

∣∣
ε=0

]
becomes very intermittent. However, on looking only at
the maximum

γ
(i)
N (x∗0) = max

0≤n≤N
|S(i)
n (x∗0)| (i = 1, 2), (12)

one can easily see the boundedness of S(i)
N . For this case

γ
(1)
N and γ

(2)
N grow unboundedly, and hence the weakly

stable SCA has a parameter sensitivity. The growth rate
of the function γ

(i)
N (x∗0) with time N represents the de-

gree of the parameter sensitivity, and can be used as
a quantitative characteristic of the weakly stable SCA.
However, γ(i)

N (x∗0) depends on a particular trajectory. To
obtain a representative quantity, we consider an ensem-
ble of randomly chosen initial points (x∗0,y

∗
0) on the syn-

chronization plane, and take the minimum value of γ(i)
N

with respect to the initial orbit points,

Γ(i)
N = min

x∗0
γ

(i)
N (x∗0) (i = 1, 2). (13)

Figure 1(c) shows parameter sensitivity functions Γ(1)
N

and Γ(2)
N for c = −0.62. Note that Γ(1)

N and Γ(2)
N grow

Fig. 2. (a) Plot of the PSEs δ (solid circles) versus c for
a = 1.8. (b) Plot of the laminar phase exponents (LPEs) µ
(open circles) versus c for a = 1.8. They agree well with the
reciprocal of the PSEs (crosses).

unboundedly with the same power δ,

Γ(i)
N ∼ N

δ for i = 1, 2, (14)

because their growth is governed by the same largest
local multipliers λT,1M . Here the value δ ' 2.15 is a quan-
titative characteristic of the parameter sensitivity of the
SCA, and we call this the PSE. By increasing the cou-
pling parameter from the bubbling transition point ct,r,
we obtain the PSEs. To obtain satisfactory statistics, we
consider 100 ensembles for each c, each of which contains
100 randomly chosen initial orbit points, and choose the
average value of the 100 PSEs obtained in the 100 en-
sembles. Figure 2(a) shows the plot of such PSEs versus
c. Note that the PSE δ monotonically increases as c
is varied away from ct,r, and tends to infinity as c ap-
proaches the blow-out bifurcation point cb (' −0.6026).
This increase in the parameter sensitivity of the SCA
is caused by the increase in the strength of local trans-
verse repulsion of the periodic repellers embedded in the
SCA. After the blow-out bifurcation, the weakly stable
SCA becomes transversely unstable, and hence a com-
plete desynchronization occurs.

We now characterize the parameter-mismatching ef-
fect on the attractor bubbling in terms of the PSEs. For
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the bubbling case, the quantity of interest is the average
interburst time τ that a typical trajectory spends near
the synchronization plane. As c is varied from the bub-
bling transition point, such average time becomes short
because the strength of local transverse repulsion of the
periodic repellers embedded in the SCA increases. For
this case, the bubbling attractor is in the laminar phase
when the magnitude of the deviation from the synchro-
nization plane, dn [≡ (|u(1)

n | + |u(2)
n |)/2], is less than a

threshold value d∗ (i.e., dn < d∗). Otherwise, it is in the
bursting phase. Here, d∗ is very small compared to the
maximum bursting amplitude, and this is the maximum
deviation from the synchronization plane that may be ac-
ceptable in the context of synchronization. For each c, we
follow the trajectory starting from the initial condition
(0.2, 0.1x(1)

0 , 0.2, 0.1 y(1)
0 ) until 50,000 laminar phases are

obtained, and then we get the average laminar length τ
(i.e., the average interburst interval) that scales with ε
as

τ ∼ ε−µ, (15)

where µ refers to the laminar phase exponent (LPE).
The plot of the LPE µ versus c is shown in Fig. 2(b).
As c increases, the value of µ decreases, because the av-
erage laminar length shortens. Note that this LPE µ
is associated with the PSE δ as follows. For a given ε,
consider a trajectory starting from a randomly chosen
initial orbit point on the synchronization plane. Then,
from Eq. (14) the “average” time τ at which the mag-
nitude of the deviation from the synchronization plane
becomes the threshold value d∗ can be obtained:

τ ∼ ε−1/δ. (16)

Thus, the two exponents have a reciprocal relation,

µ = 1/δ. (17)

The reciprocal values of δ are also plotted in Fig. 2(b),
and they agree well with the values of µ.

In summary, we have introduced a quantifier, called
the PSE, to quantitatively measure the degree of sensi-
tivity of the SCA with respect to the variation of the mis-
matching parameter in coupled invertible Hénon maps.
In terms of these PSEs, the parameter-mismatching ef-
fect on the attractor bubbling has been characterized. It
has thus been found that the scaling exponent for the
average interburst time is given by the reciprocal of the

PSE. Besides the parameter sensitivity, the weakly stable
SCA becomes sensitive with respect to noise. This noise
sensitivity can also be characterized in terms of noise
sensitivity exponents (NSEs), as in coupled 1D maps [8].
Thus, the method of characterizing the parameter and
noise sensitivity of the weakly stable SCA in terms of
PSEs and NSEs has been extended to high-dimensional
invertible systems such as coupled Hénon maps and pen-
dula [9].
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