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Fractal properties of robust strange nonchaotic attractors in maps of two or more dimensions
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We consider the existence of robust strange nonchaotic attractors in a simple class of quasiperiodically
forced systems. Rigorous results are presented demonstrating that the resulting attractors are strange in the
sense that their box-counting dimensibr is larger than their information dimensidd, by 1 (i.e., Dy
=D,;+1). We also show how this property is manifested in numerical experiments.
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I. INTRODUCTION measure Cantor set in parameter space. In the case ¢I)EqQ.
for example, consider the rotation number

The phrasestrange nonchaotic attractaqiSNA) [1] refers
to an attractor that is nonchaotic in the sense that its orbits W= lim (¢,— ¢o)/(27n), 2
are not exponentially sensitive to perturbati@e., none of n—oo
the Lyapunov exponents are posifivéout the attractor is
strange in the sense that its phase space structure has navhere for this limit, ¢,, is not computed modulo #. For
trivial fractal properties. Past studies indicate that SNAs arefixed w, £>0, andC>0, a plot of W versusw,, yields an
typical in nonlinear dynamical systems that are quasiperiodiincomplete devil's staircase, a nondecreasmg graph consist-
cally forced. Here by a typical behavior we mean that theing of intervals ofw, . whereW(w,,) is constant and with the
behavior occurs for a positive measure set of parameter vaincrease ofV(w,,) occurrmg only on a Cantor set of positive
ues. Alternatively, if parameters are chosen at random fronmeasure. For smaH the values ofw, on the Cantor set
an ensemble with a smooth probability density, then thecorrespond to orbits that are three frequenues quasiperiodic,
probability of choosing parameters that yield a typical be-but for largere they correspond to SNAs. Because an arbi-
havior is not zero. The description of a behavior as typical igrarily small perturbation ofv,, from a value in the Cantor
to be contrasted with the stronger statement that a behavior &t can result in a value o, out5|de the Cantor set, these
robust In particular, we say that the behavior of a system iSSNAs are not robust. On the other hand, because the Cantor
robust if it persists under sufficiently small perturbations;get Ofw‘P values has a positive Lebesgue meagpesitive
i.e., there exist a positive valugsuch that the robust behav- |ength”), these attractors are typical for Eq).
ior occurs for all systems that can be obtained by perturba- Other studies suggest that there are situations where
tion of the original system by an amount less t&aThus all ~ SNA's are robusf1,6—17. The experiment of Dittet al.[6]
robust behaviors are also typical, but not vice versa. on a quasiperiodically forced magnetoelastic ribbon pro-

With respect to SNAs, examples where they are typicalduced evidence of a SNA, and the existence of this SNA
but not robust have been extensively studi2et5]. An ex-  appeared to be stable to parameter perturbations. The origi-
ample of this type is the quasiperiodically forced circle mapnal paper where the existence of SNAs in quasiperiodically

given by the systeri3] forced systems was first discusgdd gives numerical evi-
dence of robust SNA’s. In addition, the effect of quasiperi-
Op+1=[0,+ w](mod2i), (18 odic perturbations on a system undergoing a periodic dou-

bling cascade has been investigated, and evidence has been
presented suggesting that, after a finite number of torus dou-
blings, a robust SNA resul{g,9].

Thus there seem to be two types of SNAs: typical, non-
where(Q)= /27 is irrational. Other examples of typical non- robust SNA's, and robust SNAs. In this paper we study a
robust SNA's involving differential equations have also beenclass of models exhibiting robust SNAs. The model class
studied[2,4]. Numerical evidenc¢3,4] and analysis based that we study is particularly interesting because it allows the
on a correspondend®,5] with Anderson localization in a possibility of rigorous analysis. In particular, we are able to
quasiperiodic potential leads to an understanding of the typiprove, under the mild hypothesis that a certain Lyapunov
cal but nonrobust nature of SNA's in these examples: In parexponent is negative, that the attractor is strange and noncha-
ticular, it is found that SNAs exist on a positive Lebesgueotic. Since other cases of SNAs are likely to be accessible

only to study by numerical means, it is worthwhile to inves-
tigate our, more well-understood models numerically. By do-
*Permanent address: Department of Physics, Kangwon Nationaing this we gain insight into the applicability and limitations
University, Chunchon, Kangwon-Do 200-701, Korea. of numerical techniques for the study of SNA's.

en+1=[ent w,+esing,+Ccosh,](mod2mr), (1b)
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In this paper we consider quasiperiodically forced maps,
which can be motivated by the consideration of a system of C "
ordinary differential equations in the formdx/dt ‘
=F(x,& 6D, 0, ... ,6MN), whereF is 27 periodic in the ) '
angles¢ and 6, which are given by=wt+ &, and 6 ’
£ 0 /C\
L

= wyit+ 605, andw,, w4, . . . wyn are incommensurate.
Sampling the state of the system at discrete titpegven by

&=2n7, we obtain a mapping of the form I |

00 =1 60+ »M](mod2m), (33 0 2n
- 1) @) N) FIG. 1. Torus unwrapped in the direction (=0 and =2«
Xnr1=F(Xn, 057,60y, ...,047), (3b) are identified with each othefThe map(5) takes the curve€ to the
) curveC’.
wherex,=x(t,), 0)=27wy/w,;, and there exist no set
H 0 1 N H N i i
of mtegoe)rs Q"l( ), m®), . .(().),m((l;) for V\ml)ch SLmOe® being a scalar angle variablas in Sec. i. For the map of
=2mm™, aside from ™, m™, ... m™)=(0,0,...,0).  gec. IIlA, we consider one component nfto be an angle
For the map(3), the s(llrgwpl(eé\)st pOSS(I'\t‘))|e attractor IS an yarigble and the other component to be analogous to a radial
N-dimensional torusx=f(¢'~, 6, ... ,6""). In this paper,  yariable. Thus, if, on the attractor, the radial coordinate de-

we  consider the case where an attractingpends smoothly on the other two variabléshich are
(N+1)-dimensional torus exists, and the dynamics on thgngles, then the attractor lies on a two-torus, and the con-
torus is given by siderations of Sec. Il apply directly. On the other hand, the
) _ra) e () existence of such a smooth two-torus is in question, and this
On+1=[0;"+ @] (mod2m), (43 is the main issue addressed in Sec. Il A. For the map of Sec.
Il B we are able to generalize the rigorous approach of Sec.
ene1=[entqP o +q@ P+ . +qM oY I1A to show that for this class of mapB,=N+1, while
1 (2 N D;=N. In addition, numerical experiments are performed to
+P(en, 0,65, ... 60"))(mod2m), (4b) te;t the convergence of dimensiopn computationz to these val-

where P is periodic in all its variables andq®, Y&

q®, ....g™ are integers. We are particularly interested in

the case in which Eq4b) is invertible, so that no chaos is Il. TWO-DIMENSIONAL MAP ON A TORUS
pqssible, and when at Ie_ast og® is nonzero, which as we A Existence of SNA

will see prevents the existence of an attractigprus.

In Sec. Il we examine the simplest case whéte1 We investigate the simplest case of E8) whereN=1
(69— g). Section Il A presents numerical experiments and(#"’— 6) and the state variable is one dimensional. Spe-
rigorous analysis of this two-dimensional map model. In par<ifically, we takex to be an angle variable, so that the map
ticular, we prove(subject to a mild hypothesis on the nega- Operates on a two-dimensionéte torus. Within this class
tivity of a Lyapunov exponeitthat, for our class of maps, We restrict consideration to maps of the form
the information dimension of the SNA is Dg=1), while
its box-counting dimension is 20,=2) [13]. Thus we rig- On+1=[ 60+ w](mod2m), (58
orously characterize the nature of the strangeness of the
SNA's for our model[In a previous work14] it was argued @n+1=[ 00t @nt 7P (64, @n)](Mod27), (5b)
(nonrigorously that D;=1 and Dy=2 for the two-
dimensional SNA map introduced in Ret].] We conjecture  where o= m(\5—1), andP(8,¢) is continuous, differen-
that D;=1 and D,=2 typically holds for SNAs of two- tiable, and 2r periodic in both of its argumentsf(and ¢).
dimensional quasiperiodically forced map., maps of the When 7 is small enough |@7| < 7.), this map is invertible.
form 6,,,=(0,+w)mod2w, ¢, 1=F(e,,6,) with Q  Thatis, the map is solvable foB{,¢,) when @n.1,¢n+1)
= /27 irrational]. Also, in Sec. Il A we present numerical is given. We choose a simple functi®{ ¢, ¢) = sing for our
experiments on dimension calculationsiof andD,, and of  numerical work. In this case, the system is invertiblgzjf
the Lyapunov exponent for our map. Section |l B investigates<1. Furthermore, since the map is invariant under the
the dynamical origin of SNA's as a limit &3 approaches its change ofp— — 7 ande— ¢+ , it is sufficient to consider
irrational value through an infinite sequence of finer and fineonly the casep=0.
rational approximationgl5]. It turns out that this technique Figure 1 illustrates how a curv€ on the #-¢ toroidal
yields substantial insight into the structure of SNA's, as wellsurface is mapped to a cur@ by the map5). Note that the
as additional understanding of why,;=1 andDy=2 ap- torus is unrolled in thed direction to visualize the whole
plies. curveC in a two-dimensional surface, but still rolled in tipe

Section Il considers higher-dimensional maps. In particu-direction. The curveC circles around the torus in the di-
lar, Sec. Il A considers the case wherén Eq. (3b) is two  rection, but does not wrap around the torus in thelirec-
dimensional andN= 1, while Sec. Il B considerbl>1 with  tion. After one iterate of Eq.5), the curveC is mapped to a
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curveC’ that wraps once around the torus in théirection. 0
This behavior comes about due to the tefmon the right-
hand side of Eq(5b), becaus&+ ¢+ nP(0,¢) increases by
27 asé increases by 2. Similarly, applying the map t€’ : 5
produces a curve with two wraps around the torus inghe h
direction, and so on.
The main results of our numerical experiments and rigor- °
ous analysis of Eq(5) with | 7|< 7. are as follows. ’
(i) The map(5) has a single attractor. 03
(i) For typical P(6,¢), the attractor has a Lyapunov ex- 0 0.2 n? 0.6 0.8
ponenth, that is negative form# 0.
(i) The attractor has information dimension 1 far
#0.
(iv) The attractor is the entir@-¢ torus and, hence, has a
box-counting dimension 2. virtue of [5"P d¢=0. Since we cannot show the conver-

(v) These results are stable to the perturbations of the T ;
system gence of an expansion in, our result(7) is formal rather

We first establisti) using an approximate formula for, than rigorous. However, numerical results strongly support

: L . Eq. (7). Figure 2 shows a plot dfi, versus# for P(6,¢)
for small ». Our evidence fof(ii) is strong but a rigorous . ¢ : .
mathemat?cal proof is Iackinng Ii‘ we adogt) as a hspoth- —sine. Remarkably, Eq(7) (the straight ling describes the
esis, then all the other results rigorously follow. numerical data to better than 8% even #p@as large as 0.5.

Lyapunov exponend rajectory of the may(s) has wio - /SRR T B A DR I NORE O
Lyapunov exponentd, andh,, whereh,=0 is associated d b

. . g . dynamics. In addition, the Lyapunov dimension is an upper
with Eq. (58 andh, is associated with Eq5h). The latter . . . ) .
exponent is given by the formula bound of information dimensiofiLl7]. Therefore, if we ac-

cept(ii), h,<O0, thenh,=0 implies (iii ).
Resultg(iii ) and(iv) quantify the strangeness of the attrac-
h(P:f In[1+ 7P (0,¢)]du, (6)  tor. In particular, since the information dimension of the at-
tractor is 1, orbits spend most of their time on a curvelike set;
whereP = dP/d¢, andu denotes the measure generated byyet, since the box-counting dimension is 2, if one waits long
the orbit from a given initial point €y, o). enough, a typical orbit eventually visits any.ne|ghborhood on
If h,>0 for a particular trajectory, then, sinbg=0, the the 0-¢ torus..One can get a sense of 'thIS resu_lt from the
map exponentially expands areas near the trajectory in th@umerical orbit shown in Fig. 3, in which a trajectory of
limit n— 0. Since the#-¢ torus has a finite area, if the map length 1d.appears to be concentrated along one—dlmgnsmnal
is invertible, then there cannot be a set of initial points ofStrands{Fig. 3(@], but for the same parameters a trajectory
nonzero areapositive Lebesgue measiiréor which h,  Of length 16 fills much more of thef-¢ torus[Fig. 3(b)].
>0, and the map thus does not have a chaotic attractor. Thus W& show in Fig. 4a) a plot of logN(e) versus log(1/s),
h,<0 for typical orbits. and in Flg..4b) a plot of X p;log,(1/p;) versus log(1/e).
Furthermore, we argue tha,<O for small nonzerop. ~ Here N(e) is the number ofeXe boxes(in f-¢ space
We consider first the case=0, for which Eq.(5b) becomes néeded to cover the points from an orbit of lengthandp;
@ns1=(0,+ ¢,)(mod2m). If we initialize a uniform distri- 1S the fracuon of tho;e orbit points in thqzh exe bo>_<.
bution of orbit points in thed-¢ torus, then, on one applica- According to our previous arguments on dimensions, in the
tion of the =0 map, the distribution remains uniform. Fur- limit T—oo, the points in Figs. @) and 4b) should follow a
thermore, this uniform distribution is generated by the orbitStraight line of slope 2 and 1 for smal| corresponding to a
from any initial condition. To verify this, we note that the box-counting dimension of 2 and an information dimension
explicit form of an =0 orbit, 6,=(6y+nw)(mod2w),
on=[@o+Nb+ 3(n>*—n)w](mod27), is shown to gener-
ate a uniform density in Ref16]. We can obtain an approxi-
mation toh, for nonzero but smalky by expanding In(1
+7P,) in Eq. (6) to order »? and assuming that, to this :
order, the deviation of the measysefrom uniformity is not ¢ y
significant [du~d@de/(27)?]. Using In(l+ nPy)=1nP, g
—(1/2)7*P5+0(7%), this gives

FIG. 2. Lyapunov exponent, vs »?. For eachy, the data
plotted as open circles were computed fronT it@rations of the
map (5) with w=m(\/5—1) andP(8,¢)=sine.

21
E|

1
h,=—=7%(P2)+0(7?), 7
¢ 27]< o007 @ FIG. 3. Trajectory of the map5) with w=m(\56-1), 75

o ) ) =0.3, andP( 4, o) =sin¢. In each cas#,= ¢,=0, and 10 points
which is negative for small enough 0. Here(P{) denotes  of the trajectory are computed before plotting;(@ the next 16
the #-¢ average ofP?, and the orderp term is absent by points are plotted, whiléb) shows 16 points.

036211-3



KIM et al. PHYSICAL REVIEW E 67, 036211 (2003
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FIG. 5. (a) Thenth iterate ofS, intersectsS, . Thenth preiterate
FIG. 4. Dimension computations for E¢5) with 7=0.3, o of this intersection pointdenotedp) is a point onS, that goes t@&,
=m(\/5—1), andP(8, ) =sine. In (a) the dashed line has slope 2, in n iterates.(b) S, plus its first two iteratesM(S,) and M2(S,),
while in (b) it has slope 1. In each graph, the curves from lowest tocover the entire 2 range of6. M(S,) andM?(S,) are shown as
highest represenf=10°,10", . ..,13% in (b) the final five curves thin lines. The curves,, which includesS,, pieces ofM(S,) and
are virtually identical. M2(S,), and vertical segments connecting these pieces, is shown as
a dark thick line.

of 1. As is commonly found, the box-counting dimension
computation converge rather slowly with increasing orbit=g,(6#) has a finite numbed, of discontinuities. Each con-
length T. Thus, we show plots in Fig. 4 for several different tiguous piece of this graph is a forward iterate of some piece
T. As can be seen in Fig(@), thee range consistent with a of S, .
slope of 2(the straight line in the figujesteadily increases Now form the curveG, by taking the graph ofj, and
toward smallek [larger log(1/e)] asT increases. This is in  adding line segments in the direction at each value of
contrast with Fig. &), which appears to reach a form inde- whereg, is discontinuous(We take these segments to lie in
pendent ofT that is consistent with a small slope of 1. 0<¢p<27.) Thus we makés, a contiguous curve. See Fig.
While the convergence in Figs(a and 4b) is consistent 5(b), which illustrates this construction for a case whege
with box-counting and information dimensions of 2 and 1,=3. Notice that, for each, the nth iterate ofG, is also a
the slowness of the convergence also indicates that a purefjontiguous curve that consists of the graph of a function with
numerical determination of the dimension values is suspecid, discontinuities, together wittl, “connecting segments.”
Topological transitivity.To establish result¢i) and (iv),  Defineg, andG, similarly tog, andG,, but in terms of the
that the attractor of the map is in the whalep torus, we  backward iterates of th§, . Letd, be the number of discon-
prove that the map i®pologically transitive For every pair  tinuities ofgp.
of open disksA and B, there is a trajectory that starts A Our goal is to show that fon sufficiently large M™(G,)
and passes through This property is known to imply that a intersectsG,, for at leastd,+d,+1 different values off.
dense set of initial conditions yields trajectories each Ofrhen since there are at maki-+ d,, values ofé at which one
which is dense in the torysi8]. In particular, any attractor of these two curves has a connecting segment, there will be
having an open basin of attraction must contain a dense orbigt |east one intersection point between thk iterate of the
and, hence, must be the entire torus. graph ofg, and the graph ofy,. Since the graph ofj,
Let M be the map(5). We will show in fact that for every  consists of forward iterates & and the graph ofy,, consists
pair of line segmentsS,={(6,¢):0eR, and ¢=¢.} and  of hackward iterates of,, some forward iterate o, will
S:={(0.¢):0R, and ¢=¢p}, where R,=(6a,02+3a)  intersectS,, as we claimed.
and R,=(6y,0p+ Jp), there is a finite trajectory o¥ that As noted before(see Fig. 1, each successive iteration
begins on the first segment and ends on the sed@ftos-  \"(G,) “wraps around” the torus in thep direction once
ing S, to lie in A andS,; to lie in B, this implies topological  more than the prior iteratioM "~1(G,). The number of
transitivity) In other words, we will show that theth iterate wraps of such a curve is more formally called the “winding
of S, intersectsS, for some positive integet; see Fig. ).  number” of the curve, and may be any integgrossibly
Our strategy is to iterat&, forward until the union of its negative. For example, in Fig. ®) the winding number of
iterates covers all values df at least once; the number of G, is 0. Asn increases, the winding number BI'(G,) will
iterates needed is finite and depends onlyspn By select-  eventually exceed the winding number @f, by at leastd,
ing pieces of these iterates that cover each valug etactly +d,+1. HenceM"(G,) intersectsGy, for at leastd,+d,

once, we form the graph=g,(¢) of a piecewise continuous 1 different values o as desired. This establishes claims
function g,; see Fig. B). Similarly we form a graphe (i) and (iv).

=0p(0) from pieces of backward iterates §f . Finally, we Notice that the argument above does not depend on the
show that some forward iterate of the graphggfmust in-  specific form ofP(6, ), only that it is continuous and pe-
tersect the graph afj, . riodic and thaty is sufficiently small (7| < 7.), so that the

The following is a formal definition 0f,. LetM, be the  map(5) is one-to-one. This independence of the results from
map (5a). For eachd, letk(¢) be the smallest non-negative the specific form oP (6, $) implies that the results are stable
integer for whichge M%”(Ry). [In Fig. 5b), k(6)=0, 1,  to system changd®ur claim (v)] that preserve a quasiperi-
or 2 for all 6.] Let g,( ) be theg coordinate of th&k(#)th  odic driving component5a).
iterate underM of (Mgk(e),qo)esa. Then the graphe Discussion.The possible existence of SNA's was origi-
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nally pointed out in Ref[1], and many numerical explora- on . on ) .
tions of the dynamics on attractors that are apparently / : | / /

strange and nonchaotic have appeared. Recently, there has
also been rigorous results on the mathematical properties that ¢ L / 4 o x
SNA's must have if they exigtl9]. In spite of these works, a /

very basic question has remained unanswe@sath it be rig- B £ / /
orously established that SNA's generically exist in typical 0 ] 1o 0 L
quasiperiodically forced system3his is an important issue, g
because, although the numerical evidence for SNA's is very 6
strong, perhaps the attractors observed are nonstrange witha 2= r . . o T ( m

|

very fine scale structur@ather than thenfinitesimallyfine |
scale structure of a truly strange attragtéso, there might / :
be the worry that the numerical evidence is somehow an S = ;
artifact of computational error. Our proof of topological tran- X _ i
sitivity, combined with the hypothesis that,<0, answers . : ) / )
the question of the typical existence of SNA& irmatively) 0 . on 0 n
(Ref. [13] contains a preliminary report of our workThe oF 9
only previous work rigorously establishing the existence of a (f)
SNA is that appearing in the original publication on SNAs 2n T 2n T M ”r ﬂ]' ( T M
21 il

| R I

[1] and in Ref.[20]. These proofs, however, are for a very
special class of quasiperiodically forced system such that an
arbitrarily small typical change of the system puts it out of € ™[ 1 e

the class. Thus this proof does not establish that SNA's exist L - : l
in typical quasiperiodically forced situations. In order to see ol 4 , ol

that nature of this situation with respect to Rdf5.20], we 0 n 2n 0 T
recall the example treated in Ré¢fl]. In that reference the oF .. ]
map considered was, . ;=2\ (tanhk,)cosd,=1(X,,6,), with

6, evolving as in Eq(54d). It was proven in Refl1] that this FIG. 6. RAs for »=0.3. The levels ar&=6 in (a) and (b), k

map has a SNA fox> 1. However, the map has an invariant =8 in (c) and(d), andk=11 in (e) and(f). In the first column the

set, namely, the linx=0, 6 in [0,27), and this fact is RA in the basic interval ob is given, while in the second column
essential in the proof of Refl]. On the other hand, the the RAin the whole range o is given. The quasiperipdic compo-
existence of this invariant set does not persist under pertuflentis represented in gray dots and the main periodic component is
bations of the map. Thus, if we perturifx,d) to f(x,¢)  denoted by the solid line.

+eg(x, ), the invariant set is destroyed, even for small remaining range[1/F,,1), may be obtained throughF(
for any typical functiong(x, #) [in particular, an arbitrarily  — 1) jterations of the result if0,1/F,). For a giverk we call
choseng(x, #) is not expected to satisfy(0,0) =0]. the periodic attractors of peridg, the “main periodic com-
ponent.” The first column of Fig. 6 shows that the Lebesgue
measure of the main periodic componédenoted by the
solid line) becomes dominant as the leveincreaseqi.e.,
Using rational approximation®RA's) to the quasiperiodic  the fraction of thed axis corresponding to the nonperiodic,
forcing, we now investigate the origin for the appearance ofyray area decrease8y iterating the RA in the basic interval
SNA’s in Eq. (5) for P(68,¢)=sing andw= 77(\/5—1). For  of ¢, we obtain the RA in the whole range 6f as shown in
the case of the inverse golden me@rs w/2m, its rational  the second column of Fig. 6. Asincreases, the whole RA
approximants are given by the ratios of the Fibonacci numbecomes more similar to its quasiperiodic limit given in Fig.
bers, Q,=F,_,/F, where the sequence ¢f,} satisfies 3.
Fri1=F+Fg_q with F=0 andF,;=1. Instead of the qua- We first note that forp=0 the RA to the regular quasip-
siperiodically forced system, we study an infinite sequenceriodic attractor consists of only the quasiperiodic compo-
of periodically forced systems with rational driving frequen- nent. However, ag becomes positive, periodic components
cies(),. We suppose that the properties of the original sys-appear via phase-dependéine., 6,-dependentsaddle-node
tem may be obtained by taking the quasiperiodic likiit bifurcations. As examples, see the first column of Fig. 6.
— 00, Here the quasiperiodic component is plotted in the gray.
For each RA of levek, a periodically forced map with the “Gaps” in the gray quasiperiodic components are occupied
rational driving frequency, has a periodic or quasiperiodic by the main periodic componentslenoted by solid lings
attractor that depends on the initial phageof the external  with period F, and the minor periodic components with
force. Then we take the union of all attractors for differégt  higher periodmF, (m=2,3,4...). Figures 7a) and 1b)
to be thekth RA to the attractor in the quasiperiodically show the saddle-node bifurcation curves in thg-7 plane,
forced system. Furthermore, due to the periodicity, it is suf-at which the main periodic components with peried are
ficient to obtain the RA by changing, only in a basic in-  born. It can be easily seen that for a giventhe width of the
terval 6,€[0,1F ), because the RA to the attractor in the main gap(occupied by a perioé~, attractoy becomes larger

2n

B. Origin of SNA’s: Rational approximation
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FIG. 8. Plot ofh{!(6) vs 6F ¢ for () »=0.1 and(b) =0.3. (c)

FIG. 7. Phase-dependent saddle-node bifurcation lines for thelot of (h{M) vs #? for the three levelk=6, 7, and 8. The solid
main periodic components. The cases of the lewel6,9,12 are  and dashed lines denote the Lyapunov exponents in the quasiperi-
shown in(a), and other cases witk=7,8,10 are given irfb). (c)  odic limit that are obtained numerically and analytically, respec-
Plot of In(1— w4 vs Fy for »=0.3. Solid points denote the data for tively.
levelsk=6, . . .,12, which are well fitted with a dashed straight line
with slopea=0.013. We now discuss the strangeness of the attractor in the

quasiperiodic limit forp=0.3. In the quasiperiodic case, we
ask increases. Quantitatively, it is found that the Lebesguéhave seer(Fig. 3 that a typical trajectory seems to fill the
measureu, in 6 for the main periodic component becomes whole torus densely, but, unlike the case of the regular qua-
dominant ask increases; i.e., the Lebesgue measure (Isiperiodic attractor, it appears to spend most of its time on a
— ) of the complementary set decreases exponentiallget of 1D strands. We identify these apparent 1D strands with
with Fy; (1— ) ~e “Fk, where «=0.013, as shown in thek— limit of the main periodic component. Although, as
Fig. 7(c) for »=0.3. k becomes larger, the Lebesgue measure of the quasiperiodic

In what follows, we use the RA’s to explain the origin of region approaches zefidig. 7(c)], these quasiperiodic re-
the negative Lyapunov exponeh, and the strangeness of gions become dense if. Since each quasiperiodic region
the SNA. For a given levek of the RA, Iethfpk)(a) denote fully covers theg interval[0,27), the attractor is expected
the Lyapunov exponent of the attractor corresponding to 4 occupy the entir&-¢ torus, and, hence, it is expected to
given ¢. Thush(¢)=0 for ¢ in the quasiperiodic range have a box-counting dimension of 2.

(gray regions of Fig. pandh{!(9) <0 for ¢ in the periodic
range (gaps in the gray regiohsSince the attractor with l1l. HIGH DIMENSIONAL MAPS
irrational o generates a uniform density th[see Eq.(5a)], A. Radial perturbations of the torus map

we take the ordek-RA to the Lyapunov exponertt, to be - ) o
We now show that stability to perturbations applies, in

1 (2= addition, if the system is higher dimensional. In particular,
(hy=—1 h®(ade (8) i imensi ;
e/ 2m]y e : we discuss the case of a three-dimensional system with an
attracting invariant torus, and allow perturbations of the tor-

For >0, due to the existence of periodic components,Oidal surface. Consider the following map &%:

(h%) is negative. Asy increases for a given levéd, the

Lebesgue measure if for the periodic components in- On+1=[0p+ w](mod2m), (9a)
creases, and hendefpk)(e) becomes negative in a wider
range in#, as shown in Figs. @) and 8b) for level k=6. Ons1=[0n+ @nt+ 7P(6,,¢0n,rn)](mod27),  (9b)
Thus, asy increases(h{¥’) decreasefsee Fig. &)].

In addition, we note that as the levieincreases, the RA M 1= +pQ(6h,0n,rn). (90

to the Lyapunov exponeift, converges rapidly to its quasi- ]

periodic limit [represented by the solid line in Fig(dB]. For ~ Here o and¢ are coordinates on a torus embedde®n as '
comparison, the approximate analytic result figr (i.e., h,, in Fig. 1, andr isa coordinate transverse to the torus, with
= — 5%/4) is also givensee the dashed lineConsequently, =0 representing the unperturbexl=t p=0) torus. The pa-
for any nonzeroy the attractor in the quasiperiodic limit has rameterso and », and the dependence & on 6 and ¢,

a Lyapunov exponent whose value decreasespds in-  have the same properties as for m@p, andQ is continu-
creased. ously differentiable and 2 periodic in § and ¢. When\
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1 1

(@ (b)
0.5 0.5
r r /"’
-0.5 -0.5
-1 -1
0 0 2n 0 0 2n

FIG. 9. Attractors in two-dimensional surfacea) r vs 6 at ¢
= surface andb) r vs ¢ at #=a with p=0.5, A\=0.5, andy
=0.3 (h,=—0.024 anch,=—1.370).

and p are small, Eq(9) maps a neighborhood of the torus
r=0 into itself, and wherp=0 the torusr=0 is invariant

PHYSICAL REVIEW E 67, 036211 (2003
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FIG. 10. Dimension computations for E() with »=0.3, A
=0.5, p=0.5, w=m(y5-1), P(6,¢)=sing, and Q(6,¢,r)
=sin(+¢). In (a) the dashed line has slope 2, while (i) it has
slope 1. In each graph, the curves from lowest to highest represent
T=10% 10, ... ,10; in (b) the final four curves are virtually iden-

and attracting. It then follows from classical results on thetical.

perturbation of invariant manifoldgl8] that, for A and p
sufficiently small, the maj®) has a smooth attracting invari-
ant manifoldr =f(6,¢) near the torus=0. On this attrac-
tor, the map(9) reduces to a map of the forrtb), with
P(60,0)=P[0,¢0,f(0,¢)]. Thus statement§)-(v) above ap-
ply also to the attractor of the three-dimensional ni@p

The above arguments depend on the existence of a smooth

driving variablesg™™, 6@, ... 6™, For exposition we as-
sumeN=2, but the argument is virtually identical for ail.
In particular, we consider a map of the form

invariant torus on which the attractor is located, and this is

guaranteed i\ andp are sufficiently small. We now show

numerical evidence for the existence of a smooth invariant
torus for values ol andp that are appreciable. We consider

the exampld?(a,cp,r)zsimp andQ(8,¢,r)=sin(r+¢). We

02, =16"+ o™M](mod2m), (109
62, =[ 62+ @] (mod2r), (10b)

Pn+1™ [q(l)0g1)+ q(2)0§12)+ ®n
+ P08, 07 n)](mod2m), (109

where o® and »® are incommensurateg{*),q®®) is a
pair of integers different from (0,0), and(6*),6?, ¢) is
continuous, differentiable, andm2periodic in all of its argu-

numerically obtain two-dimensional plots of intersections of j,ants 6V, 62, and¢). We assume without loss of gen-

the invariant torus with the surfaces= = [Fig. 9a)] and
0= [Fig. Ab)]. First consider the casg= 7. Our numeri-

erality thatg®+0.
Let Ry={(6W,6®):6V<gM<(sV+5,) and 62

cal technique is as follows. We choose an initial value<9(2)<(agz)+5a)} and R,={(61), 9): gl < 6(1)<(0§1)

(6,90=) and obtain @_,,¢_,) by iterating Egs.(9a)
and (9b) backwardn steps. Sincén,~In\<0 (when p<<\
<1), r_,—*o asn—tw if ryis not on the torus. In other
words, ifr _,=0, thenry approaches the torus &s—tw.
Thus, we choose ,=0 and iterate (_,,0_,,¢_,) for-
ward (n>1) steps to (g, 6y,90=). By varying 6y, we
obtain an approximation to the graply(6,) of the torus
intersection withp = 7. Similarly, choosing ¢o= 7, ¢o) and
iterating the map9) backward, and then forward, we can
obtain an approximationy(¢,) to the equation of the torus
intersection with#= 7. (For our numerical experiments, we
setn=25.) As shown in Fig. 9, a smooth invariant torus
exists in the parameter region wher@nd\ are appreciable.
In Figs. 1@a) and 1@b) we show dimension computations
for the map (9) with P(6,¢,r)=sin(e) and Q(6,¢,r)
=sin(+¢). [In this three-dimensional case we empley
edge length cubes ind(¢,r)-space} As for Fig. 4 we ob-
serve from Fig. 10 that the results are consistent with slo

convergence to the predicted dimension values of 2 and 1 agy

the orbit lengthT is increased.

B. Map on a high-dimensional torus

In Sec. Il. A we proved that Ed5) is topologically tran-

+68p) and 6P< 0@ < (62 + 5,)} be two arbitrary squares
in the 6™M-6' torus, and leS,={(8%, 0, ¢): (61, ()
eR, and ¢=¢,} and S,={(6W,0? ¢):(6V),063)

e Ry ando= ¢y} be a pair of square segments, wherg
and ¢, are arbitrary. As before, we will show that there is a
finite trajectory that begins o8, and ends org, .

In this case, we proceed by iteratiRy forward until the
union of its iterates covers all point®'®, =) at least once
(see Fig. 11 The number of iterates needed is finite. Then
we select pieces of these iterates that single covers a thin
strip D,={(6W,6?): r<#@<m+¢,} with rectangles of
width e,. From the corresponding pieces of the correspond-
ing iterates ofS,, we form the graphp=g,(6V, ) of a
piecewise continuous functiog, defined onD,. Similarly
we form a graphp=g,(6*, 6®)) on a stripD,, from pieces
of backward iterates dRp{ ¢p,}. As before, we will show that
some forward iterate of the graph gf, must intersect the

V\(T:]raph ofgy,

Next, form the stripG, by taking the graph ofj, and
ding “connecting faces” at each of thk, values of 9!
where g, is discontinuous, so as to mak®, a contiguous
strip. The construction o6, is essentially as shown in Fig.
5(b), except that it now has some thickness in & direc-
tion (not shown. For eachn, thenth iterate ofG, is also a
contiguous strip that consists of the graph of a function with

sitive. Here we show how this argument can be modified tai, discontinuities in the?*) direction, together withi, con-

higher dimensional maps that includ&>1 quasiperiodic

necting faces, over a strip in t#V-6(?) torus of widthe , in

036211-7
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Our numerical experiments also give a sense of the above
proof. In order to obtain two-dimensional plots, we count
points when the trajectory passes through a thin slab of width
6<1 containing the?"-¢ surface(For our experiments, the
width of the slab is6=0.01.) The results we obtain for the
intersections of the attractors with th#?)= 7 surface and
the 6Y)= 7 surface are qualitatively similar to the figure for
the two-dimensional cadgig. 3).

IV. CONCLUSION

0 oM on In this paper we addressed the existence of robust strange
nonchaotic attractors. We provided rigorous analysis for the
FIG. 11. Construction of the domal, (shaded regionof g,.  two-dimensional map(5) in Sec. IIA and for the
(N+1)-dimensional maps of the form of E@3) in Sec.
the 6 direction. Notice though that the strip moves a dis-111 B. In particular, we have shown that the information di-
tancew'® in the §(?) direction with each iteration. Defirg, ~ mension of the attractor for these map®ig= N, while the
andGy, similarly tog, andG,, but in terms of the backward box-counting dimension i®,=N+1 [21]. In addition, we
iterates ofS,, and letd,, be the number of values @) at  have used a rational approximation technig8ec. 11 B to
which g, is discontinuous. investigate the dynamical origin of SNA's, as well as to gain
As before, we can define the winding number of stripsadditional understanding on why, in odr=1 exampleD,
like G, and G,,, representing the net number of times the=1 andDy=2. In Sec. Ill A, we show that the stability to
strip wraps in thep direction asd!) increases from 0 to 2. perturbations(robustness continues to apply in systems
The winding number can be computed for any fixed value ofe.g., Eq.(9)] where there can be an attracting torus. We also
6 and does not depend on that value. With each iteratiomarried out calculations to see how our rigorous dimension
of Eq. (10), the winding number of such a strip changes byresults are manifested numerically. Our results confirm the
qV+0. Therefore fon sufficiently large, the winding num-  existence of SNAs as a generic phenomenon of quasiperi-
ber of thenth iterate ofG, differs from the winding number odically forced systems.
of G, by at leasd,+d,+ 1. Furthermore, by increasinyif
necessary, we can ensure that the domains of these two strips
intersect; that is, they have a common valug@i. Then for
that value ofg(®), it follows as before that thath iterate of S.-Y.K. thanks W. Lim for his help in the numerical work.
the graph ofg, (without thed, connecting faces dB,) and  This work was supported by the Korea Research Foundation
the graph ofy, (without thed, connecting faces d&,) must  (Grant No. KRF-2001-013-D00014by the ONR(Physics,
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