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Fractal properties of robust strange nonchaotic attractors in maps of two or more dimensions
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We consider the existence of robust strange nonchaotic attractors in a simple class of quasiperiodically
forced systems. Rigorous results are presented demonstrating that the resulting attractors are strange in the
sense that their box-counting dimensionD0 is larger than their information dimensionD1 by 1 ~i.e., D0

5D111). We also show how this property is manifested in numerical experiments.
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I. INTRODUCTION

The phrasestrange nonchaotic attractor~SNA! @1# refers
to an attractor that is nonchaotic in the sense that its or
are not exponentially sensitive to perturbation~i.e., none of
the Lyapunov exponents are positive!, but the attractor is
strange in the sense that its phase space structure has
trivial fractal properties. Past studies indicate that SNA’s
typical in nonlinear dynamical systems that are quasiperio
cally forced. Here by a typical behavior we mean that
behavior occurs for a positive measure set of parameter
ues. Alternatively, if parameters are chosen at random f
an ensemble with a smooth probability density, then
probability of choosing parameters that yield a typical b
havior is not zero. The description of a behavior as typica
to be contrasted with the stronger statement that a behavi
robust. In particular, we say that the behavior of a system
robust if it persists under sufficiently small perturbation
i.e., there exist a positive valued such that the robust behav
ior occurs for all systems that can be obtained by pertur
tion of the original system by an amount less thand. Thus all
robust behaviors are also typical, but not vice versa.

With respect to SNA’s, examples where they are typi
but not robust have been extensively studied@2–5#. An ex-
ample of this type is the quasiperiodically forced circle m
given by the system@3#

un115@un1v#~mod2p!, ~1a!

wn115@wn1vw1« sinwn1C cosun#~mod2p!, ~1b!

whereV[v/2p is irrational. Other examples of typical non
robust SNA’s involving differential equations have also be
studied@2,4#. Numerical evidence@3,4# and analysis base
on a correspondence@2,5# with Anderson localization in a
quasiperiodic potential leads to an understanding of the t
cal but nonrobust nature of SNA’s in these examples: In p
ticular, it is found that SNA’s exist on a positive Lebesg

*Permanent address: Department of Physics, Kangwon Nati
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measure Cantor set in parameter space. In the case of Eq~1!,
for example, consider the rotation number

W5 lim
n→`

~wn2w0!/~2pn!, ~2!

where for this limit,wn is not computed modulo 2p. For
fixed v, «.0, andC.0, a plot ofW versusvw yields an
incomplete devil’s staircase, a nondecreasing graph con
ing of intervals ofvw, whereW(vw) is constant and with the
increase ofW(vw) occurring only on a Cantor set of positiv
measure. For small«, the values ofvw on the Cantor set
correspond to orbits that are three frequencies quasiperio
but for larger« they correspond to SNA’s. Because an ar
trarily small perturbation ofvw from a value in the Cantor
set can result in a value ofvw outside the Cantor set, thes
SNA’s are not robust. On the other hand, because the Ca
set ofvw values has a positive Lebesgue measure~‘‘positive
length’’!, these attractors are typical for Eq.~1!.

Other studies suggest that there are situations wh
SNA’s are robust@1,6–12#. The experiment of Dittoet al. @6#
on a quasiperiodically forced magnetoelastic ribbon p
duced evidence of a SNA, and the existence of this S
appeared to be stable to parameter perturbations. The o
nal paper where the existence of SNA’s in quasiperiodica
forced systems was first discussed@1# gives numerical evi-
dence of robust SNA’s. In addition, the effect of quasipe
odic perturbations on a system undergoing a periodic d
bling cascade has been investigated, and evidence has
presented suggesting that, after a finite number of torus d
blings, a robust SNA results@7,9#.

Thus there seem to be two types of SNA’s: typical, no
robust SNA’s, and robust SNA’s. In this paper we study
class of models exhibiting robust SNA’s. The model cla
that we study is particularly interesting because it allows
possibility of rigorous analysis. In particular, we are able
prove, under the mild hypothesis that a certain Lyapun
exponent is negative, that the attractor is strange and non
otic. Since other cases of SNA’s are likely to be access
only to study by numerical means, it is worthwhile to inve
tigate our, more well-understood models numerically. By d
ing this we gain insight into the applicability and limitation
of numerical techniques for the study of SNA’s.
al
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In this paper we consider quasiperiodically forced ma
which can be motivated by the consideration of a system
ordinary differential equations in the formdx/dt
5F(x,j,u (1),u (2), . . . ,u (N)), whereF is 2p periodic in the
anglesj and u ( i ), which are given byj5vjt1j0 and u ( i )

5vu( i )t1u0
( i ) , andvj ,vu(1), . . . ,vu(N) are incommensurate

Sampling the state of the system at discrete timestn given by
j52np, we obtain a mapping of the form

un11
( i ) 5@un

( i )1v ( i )#~mod2p!, ~3a!

xn115F̃~xn ,un
(1) ,un

(2) , . . . ,un
(N)!, ~3b!

wherexn5x(tn), v ( i )52pvu( i ) /vj , and there exist no se
of integers (m(0),m(1), . . . ,m(N)) for which S i 51

N m( i )v ( i )

52pm(0), aside from (m(0),m(1), . . . ,m(N))5(0,0, . . . ,0).
For the map~3!, the simplest possible attractor is a

N-dimensional torus,x5f(u (1),u (2), . . . ,u (N)). In this paper,
we consider the case where an attract
(N11)-dimensional torus exists, and the dynamics on
torus is given by

un11
( i ) 5@un

( i )1v ( i )#~mod2p!, ~4a!

wn115@wn1q(1)un
(1)1q(2)un

(2)1 . . . 1q(N)un
(N)

1P~wn ,un
(1) ,un

(2) , . . . ,un
(N)!#~mod2p!, ~4b!

where P is periodic in all its variables andq(1),
q(2), . . . ,q(N) are integers. We are particularly interested
the case in which Eq.~4b! is invertible, so that no chaos i
possible, and when at least oneq( i ) is nonzero, which as we
will see prevents the existence of an attractingN-torus.

In Sec. II we examine the simplest case whereN51
(u ( i )→u). Section II A presents numerical experiments a
rigorous analysis of this two-dimensional map model. In p
ticular, we prove~subject to a mild hypothesis on the neg
tivity of a Lyapunov exponent! that, for our class of maps
the information dimension of the SNA is 1 (D151), while
its box-counting dimension is 2 (D052) @13#. Thus we rig-
orously characterize the nature of the strangeness of
SNA’s for our model.@In a previous work@14# it was argued
~nonrigorously! that D151 and D052 for the two-
dimensional SNA map introduced in Ref.@1#.# We conjecture
that D151 and D052 typically holds for SNA’s of two-
dimensional quasiperiodically forced maps@i.e., maps of the
form un115(un1v)mod2p, wn115F(wn ,un) with V
[v/2p irrational#. Also, in Sec. II A we present numerica
experiments on dimension calculations ofD1 andD0, and of
the Lyapunov exponent for our map. Section II B investiga
the dynamical origin of SNA’s as a limit asV approaches its
irrational value through an infinite sequence of finer and fi
rational approximations@15#. It turns out that this technique
yields substantial insight into the structure of SNA’s, as w
as additional understanding of whyD151 and D052 ap-
plies.

Section III considers higher-dimensional maps. In parti
lar, Sec. III A considers the case wherex in Eq. ~3b! is two
dimensional andN51, while Sec. III B considersN.1 with
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x being a scalar angle variable~as in Sec. II!. For the map of
Sec. III A, we consider one component ofx to be an angle
variable and the other component to be analogous to a ra
variable. Thus, if, on the attractor, the radial coordinate
pends smoothly on the other two variables~which are
angles!, then the attractor lies on a two-torus, and the co
siderations of Sec. II apply directly. On the other hand,
existence of such a smooth two-torus is in question, and
is the main issue addressed in Sec. III A. For the map of S
III B we are able to generalize the rigorous approach of S
II A to show that for this class of mapsD05N11, while
D15N. In addition, numerical experiments are performed
test the convergence of dimension computations to these
ues.

II. TWO-DIMENSIONAL MAP ON A TORUS

A. Existence of SNA

We investigate the simplest case of Eq.~3! whereN51
(u ( i )→u) and the state variablex is one dimensional. Spe
cifically, we takex to be an angle variablew, so that the map
operates on a two-dimensionalu-w torus. Within this class
we restrict consideration to maps of the form

un115@un1v#~mod2p!, ~5a!

wn115@un1wn1hP~un ,wn!#~mod2p!, ~5b!

wherev5p(A521), andP(u,w) is continuous, differen-
tiable, and 2p periodic in both of its arguments (u andw).
When h is small enough (uhu,hc), this map is invertible.
That is, the map is solvable for (un ,wn) when (un11 ,wn11)
is given. We choose a simple functionP(u,w)5sinw for our
numerical work. In this case, the system is invertible ifuhu
,1. Furthermore, since the map is invariant under
change ofh→2h andw→w1p, it is sufficient to consider
only the caseh>0.

Figure 1 illustrates how a curveC on the u-w toroidal
surface is mapped to a curveC8 by the map~5!. Note that the
torus is unrolled in theu direction to visualize the whole
curveC in a two-dimensional surface, but still rolled in thew
direction. The curveC circles around the torus in theu di-
rection, but does not wrap around the torus in thew direc-
tion. After one iterate of Eq.~5!, the curveC is mapped to a

FIG. 1. Torus unwrapped in theu direction (u50 andu52p
are identified with each other!. The map~5! takes the curveC to the
curveC8.
1-2
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curveC8 that wraps once around the torus in thew direction.
This behavior comes about due to the termun on the right-
hand side of Eq.~5b!, becauseu1w1hP(u,w) increases by
2p asu increases by 2p. Similarly, applying the map toC8
produces a curve with two wraps around the torus in thew
direction, and so on.

The main results of our numerical experiments and rig
ous analysis of Eq.~5! with uhu,hc are as follows.

~i! The map~5! has a single attractor.
~ii ! For typicalP(u,w), the attractor has a Lyapunov ex

ponenthw that is negative forhÞ0.
~iii ! The attractor has information dimension 1 forh

Þ0.
~iv! The attractor is the entireu-w torus and, hence, has

box-counting dimension 2.
~v! These results are stable to the perturbations of

system.
We first establish~ii ! using an approximate formula forhw

for small h. Our evidence for~ii ! is strong but a rigorous
mathematical proof is lacking. If we adopt~ii ! as a hypoth-
esis, then all the other results rigorously follow.

Lyapunov exponent.A trajectory of the map~5! has two
Lyapunov exponentshu andhw , wherehu50 is associated
with Eq. ~5a! andhw is associated with Eq.~5b!. The latter
exponent is given by the formula

hw5E ln@11hPw~u,w!#dm, ~6!

wherePw5]P/]w, andm denotes the measure generated
the orbit from a given initial point (u0 , w0).

If hw.0 for a particular trajectory, then, sincehu50, the
map exponentially expands areas near the trajectory in
limit n→`. Since theu-w torus has a finite area, if the ma
is invertible, then there cannot be a set of initial points
nonzero area~positive Lebesgue measure! for which hw

.0, and the map thus does not have a chaotic attractor. T
hw<0 for typical orbits.

Furthermore, we argue thathw,0 for small nonzeroh.
We consider first the caseh50, for which Eq.~5b! becomes
wn115(un1wn)(mod2p). If we initialize a uniform distri-
bution of orbit points in theu-w torus, then, on one applica
tion of theh50 map, the distribution remains uniform. Fu
thermore, this uniform distribution is generated by the or
from any initial condition. To verify this, we note that th
explicit form of an h50 orbit, un5(u01nv)(mod2p),
wn5@w01nu01 1

2 (n22n)v#(mod2p), is shown to gener-
ate a uniform density in Ref.@16#. We can obtain an approxi
mation to hw for nonzero but smallh by expanding ln(1
1hPw) in Eq. ~6! to order h2 and assuming that, to thi
order, the deviation of the measurem from uniformity is not
significant @dm'dudw/(2p)2#. Using ln(11hPw)5hPw

2(1/2)h2Pw
21O(h3), this gives

hw52
1

2
h2^Pw

2&1o~h2!, ~7!

which is negative for small enoughhÞ0. Here^Pw
2& denotes

the u-w average ofPw
2 , and the orderh term is absent by
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virtue of *0
2pPwdw50. Since we cannot show the conve

gence of an expansion inh, our result~7! is formal rather
than rigorous. However, numerical results strongly supp
Eq. ~7!. Figure 2 shows a plot ofhw versush for P(u,w)
5sinw. Remarkably, Eq.~7! ~the straight line! describes the
numerical data to better than 8% even forh as large as 0.5

Dimensions of the SNA.For our map, the information di-
mension cannot be less than 1 due to the quasiperiodu
dynamics. In addition, the Lyapunov dimension is an up
bound of information dimension@17#. Therefore, if we ac-
cept ~ii !, hw,0, thenhu50 implies ~iii !.

Results~iii ! and~iv! quantify the strangeness of the attra
tor. In particular, since the information dimension of the
tractor is 1, orbits spend most of their time on a curvelike s
yet, since the box-counting dimension is 2, if one waits lo
enough, a typical orbit eventually visits any neighborhood
the u-w torus. One can get a sense of this result from
numerical orbit shown in Fig. 3, in which a trajectory o
length 104 appears to be concentrated along one-dimensio
strands@Fig. 3~a!#, but for the same parameters a trajecto
of length 105 fills much more of theu-w torus @Fig. 3~b!#.

We show in Fig. 4~a! a plot of log2N(«) versus log2(1/«),
and in Fig. 4~b! a plot of Spi log2(1/pi) versus log2(1/«).
Here N(«) is the number of«3« boxes ~in u-w space!
needed to cover the points from an orbit of lengthT, andpi
is the fraction of those orbit points in thei th «3« box.
According to our previous arguments on dimensions, in
limit T→`, the points in Figs. 4~a! and 4~b! should follow a
straight line of slope 2 and 1 for small«, corresponding to a
box-counting dimension of 2 and an information dimensi

FIG. 2. Lyapunov exponenthw vs h2. For eachh, the data
plotted as open circles were computed from 107 iterations of the
map ~5! with v5p(A521) andP(u,w)5sinw.

FIG. 3. Trajectory of the map~5! with v5p(A521), h
50.3, andP(u,w)5sinw. In each caseu05w050, and 104 points
of the trajectory are computed before plotting; in~a! the next 104

points are plotted, while~b! shows 105 points.
1-3
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of 1. As is commonly found, the box-counting dimensi
computation converge rather slowly with increasing or
lengthT. Thus, we show plots in Fig. 4 for several differe
T. As can be seen in Fig. 4~a!, the« range consistent with a
slope of 2~the straight line in the figure! steadily increases
toward smaller« @larger log2(1/«)] asT increases. This is in
contrast with Fig. 4~b!, which appears to reach a form ind
pendent ofT that is consistent with a small« slope of 1.
While the convergence in Figs. 4~a! and 4~b! is consistent
with box-counting and information dimensions of 2 and
the slowness of the convergence also indicates that a pu
numerical determination of the dimension values is susp

Topological transitivity.To establish results~i! and ~iv!,
that the attractor of the map is in the wholeu-w torus, we
prove that the map istopologically transitive: For every pair
of open disksA and B, there is a trajectory that starts inA
and passes throughB. This property is known to imply that a
dense set of initial conditions yields trajectories each
which is dense in the torus@18#. In particular, any attracto
having an open basin of attraction must contain a dense o
and, hence, must be the entire torus.

Let M be the map~5!. We will show in fact that for every
pair of line segmentsSa5$(u,w):uPRa and w5wa% and
Sb5$(u,w):uPRb and w5wb%, where Ra5(ua ,ua1da)
and Rb5(ub ,ub1db), there is a finite trajectory ofM that
begins on the first segment and ends on the second.~Choos-
ing Sa to lie in A andSb to lie in B, this implies topological
transitivity.! In other words, we will show that thenth iterate
of Sa intersectsSb for some positive integern; see Fig. 5~a!.
Our strategy is to iterateSa forward until the union of its
iterates covers all values ofu at least once; the number o
iterates needed is finite and depends only onda . By select-
ing pieces of these iterates that cover each value ofu exactly
once, we form the graphw5ga(u) of a piecewise continuou
function ga ; see Fig. 5~b!. Similarly we form a graphw
5gb(u) from pieces of backward iterates ofSb . Finally, we
show that some forward iterate of the graph ofga must in-
tersect the graph ofgb .

The following is a formal definition ofga . Let M u be the
map ~5a!. For eachu, let k(u) be the smallest non-negativ
integer for whichuPM u

k(u)(Ra). @In Fig. 5~b!, k(u)50, 1,
or 2 for all u.# Let ga(u) be thew coordinate of thek(u)th
iterate underM of (M u

2k(u) ,w)PSa . Then the graphw

FIG. 4. Dimension computations for Eq.~5! with h50.3, v
5p(A521), andP(u,w)5sinw. In ~a! the dashed line has slope 2
while in ~b! it has slope 1. In each graph, the curves from lowes
highest representT5103,104, . . . ,1010; in ~b! the final five curves
are virtually identical.
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5ga(u) has a finite numberda of discontinuities. Each con
tiguous piece of this graph is a forward iterate of some pi
of Sa .

Now form the curveGa by taking the graph ofga and
adding line segments in thew direction at each value ofu
wherega is discontinuous.~We take these segments to lie
0,w,2p.! Thus we makeGa a contiguous curve. See Fig
5~b!, which illustrates this construction for a case whereda
53. Notice that, for eachn, the nth iterate ofGa is also a
contiguous curve that consists of the graph of a function w
da discontinuities, together withda ‘‘connecting segments.’’
Definegb andGb similarly to ga andGa , but in terms of the
backward iterates of theSb . Let db be the number of discon
tinuities of gb .

Our goal is to show that forn sufficiently large,Mn(Ga)
intersectsGb for at leastda1db11 different values ofu.
Then since there are at mostda1db values ofu at which one
of these two curves has a connecting segment, there wil
at least one intersection point between thenth iterate of the
graph of ga and the graph ofgb . Since the graph ofga
consists of forward iterates ofSa and the graph ofgb consists
of backward iterates ofSb , some forward iterate ofSa will
intersectSb , as we claimed.

As noted before~see Fig. 1!, each successive iteratio
Mn(Ga) ‘‘wraps around’’ the torus in thew direction once
more than the prior iterationMn21(Ga). The number of
wraps of such a curve is more formally called the ‘‘windin
number’’ of the curve, and may be any integer~possibly
negative!. For example, in Fig. 5~b! the winding number of
Ga is 0. Asn increases, the winding number ofMn(Ga) will
eventually exceed the winding number ofGb by at leastda
1db11. HenceMn(Ga) intersectsGb for at leastda1db
11 different values ofu as desired. This establishes claim
~i! and ~iv!.

Notice that the argument above does not depend on
specific form ofP(u,f), only that it is continuous and pe
riodic and thath is sufficiently small (uhu,hc), so that the
map~5! is one-to-one. This independence of the results fr
the specific form ofP(u,f) implies that the results are stab
to system changes@our claim ~v!# that preserve a quasiper
odic driving component~5a!.

Discussion.The possible existence of SNA’s was orig

o

FIG. 5. ~a! Thenth iterate ofSa intersectsSb . Thenth preiterate
of this intersection point~denotedp) is a point onSa that goes toSb

in n iterates.~b! Sa plus its first two iterates,M (Sa) and M2(Sa),
cover the entire 2p range ofu. M (Sa) and M2(Sa) are shown as
thin lines. The curveGa , which includesSa , pieces ofM (Sa) and
M2(Sa), and vertical segments connecting these pieces, is show
a dark thick line.
1-4
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nally pointed out in Ref.@1#, and many numerical explora
tions of the dynamics on attractors that are appare
strange and nonchaotic have appeared. Recently, there
also been rigorous results on the mathematical properties
SNA’s must have if they exist@19#. In spite of these works, a
very basic question has remained unanswered:Can it be rig-
orously established that SNA’s generically exist in typi
quasiperiodically forced systems?This is an important issue
because, although the numerical evidence for SNA’s is v
strong, perhaps the attractors observed are nonstrange w
very fine scale structure~rather than theinfinitesimallyfine
scale structure of a truly strange attractor!. Also, there might
be the worry that the numerical evidence is somehow
artifact of computational error. Our proof of topological tra
sitivity, combined with the hypothesis thathw,0, answers
the question of the typical existence of SNA’s~affirmatively!
~Ref. @13# contains a preliminary report of our work!. The
only previous work rigorously establishing the existence o
SNA is that appearing in the original publication on SNA
@1# and in Ref.@20#. These proofs, however, are for a ve
special class of quasiperiodically forced system such tha
arbitrarily small typical change of the system puts it out
the class. Thus this proof does not establish that SNA’s e
in typical quasiperiodically forced situations. In order to s
that nature of this situation with respect to Refs.@1,20#, we
recall the example treated in Ref.@1#. In that reference the
map considered wasxn1152l(tanhxn)cosun[f(xn ,un), with
un evolving as in Eq.~5a!. It was proven in Ref.@1# that this
map has a SNA forl.1. However, the map has an invaria
set, namely, the linex50, u in @0,2p), and this fact is
essential in the proof of Ref.@1#. On the other hand, the
existence of this invariant set does not persist under pe
bations of the map. Thus, if we perturbf (x,u) to f (x,u)
1«g(x,u), the invariant set is destroyed, even for small«,
for any typical functiong(x,u) @in particular, an arbitrarily
choseng(x,u) is not expected to satisfyg(0,u)50].

B. Origin of SNA’s: Rational approximation

Using rational approximations~RA’s! to the quasiperiodic
forcing, we now investigate the origin for the appearance
SNA’s in Eq. ~5! for P(u,w)5sinw andv5p(A521). For
the case of the inverse golden meanV[v/2p, its rational
approximants are given by the ratios of the Fibonacci nu
bers, Vk5Fk21 /Fk , where the sequence of$Fk% satisfies
Fk115Fk1Fk21 with F050 andF151. Instead of the qua
siperiodically forced system, we study an infinite seque
of periodically forced systems with rational driving freque
ciesVk . We suppose that the properties of the original s
tem may be obtained by taking the quasiperiodic limitk
→`.

For each RA of levelk, a periodically forced map with the
rational driving frequencyVk has a periodic or quasiperiodi
attractor that depends on the initial phaseu0 of the external
force. Then we take the union of all attractors for differentu0
to be thekth RA to the attractor in the quasiperiodical
forced system. Furthermore, due to the periodicity, it is s
ficient to obtain the RA by changingu0 only in a basic in-
terval u0P@0,1/Fk), because the RA to the attractor in th
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remaining range,@1/Fk,1), may be obtained through (Fk
21) iterations of the result in@0,1/Fk). For a givenk we call
the periodic attractors of periodFk the ‘‘main periodic com-
ponent.’’ The first column of Fig. 6 shows that the Lebesg
measure of the main periodic component~denoted by the
solid line! becomes dominant as the levelk increases~i.e.,
the fraction of theu axis corresponding to the nonperiodi
gray area decreases!. By iterating the RA in the basic interva
of u, we obtain the RA in the whole range ofu, as shown in
the second column of Fig. 6. Ask increases, the whole RA
becomes more similar to its quasiperiodic limit given in F
3.

We first note that forh50 the RA to the regular quasip
eriodic attractor consists of only the quasiperiodic comp
nent. However, ash becomes positive, periodic componen
appear via phase-dependent~i.e., u0-dependent! saddle-node
bifurcations. As examples, see the first column of Fig.
Here the quasiperiodic component is plotted in the gr
‘‘Gaps’’ in the gray quasiperiodic components are occup
by the main periodic components~denoted by solid lines!
with period Fk and the minor periodic components wit
higher periodmFk (m52,3,4, . . . ). Figures 7~a! and 7~b!
show the saddle-node bifurcation curves in theuFk-h plane,
at which the main periodic components with periodFk are
born. It can be easily seen that for a givenh, the width of the
main gap~occupied by a period-Fk attractor! becomes larger

FIG. 6. RA’s for h50.3. The levels arek56 in ~a! and ~b!, k
58 in ~c! and~d!, andk511 in ~e! and~f!. In the first column the
RA in the basic interval ofu is given, while in the second column
the RA in the whole range ofu is given. The quasiperiodic compo
nent is represented in gray dots and the main periodic compone
denoted by the solid line.
1-5
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as k increases. Quantitatively, it is found that the Lebesg
measuremk in u for the main periodic component becom
dominant ask increases; i.e., the Lebesgue measure
2mk) of the complementary set decreases exponenti
with Fk ; (12mk);e2aFk, where a50.013, as shown in
Fig. 7~c! for h50.3.

In what follows, we use the RA’s to explain the origin o
the negative Lyapunov exponenthw and the strangeness o
the SNA. For a given levelk of the RA, lethw

(k)(u) denote
the Lyapunov exponent of the attractor corresponding t
given u. Thus hw

(k)(u)50 for u in the quasiperiodic range
~gray regions of Fig. 6! andhw

(k)(u),0 for u in the periodic
range ~gaps in the gray regions!. Since the attractor with
irrational v generates a uniform density inu @see Eq.~5a!#,
we take the order-k RA to the Lyapunov exponenthw to be

^hw
(k)&5

1

2pE0

2p

hw
(k)~u!du. ~8!

For h.0, due to the existence of periodic componen
^hw

(k)& is negative. Ash increases for a given levelk, the
Lebesgue measure inu for the periodic components in
creases, and hencehw

(k)(u) becomes negative in a wide
range inu, as shown in Figs. 8~a! and 8~b! for level k56.
Thus, ash increases,̂hw

(k)& decreases@see Fig. 8~c!#.
In addition, we note that as the levelk increases, the RA

to the Lyapunov exponenthw converges rapidly to its quas
periodic limit @represented by the solid line in Fig. 8~c!#. For
comparison, the approximate analytic result forhw ~i.e., hw

52h2/4) is also given~see the dashed line!. Consequently,
for any nonzeroh the attractor in the quasiperiodic limit ha
a Lyapunov exponent whose value decreases ash is in-
creased.

FIG. 7. Phase-dependent saddle-node bifurcation lines for
main periodic components. The cases of the levelk56,9,12 are
shown in~a!, and other cases withk57,8,10 are given in~b!. ~c!
Plot of ln(12mk) vs Fk for h50.3. Solid points denote the data fo
levelsk56, . . .,12, which are well fitted with a dashed straight lin
with slopea50.013.
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We now discuss the strangeness of the attractor in
quasiperiodic limit forh50.3. In the quasiperiodic case, w
have seen~Fig. 3! that a typical trajectory seems to fill th
whole torus densely, but, unlike the case of the regular q
siperiodic attractor, it appears to spend most of its time o
set of 1D strands. We identify these apparent 1D strands w
thek→` limit of the main periodic component. Although, a
k becomes larger, the Lebesgue measure of the quasiper
region approaches zero@Fig. 7~c!#, these quasiperiodic re
gions become dense inu. Since each quasiperiodic regio
fully covers thew interval @0,2p), the attractor is expected
to occupy the entireu-w torus, and, hence, it is expected
have a box-counting dimension of 2.

III. HIGH DIMENSIONAL MAPS

A. Radial perturbations of the torus map

We now show that stability to perturbations applies,
addition, if the system is higher dimensional. In particul
we discuss the case of a three-dimensional system with
attracting invariant torus, and allow perturbations of the t
oidal surface. Consider the following map onR3:

un115@un1v#~mod2p!, ~9a!

wn115@un1wn1h P̄~un ,wn ,r n!#~mod2p!, ~9b!

r n115lr n1rQ~un ,wn ,r n!. ~9c!

Hereu andw are coordinates on a torus embedded inR3, as
in Fig. 1, andr is a coordinate transverse to the torus, w
r 50 representing the unperturbed (l5r50) torus. The pa-
rametersv and h, and the dependence ofP̄ on u and w,
have the same properties as for map~5!, andQ is continu-
ously differentiable and 2p periodic in u and w. When l

e
FIG. 8. Plot ofhw

(k)(u) vs uF6 for ~a! h50.1 and~b! h50.3. ~c!
Plot of ^hw

(k)& vs h2 for the three levelsk56, 7, and 8. The solid
and dashed lines denote the Lyapunov exponents in the quas
odic limit that are obtained numerically and analytically, respe
tively.
1-6
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and r are small, Eq.~9! maps a neighborhood of the toru
r 50 into itself, and whenr50 the torusr 50 is invariant
and attracting. It then follows from classical results on t
perturbation of invariant manifolds@18# that, for l and r
sufficiently small, the map~9! has a smooth attracting invar
ant manifoldr 5 f (u,w) near the torusr 50. On this attrac-
tor, the map~9! reduces to a map of the form~5!, with
P(u,w)5 P̄@u,w, f (u,w)#. Thus statements~i!-~v! above ap-
ply also to the attractor of the three-dimensional map~9!.

The above arguments depend on the existence of a sm
invariant torus on which the attractor is located, and this
guaranteed ifl and r are sufficiently small. We now show
numerical evidence for the existence of a smooth invar
torus for values ofl andr that are appreciable. We consid
the exampleP̄(u,w,r )5sinw andQ(u,w,r )5sin(r1w). We
numerically obtain two-dimensional plots of intersections
the invariant torus with the surfacesw5p @Fig. 9~a!# and
u5p @Fig. 9~b!#. First consider the casew5p. Our numeri-
cal technique is as follows. We choose an initial val
(u0 ,w05p) and obtain (u2n ,w2n) by iterating Eqs.~9a!
and ~9b! backwardn steps. Sincehr; ln l,0 ~when r!l
,1), r 2n→6` asn→t` if r 0 is not on the torus. In othe
words, if r 2n50, then r 0 approaches the torus asn→t`.
Thus, we chooser 2n50 and iterate (r 2n ,u2n ,w2n) for-
ward (n@1) steps to (r 0 ,u0 ,w05p). By varying u0, we
obtain an approximation to the graphr 0(u0) of the torus
intersection withw5p. Similarly, choosing (u05p,w0) and
iterating the map~9! backward, and then forward, we ca
obtain an approximationr 0(w0) to the equation of the toru
intersection withu5p. ~For our numerical experiments, w
set n525.! As shown in Fig. 9, a smooth invariant toru
exists in the parameter region wherer andl are appreciable

In Figs. 10~a! and 10~b! we show dimension computation
for the map ~9! with P̄(u,w,r )5sin(w) and Q(u,w,r )
5sin(r1w). @In this three-dimensional case we employ«
edge length cubes in (u,w,r )-space.# As for Fig. 4 we ob-
serve from Fig. 10 that the results are consistent with s
convergence to the predicted dimension values of 2 and
the orbit lengthT is increased.

B. Map on a high-dimensional torus

In Sec. II. A we proved that Eq.~5! is topologically tran-
sitive. Here we show how this argument can be modified
higher dimensional maps that includeN.1 quasiperiodic

FIG. 9. Attractors in two-dimensional surfaces.~a! r vs u at w
5p surface and~b! r vs w at u5p with r50.5, l50.5, andh
50.3 (hw520.024 andhr521.370).
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driving variablesu (1), u (2), . . . ,u (N). For exposition we as-
sumeN52, but the argument is virtually identical for allN.

In particular, we consider a map of the form

un11
(1) 5@un

(1)1v (1)#~mod2p!, ~10a!

un11
(2) 5@un

(2)1v (2)#~mod2p!, ~10b!

wn115@q(1)un
(1)1q(2)un

(2)1wn

1hP~un
(1) ,un

(2) ,wn!#~mod2p!, ~10c!

where v (1) and v (2) are incommensurate, (q(1),q(2)) is a
pair of integers different from (0,0), andP(u (1),u (2),w) is
continuous, differentiable, and 2p periodic in all of its argu-
ments (u (1), u (2), andw). We assume without loss of gen
erality thatq(1)Þ0.

Let Ra5$(u (1),u (2)):ua
(1),u (1),(ua

(1)1da) and ua
(2)

,u (2),(ua
(2)1da)% and Rb5$(u (1),u (2)):ub

(1),u (1),(ub
(1)

1db) and ub
(2),u (2),(ub

(2)1db)% be two arbitrary squares
in the u (1)-u (2) torus, and letSa5$(u (1),u (2),w):(u (1),u (2))
PRa and w5wa% and Sb5$(u (1),u (2),w):(u (1),u (2))
PRb andw5wb% be a pair of square segments, wherewa
andwb are arbitrary. As before, we will show that there is
finite trajectory that begins onSa and ends onSb .

In this case, we proceed by iteratingRa forward until the
union of its iterates covers all points (u (1),p) at least once
~see Fig. 11!. The number of iterates needed is finite. Th
we select pieces of these iterates that single covers a
strip Da5$(u (1),u (2)):p<u (2)<p1«a% with rectangles of
width «a . From the corresponding pieces of the correspo
ing iterates ofSa , we form the graphw5ga(u (1),u (2)) of a
piecewise continuous functionga defined onDa . Similarly
we form a graphw5gb(u (1),u (2)) on a stripDb from pieces
of backward iterates ofRb$wb%. As before, we will show that
some forward iterate of the graph ofga must intersect the
graph ofgb .

Next, form the stripGa by taking the graph ofga and
adding ‘‘connecting faces’’ at each of theda values ofu (1)

wherega is discontinuous, so as to makeGa a contiguous
strip. The construction ofGa is essentially as shown in Fig
5~b!, except that it now has some thickness in theu (2) direc-
tion ~not shown!. For eachn, the nth iterate ofGa is also a
contiguous strip that consists of the graph of a function w
da discontinuities in theu (1) direction, together withda con-
necting faces, over a strip in theu (1)-u (2) torus of width«a in

FIG. 10. Dimension computations for Eq.~9! with h50.3, l

50.5, r50.5, v5p(A521), P̄(u,w)5sinw, and Q(u,w,r )
5sin(r1w). In ~a! the dashed line has slope 2, while in~b! it has
slope 1. In each graph, the curves from lowest to highest repre
T5103,104, . . . ,109; in ~b! the final four curves are virtually iden
tical.
1-7
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the u (2) direction. Notice though that the strip moves a d
tancev (2) in theu (2) direction with each iteration. Definegb
andGb similarly to ga andGa , but in terms of the backward
iterates ofSb , and letdb be the number of values ofu (1) at
which gb is discontinuous.

As before, we can define the winding number of str
like Ga and Gb , representing the net number of times t
strip wraps in thew direction asu (1) increases from 0 to 2p.
The winding number can be computed for any fixed value
u (2) and does not depend on that value. With each itera
of Eq. ~10!, the winding number of such a strip changes
q(1)Þ0. Therefore forn sufficiently large, the winding num
ber of thenth iterate ofGa differs from the winding number
of Gb by at leastda1db11. Furthermore, by increasingn if
necessary, we can ensure that the domains of these two s
intersect; that is, they have a common value ofu (2). Then for
that value ofu (2), it follows as before that thenth iterate of
the graph ofga ~without theda connecting faces ofGa) and
the graph ofgb ~without thedb connecting faces ofGb) must
intersect as claimed.

FIG. 11. Construction of the domainDa ~shaded region! of ga .
n-

gy

03621
-

s

f
n

ips

Our numerical experiments also give a sense of the ab
proof. In order to obtain two-dimensional plots, we cou
points when the trajectory passes through a thin slab of w
d!1 containing theu ( i )-w surface.~For our experiments, the
width of the slab isd50.01.! The results we obtain for the
intersections of the attractors with theu (2)5p surface and
the u (1)5p surface are qualitatively similar to the figure fo
the two-dimensional case~Fig. 3!.

IV. CONCLUSION

In this paper we addressed the existence of robust stra
nonchaotic attractors. We provided rigorous analysis for
two-dimensional map ~5! in Sec. II A and for the
(N11)-dimensional maps of the form of Eq.~3! in Sec.
III B. In particular, we have shown that the information d
mension of the attractor for these maps isD15N, while the
box-counting dimension isD05N11 @21#. In addition, we
have used a rational approximation technique~Sec. II B! to
investigate the dynamical origin of SNA’s, as well as to ga
additional understanding on why, in ourN51 example,D1
51 andD052. In Sec. III A, we show that the stability to
perturbations~robustness! continues to apply in system
@e.g., Eq.~9!# where there can be an attracting torus. We a
carried out calculations to see how our rigorous dimens
results are manifested numerically. Our results confirm
existence of SNA’s as a generic phenomenon of quasip
odically forced systems.
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