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Bicritical behavior of period doublings in unidirectionally coupled maps
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We study the scaling behavior of period doublings in two unidirectionally coupled one-dimensional maps
near a bicritical point where two critical lines of period-doubling transition to chaos in both subsystems meet.
Note that the bicritical point corresponds to a border of chaos in both subsystems. For this bicritical case, the
second response subsystem exhibits a type of non-Feigenbaum critical behavior, while the first drive subsystem
is in the Feigenbaum critical state. Using two different methods, we make the renormalization-group analysis
of the bicritical behavior and find the corresponding fixed point of the renormalization transformation with two
relevant eigenvalues. The scaling factors obtained by the renormalization-group analysis agree well with those
obtained by a direct numerical methd&1063-651%99)02006-1

PACS numbd(ps): 05.45.Jn

I. INTRODUCTION with those of previous works. Note that this kind of non-
Feigenbaum critical behavior was also found both in an elec-
Period-doubling transition to chaos has been extensivelfronic system of two periodically driven nonline&iC cir-
studied in a one-parameter family of one-dimensioiidd) cuits with a unidirectional couplin§4] and in a system of
unimodal maps, two unidirectionally coupled Chua’s circuif§]. It is thus
believed that the bicriticality in the abstract system of the
xt+1=1—Axt2, (1) unidirectionally coupled 1D maps may be observed in a real
system consisting of two period-doubling subsystems with a
wherex, is a state variable at a discrete timés the control  unidirectional coupling.
parametetA is increased, the 1D map undergoes an infinite  This paper is organized as follows. In Sec. Il we study the
sequence of period-doubling bifurcations accumulating at &caling behavior near a bicritical poinrA{,B.), correspond-
critical point A, beyond which chaos sets in. Using aing to a border of chaos in both subsystems, by directly
renormalization-group(RG) method, Feigenbaunmil] has following a period-doubling sequence converging to the
discovered universal scaling behavior near the critical poinpoint (A.,B.) for a fixed value ofC. For this bicritical case,

Ac. a type of non-Feigenbaum critical behavior appears in the
Here we are interested in the period doublings in a systergecond subsystem, while the first subsystem is in the Feigen-
consisting of two 1D maps with a one-way coupling, baum critical state. Employing two different methods, we
make the RG analysis of the bicritical behavior in Sec. Ill.
X 1=1-AX, yi1=1-By;—Cx;, (2)  To solve the RG fixed-point equation, we first use an ap-

proximate truncation method7], corresponding to the
wherex andy are state variables of the first and secondlowest-order polynomial approximation. Thus we analyti-
subsystemsA and B are control parameters of the sub- cally obtain the fixed point, associated with the bicritical
systems, andC is a coupling parameter. Note that the first behavior, and its relevant eigenvalues. Compared with the
(drive) subsystem acts on the secofmdsponsgsubsystem, previous numerical resul{®], these analytic results are not
while the second subsystem does not influence the first suffad as the lowest-order approximation. To improve accu-
system. This kind of unidirectionally coupled 1D maps haveracy, we also employ the “eigenvalue-matching” RG
been used as a model for open flow syst¢&isin particu- Mmethod[8], equating the stability multipliers of the orbit of
lar, such systems with unidirectional coupling are activelylevel n (period 2') to those of the orbit of the next level
discussed recently in application to secure communication- 1. Thus we numerically obtain the bicritical point, the pa-
using synchronous cha¢sg]. rameter and orbital scaling factors, and the critical stability

A kind of non-Feigenbaum scaling behavior was found inmultipliers. We note that the accuracy is improved remark-

the unidirectionally coupled 1D mapg®) near a bicritical ~ably with increasing the level. Finally, a summary is given
point (A;,B.) where two critical lines of period-doubling in Sec. IV.
transition to chaos in both subsystems mp#t For this
bicritical case, a RG analysis was also developed and thﬁ SCALING BEHAVIOR NEAR THE BICRITICAL POINT
corresponding fixed point, governing the bicritical behavior,
was numerically obtained by directly solving the RG fixed- In this section we fix the value of the coupling parameter
point equation using a polynomial approximatid. In this by settingC=0.45 and directly follow a period-doubling se-
paper, using two different methods, we also make the RGuence converging to the bicritical poinA{,B.), which
analysis of the bicriticality, the results of which agree well corresponds to a border of chaos in both subsystems. For this

bicritical case, the second subsystem exhibits a type of non-

Feigenbaum critical behavior, while the first subsystem is in

*Electronic address: sykim@cc.kangwon.ac.kr the Feigenbaum critical state.
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T y T y T TABLE |. Sequences of the parameter and the orbit pdiBy}
15k 7 and{y,}, in the second subsystem.
16
n Bn yn
10 1.090 088 955 364 5.019 189103
8 16 11 1.090 092 109 910 —3.333775x<10°3
1.10 | ] 12 1.090 093 416 851 2.214 4671073
@ . 13 1.090 093 959 979 —1.471024x1073
] 14 1.090 094 186 392 9.7719%010°4
I 15 1.090 094 280 906 —6.491561x10°*
8 16 16 1.090 094 320 376 4312351104
1.05 | 4 - 17 1.090 094 336 865 —2.864762x1074
18 1.090 094 343 755 1.903 092104
p '36 . p '38 . ] Lo 19 1.090 094 346 634 —1.264245<10°4
' : : 20 1.090 094 347 837 8.398 518105
A 21 1.090 094 348 340 —5.579230x 105

FIG. 1. Stability diagram of the periodic orbits born via period-

doubling bifurcations forC=0.45. The numbers in the different ) ) o
regions represent the period of motion in the second subsystem. Theome of such points are denoted by the open circles in Fig.

open circles also denote the point, corresponding to a threshold & Then such a sequence &(,B,,) converges to the bicriti-
instability in both subsystems, whexg=—1 and\,=—1. Such  cal point (A;,B;), corresponding to a border of chaos in
open circles accumulate to the bicritical point, denoted by the solidoth systems, with increasing the levelThe bicritical point
circle, which corresponds to a border of chaos in both subsystemés denoted by the solid circle in Fig. 1. To locate the bicriti-
For other details, see the text. cal point with a satisfactory precision, we numerically follow
the orbits of periodq=2" up to leveln=21 in a quadruple
The unidirectionally coupled 1D maj$8) may have many precision, and obtain the sequences of both the parameters
attractors for fixed values of the parametg9% For the case (A, ,B,) and the orbit pointsx,,,y,) approaching the origin.
C=0, it breaks up into the two uncoupled 1D maps. If theyWe first note that the sequences Af and x,, in the first
both have stable orbits of period,2hen the composite sys- subsystem are the same as those in the 1D rfdpsience,
tem has 2 different stable states distinguished by the phasenly the sequences &, andy,, in the second subsystem are
shift between the subsystems. This multistability is preservediven in Table I.
when the coupling is introduced, at least while its value is We now study the asymptotic scaling behavior of the
small enough. Here we study only the attractors whose baperiod-doubling sequences in both subsystems near the bi-
sins include the origii0,0). Such attractors become in phase critical point. The scaling behavior in the first subsystem is

whenA=B andC=0. obviously the same as that in the 1D map§ That is, the
Stability of an orbit with periodq is determined by its sequenceg§A,} and{x,} accumulate to their limit values,
stability multipliers, A=A; (=1.4011551890®...) andx=0, geometrically
as follows:
q q
Al_tﬂl (=2A%), )\Z_tﬂl (—2Bw). ©) A,—A.~8.", X,~a;" forlargen. (4

Here\; and\, determine the stability of the first and second The scaling factorss, and «; are just the Feigenbaum con-
subsystems, respectively. An orbit becomes stable when th@ants 5 (=4.68...) anda (=—2.5@...) for the 1D
moduli of both multipliers are less than unity, i.ez1<\;  maps, respectively. However, the second subsystem exhibits
<1l fori=1,2. a non-Feigenbaum critical behavior, unlike the case of the
Figure 1 shows the stability diagram of periodic orbits for first subsystem. The two sequend®s} and{y,} also con-
C=0.45. As the parametéXis increased, the first subsystem yerge geometrically to their limit valuesB=B,
exhibits a sequence of period-doubling bifurcations at thg =1.090 094 348 701) ang=0, respectively, where the
vertical straight lines, whera;=—1. For small values of value ofB, is obtained using the superconverging method
the parameteB, the period of oscillation in the second sub- [10]. To obtain the convergence rates of the two sequences,
system is the same as that in the first subsystem, as in thge define the scaling factors of level
case of forced oscillation. AB is increased for a fixed value

of A, a sequence of period-doubling bifurcations occurs in B. .—B Yo 1—Y
the second subsystem when crossing the nonvertical lines 521nzu, @y = (5)
where \,=—1. The numbers inside the different regions Bn=Bn+1 Yo~ Yn+1

denote the period of the oscillation in the second subsystem.
We consider a pair of the parametess, (B,), at which ~ These two sequencgs,,} and{a,,} are listed in Table Il
the periodic orbit of leveln (period 2") has the stability ~and they converge to their limit values,
multipliers N, ,=\,,=—1. Hence, the pointA,,B,) cor-
responds to a threshold of instability in both subsystems. 6,=2.3928, a,=—1.5053, (6)
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TABLE Il. Sequences of the parameter and orbital scaling fac- 1.0
tors,{6,n} and{a,,}, in the second subsystem.

n Oan aon > 0.0
10 2.4298 —1.5057331
11 24137 —1.5055154 -1.0 -
12 2.4063 —1.5054281
13 2.3988 —1.5053753 x
14 2.3956 —1.5053440
15 2.3946 —1.5053316
16 2.3937 —1.5053256
17 2.3931 —1.5053215
18 2.3930 —1.5053198
19 2.3929 —1.5053191
20 2.3928 —1.5053186
respectively. Note that these scaling factors are completely X oy X

different from those in the first subsyste(ire., the Feigen-
baum constants for the 1D maps

For evidence of scaling, we compare the chaotic attrac-
tors, shown in Fig. 2, for the three values &,B) near the
bicritical point (A;,B.). All these attractors are the hyper-
chaotic ones with two positive Lyapunov exponefits],

m

1 1 X ,
o= lim — In|2A%/|, o,=Ilm — In|2BYy|.
1 M ;1 | g 2 Mo ;1 |2By| X 2
(7)

FIG. 2. Hyperchaotic attractors for the three values AfH)

Here the first and second Lyapunov exponemjsand o, ~ n€ar the bicritical point Ac.Bc); in (@ (A,B)=(Ac+AA,B,
denote the average exponential divergence rates of nearfy?AB) (AA=AB=0.1), in (b) andEc) (A,B)=(,2AC+AA/51,|23C
orbits in the first and second subsystems, respectively. Figuré2B/%2), and in(d) and (€) (A,B)=(A.+AA/6;,B.+AB/5).

. N The picture in(c) is obtained by magnifying the region in the small
2(a) shows the hyperchaotic attractor withy=0.242 and ! . . .
0,~0.04 for A=A, +AA and B=B,+AB, where AA box in (b) with the scaling factorsy; for the x axis anda, for the

=AB=0.1. This attractor consists of two pieces. To see 2% Similarly, we also obtain the pictute) by magnifying the

. . . region inside the small box ifd) with the scaling factor&f for the
scaling, we first rescala A and AB with the parameter scal- x axis anda? for they axis. Comparing the pictures f@), (c), and

ing factorss; and é,, respectively. The attractor for the res- (e), one can see that each successive magnified picture reproduces

caled parameter values OR=Ac+AA/S5; and B=B:  the previous one with an accuracy with the depth of resolution.
+AB/ 8, is shown in Fig. &). It is also the hyperchaotic

attractor witha;=0.121 andr,=0.02. We next magnify the
region in the small boxcontaining the origihby the scaling
factor &, for thex axis anda, for they axis, and then we get
the picture in Fig. &). Note that the picture in Fig.(2)
reproduces the previous one in FigaRapproximately. Re-
peating the above procedure once more, we obtain the two

pictures in F|gS m) and Ze) That iS, F|g Zd) shows the TABLE 1. .Sequef.‘lces of the SeCOﬂd'Stablllty multlplle{BQVn}
hyperchaotic attractor witlr=0.061 ando,=~0.01 for A of the orbits with period 2 at the bicritical point.
=A.+AA/ 52 andB= B+ AB/ §5. Magnifying the region in

stability multipliers A7 and N3, respectively. Here\}
(=—1.601191. . .) in thefirst subsystem is just the critical
stability multiplier for the case of the 1D mafk]. However,

as listed in Table Ill, the second subsystem has the different

the small box with the scaling factors; for the x axis and n Man
ag for the y axis, we also obtain the picture in Fig(e? 10 —1.178 829
which reproduces the previous one in Figc)2with an in- 11 —1.178 842
creased accuracy. 12 —1.178839
So far we have seen the scaling near the bicritical point, 13 —1.178 850
and now turn to a discussion of the behavior exactly at the 14 —1.178855
bicritical point (A;,B;). There exist an infinity of unstable 15 —1.178854
periodic orbits with period 2 at the bicritical point. The 16 —1.178854
orbit pointsx,, andy,, approaching the zero in the first and 17 —1.178 855
second subsystems, vary asymptotically in proportioa 0 18 —1.178 855
anda, ", respectively. The stability multipliers; , and\,, 19 —-1.178854

of the orbits with period 2 also converge to the critical
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critical stability multiplier, 2
b'= a—ab, (13b
A5 =-1.17885.... (8 1
Consequently, the periodic orbits at the bicritical point have a2
the same stability multipliers.7 and N3 for sufficiently c'=2c c+cz+eF), (130
largen.
Ill. RENORMALIZATION-GROUP ANALYSI 2
(0] ON-GROU SIS d'=-Zcd, (13d)

OF THE BICRITICAL BEHAVIOR a;y

Employing two different methods, we make the RG
analysis of the bicritical behavior. We first use the truncation 4
method, and analytically obtain the corresponding fixed e'=—ce(a+c). (13¢
point and its relevant eigenvalues. These analytic results are
not bad as the lowest-order approximation. To improve the
accuracy, we also use the numerical eigenvalue-matchinghe fixed pointP* =(a*,b*,c*,d*,e*) of this map can be
method, and obtain the bicritical point, the parameter andletermined by solvind®' =P. The parameters and d set
orbital scaling factors, and the critical stability multipliers. only the scales in the andy, respectively, and thus they are
Note that the accuracy in the numerical RG results is im-arbitrary. We now fix the scales imandy by settingb=d

proved remarkably with increasing the level =1. Then, we have, from Eq$13a—(13e, five equations
for the five unknownsy,,a*,a,,c*, ande*. We thus find
A. Truncation method one solution, associated with the bicritical behavior, as will

In thi b . loving th . 3 be seen below. The mdf0) with a solutionP* (Tp«) is the
n this subsection, employing the truncation meti@ll gy 04 map of the renormalization transformati@n for brev-
we analytically make the RG analysis of the bicritical behav—ity T will be denoted ag*
ior in the unidirectionally coupled map of the form, We first note that Eqs(13a and (13b) are only for the
* 1 H *
T X1 =F(X0),  Vis1=9(X, Vo), (9) unknownsa; anda*. We find one solution for; anda*,

associated with the period-doubling bifurcation in the first
wherex, andy, are the state variables at a discrete tinie ~ subsystem,
the first and second subsystems, respectively. Truncating the
map (9) at its quadratic terms, we have ay
ay=—1-\3=-272..., ar=—. (14)
e

dxf, (10)

a 2 ¢ 2
Tp: Xt+1:B+bXta yt+1:a+d)’t+

Substituting the values far; anda* into Egs.(1309—(138e),
which is a five-parameter family of unidirectionally coupled we obtain one solution fow,, c*, ande*, associated with
maps. P represents the five parameters, i.eR  the bicriticality,
=(a,b,c,d,e). The construction of Eq10) corresponds to a
truncation of the infinite dimensional space of unidirection- 1
ally coupled maps to a five-dimensional space. The param- a,==(1+ J3—-\6-15=-1.68..., (159
etersa, b, c, d, ande can be regarded as the coordinates of 2
the truncated space. We also note that this truncation method
corresponds to the lowest-order polynomial approximation. a, 1

We look for fixed points of the renormalization operator c* =5 e*=1+ E(\/E—3\/§)=O.333 ce
‘R in the truncated five-dimensional space of unidirectionally

coupled maps, (15b)
R(T)=AT?A L. (11) Consider an infinitesimal perturbatioasP to a fixed
_ o point P* of the transformation of paramete($33—(136.
Here the rescaling operatdr is given by Linearizing the transformation &*, we obtain the equation
for the evolution of 5P,
aq 0
= ) (12
0 ay SP' =J65P, (16)

where @, and «, are the rescaling factors in the first and
second subsystems, respectively. whereJ is the Jacobian matrix of the transformationPit
The operatiorR in the truncated space can be represented The 5X5 Jacobian matrixJ has a semiblock form, be-
by a transformation of parameters, i.e., a map frém cause we are considering the unidirectionally coupled case.
=(a,b,c,d,e) toP'=(a’,b’,c’,d’,e’), Therefore, one can easily obtain its eigenvalues. The first
two eigenvalues, associated with the first subsystem, are
a'=2a%(1+a), (13a those of the following X 2 matrix,
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Ja’,b’)

Mi=2@D)

3—a; O Here the relevant eigenvaluég is associated with the scaling
o) 1) (17 of the control parameter in the first subsystem, while the
P ! marginal eigenvalué; is associated with the scale change in

Hence, the two eigenvalues bf,, §;, andd;, are given by % o . ) .
The remaining three eigenvalues, associated with the sec-

61=4+ \/§= 572..., §&;=1 (18) ond subsystem, are those of the following 3 matrix,
|
4¢* +6C* %+ 2a* %e* 0 2a* 2c*
2:% = 2/&2 2C*/a2 0 . (19)
e 4e* (a* +2c*)/a? 0  4c*(a*+c*)la?
|
The three eigenvalues M,, &,, 85, and sy, are given by B. Eigenvalue-matching method
_ _ In this subsection, we employ the eigenvalue-matching
8p=(u+\v)/2=3.02%. .., (208 method[8] and numerically make the RG analysis of the
L _ , bicritical behavior in the unidirectionally coupled mapof
5= (u= V)/2=0.13®. .., 52=1, (20b) Eqg. (2). As the leveln increases, the accuracy in the numeri-
where cal RG results are remarkably improved.
The basic idea is to associate a value ,B8') for each
u=(17+7+3-55—315)/2, (219  (A,B) such thafl'E,’l,le),) locally resembled (g, , whereT(™
is the 2'th-iterated map of (i.e., T™W=T2"). A simple way
v =104+ 53\3—44,/5—23/15. (21D to implement this idea is to linearize the maps in the neigh-

borhood of their respective fixed points and equate the cor-
responding eigenvalues.

" Let{z} and{z} be two successive cycles of period 2
and 21, respectively, i.e.,

The first eigenvalued, is a relevant eigenvalue, associated
with the scaling of the control parameter in the second sub
system, the second eigenvaldé is an irrelevant one, and

the third eigenvaluey; is a marginal eigenvalue, associated

with the scale change in z=TWo(z), z=TOD (z); z=(%.y). (29
As shown in Sec. Il, stability multipliers of an orbit with CoAes R t e

period 2' at the bicritical point converge to the critical sta- Herex, depends only o@, buty; is dependent on botA and
bility multipliers N qnd_k’z‘ asn—. We now obtainthese g je. x.=x(A) andy,=y,(A,B). Then their linearized
critical stability multipliers analytically. The invariance of maps atz, andz, are given by

the fixed mapT* under the renormalization transformation
‘R implies that, ifT* has a periodic pointx,y) with period

2I’1
2", then A~1(x,y) is a periodic point ofT* with period m _
2""1 Since rescaling does not affect the stability multipliers, DT(A’B)_tHl DT(ae)(20), (259
all the orbits with period 2 (n=0,1,2...) have the same
stability multipliers, which are just the critical stability mul- on+1
tipliers A7 and\ . That is, the critical stability multipliers DTML DT , o5h
have the values of the stability multipliers of the fixed point (A".B) tHl a 8)(Z0)- (25D

(x*,y*) of the fixed mapT*,
(HereDT is the linearized map of.) Let their eigenvalues,
* _ * _ * _ * —
M =2x"=-154&..., A=2y"= 0-889---’22 called the stability multipliers, bgh; ,(A),\»4(A,B)] and
(22) [Nn+1(A"),Aon1(A",B")]. The recurrence relations for
where the old and new parameters are then given by equating the
stability multipliers of leveln, \;,(A) and X, ,(A,B), to

X* = (1— 1 /3+2\/§)/2' y*=(1- M)/Z, (233 fthose of the next level+1, Ny 1(A") andh, 4 1(A’,B"),

ie.,

w=5+33-25— 15+ V3+23(2- 33+ V/15). A (A= A s (A7) (264
(23b) 1n —Nln+1 ’

Finally, we compare the analytic results feg, a,, 01, Aon(AB)=Nyn4+1(A",B"). (26b

85, A7, and\3 with the numerical values obtained in Sec.
II, and find that the analytic ones are not bad as the lowest- The fixed point A*,B*) of the renormalization transfor-
order approximation. mation (26),
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Nia(A®)=N1ps1(AY), (279 ,
n=
Non(A*B*)=N\zq11(A%,B¥), (27h 4 T
n=6
gives the bicritical point A;,B;). By linearizing the renor- W
malization transformatiori26) at the fixed point A*,B*), B
we have
JA J0A -1.8 3
AA oA B[ | [AA @
AB/ | 4B oB AB’ 28) 1.40114 A* 1.40117
| B A
) 4 )
(AA’) 29
=A , 29
" AB’ 1174 -
where AA=A—-A*, AB=B—-B*, AA'=A"-A*, AB’
=B'—B*, and s =
< :
Ap=T7"Thsy, (303 |
-1.184 |- : -
d\1p 0 (b)
dA * 1 05;009 - 1 05;010
r,= : 30b : B” :
N ) P IMNan (309 B
IA * B * FIG. 3. Plots of(a) the first stability multipliers\; ,(A) versusA
and(b) the second stability multipliers, ,(Ag ,B) versusB for the
AN1pes casesn=6,7. In (a), the intersection point, denoted by the solid
— 0 circle, of the two curves.; g and\; ;7 gives the point A§ A7 ¢ of
dA * level 6. Asn—x, (A* \\1,) converges to its limit pointA* \7).
— n in 1
Pniq= IN IN ‘ (300 Similarly, in (b), the intersection point, denoted also by the solid
2n+1 2n+1 circle, of the two successive curvas A% ,B) and A, AA} ,B)
A" | B’ ‘* gives the point B A3 ¢ of level 6. Asn—, (B} ,\3,) also

approaches its limit point&* ,\3). For other details, see the text.
HereT', ! is the inverse of", and the asterisk denotes the

fixed point (A*,B*). After some algebra, we obtain the ana- dy Oan
lytic formulas for the eigenvalues, , and 8, , of the matrix az,n:d_y/ = a (32b
Ap, * ’
dhpnss where
dA’ % dX’ ayr
51,n:W1 (313 dA’ JB’
[ * *
dA bn=gxy T (33
* — —
dA[, aB|
INop+1
B’ Here a;, and o, , also converge to the orbital scaling fac-

(31b tors, aq and «,, in the first and second subsystems, respec-
tively.
Some results for an intermediate levedre shown in Fig.
3. Figure 3a) shows the plots of the first stability multiplier
As n—x, §;, and d,, approachs; and &,, which are just \;,(A) versusA for the casemn=6,7. We note that the
the parameter scaling factors in the first and second subntersection point, denoted by the solid circle, of the two
systems, respectively. Note also that as in the 1D case, thgurves)\; g and \; ; gives the point A ,\7¢ of level 6,
local rescaling factors of the state variables are simply givegyhere A} and\ g are the critical point and the critical sta-
by bility multiplier in the first subsystem, respectively. As the
dx s levelnincreasesA;; and\}, approach their limit values*
Ay =r| = ﬂ, (323 and\7} , respectively. Note also that the ratio of the slopes of
dx'|, tin the curves,\;¢(A) and \;AA), for A=A gives the

PN
2N 9Ngp

B
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TABLE IV. Sequences of the critical point, the first critical stability multiplier, the parameter and orbital
scaling factors{A}}, {1}, {610} @and{ay,}, in the first subsystem. For comparison, we also list the results

BICRITICAL BEHAVIOR OF PERIOD DOUBLINGS IN ...

obtained by a direct numerical method in the last row.

n A: )\in 51,n d1n
6 1.4011551890889291 —1.6011912111212 4.669 2030721 —2.5026204595
7 1.4011551890921332 —1.6011913425171 4.669 2014285 —2.5028459883
8 1.401 1551890920484 —1.601191 3262887 4.6692016314 —2.5028946520
9 1.401 1551890920507 —1.6011913282943 4.6692016063 —2.5029050377
10 1.4011551890920506 —1.6011913280464 4.6692016094 —2.502907 2678
11 1.4011551890920506 —1.6011913280770 4.6692016091 —2.502907 7449
12 1.4011551890920506 —1.6011913280732 4.6692016091 —2.502907 8472
13 1.4011551890920506 —1.6011913280737 4.6692016091 —2.502907 869 1
14 1.4011551890920506 —1.6011913280736 4.6692016091 —2.5029078738
15 1.4011551890920506 —1.6011913280736 4.6692016091 —2.5029078748
1.4011551890920506 —1.6011913280736 4.6692016091 —2.5029078751

6591

parameter scaling factd s of level 6 in the first subsystem. improved with the leveh and their limit values agree well
Similarly, Fig. 3b) shows the plots of the second stability with those obtained by a direct numerical method.
multiplier \,,(A§,B) versus B for the casesn=6,7.

The intersection point, denoted also by the solid circle, of

the two curves\,qAj,B) and \,AAg§,B) gives the
point (B ,\5 ¢ of level 6, whereBs and\} g are the critical
point and the critical stability multiplier in the second

IV. SUMMARY

We have studied the scaling behavior of period doublings
subsystem, respectively. As the levelincreasesB* and near the. bicritical point, correspopdiqg to a threshold
* ' Lo " sl of chaos in both subsystems. For this bicritical case, a type
\2,p IS0 converge to their limit valueB™ and\; , respec- ¢ hon_Feigenbaum critical behavior appears in the second
tively. As in the first subsystem, the ratio of the s!opes of the(respons)a subsystem, while the firstdrive) subsystem is
curves, A, g(Ag ,B) and\,{Ag ,B), for B=B gives the i, the Feigenbaum critical state. Employing the truncation
parameter scaling factof, ¢ of level 6 in the second sub- ang eigenvalue-matching methods, we made the RG analysis
system. of the bicritical behavior. For the case of the truncation
With increasing the level up to=15, we first solve Eq. method, we analytically obtained the fixed point, associated
(27) and obtain the bicritical pointA7 ,BY) of levelnand  with the bicritical behavior, and its relevant eigenvalues.
the pair of critical stability multipliersX7,,,\3,,) of leveln.  These analytic RG results are not bad as the lowest-order
Next, we use the formulas of Eq&81) and(32) and obtain  approximation. To improve the accuracy, we also employed
the parameter and orbital scaling factors of lenglespec- the numerical eigenvalue-matching RG method, and ob-
tively. These numerical RG results for the first and secondained the bicritical point, the parameter and orbital scaling
subsystems are listed in Tables IV and V, respectively. Notéactors, and the critical stability multipliers. Note that the
that the accuracy in the numerical RG results is remarkablyccuracy in the numerical RG results is improved remark-
ably with increasing the level. Consequently, these numeri-
TABLE V. Sequences of the critical point, the second critical cal RG results agree well with the results obtained by a direct
stability multiplier, the parameter and orbital scaling factég }, numerical method. Finally, note that this kind of bicritical
{\3.}, {820} @nd{a,,}, in the second subsystem. For comparison,behavior was also found in an electronic systgfand in
we also list the results obtained by a direct numerical method in theifferential equation$6]. We thus believe that the bicritical-

last row. ity in the abstract system of unidirectionally coupled 1D
maps may be observed in the real unidirectionally coupled
n B: A3n S2n azn systems.
6 1.090092490313 —1.177467 2.39507 —1.502785
7 1.090094351702 —1.178671 2.39358 —1.503173
8 1.000004321847 —1.178625 2.39359 —1.504 426 ACKNOWLEDGMENTS
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10 1.090094 347652 —1.178820
11 1.090094 348817 —1.178844
12 1.090094 348536 —1.178830
13 1.090094 348675 —1.178847
14 1.090094 348 704 —1.178 856
15 1.090094 348 701 —1.178853
1.090094 348701 —1.17885

2.39280 —1.504993
2.39281 —1.505163
2.39278 —1.505263
2.39274 —1.505280
2.39273 —1.505296
2.39273 —1.505311
23927 —1.505318
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