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Bicritical behavior of period doublings in unidirectionally coupled maps

Sang-Yoon Kim*
Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea

~Received 6 January 1999!

We study the scaling behavior of period doublings in two unidirectionally coupled one-dimensional maps
near a bicritical point where two critical lines of period-doubling transition to chaos in both subsystems meet.
Note that the bicritical point corresponds to a border of chaos in both subsystems. For this bicritical case, the
second response subsystem exhibits a type of non-Feigenbaum critical behavior, while the first drive subsystem
is in the Feigenbaum critical state. Using two different methods, we make the renormalization-group analysis
of the bicritical behavior and find the corresponding fixed point of the renormalization transformation with two
relevant eigenvalues. The scaling factors obtained by the renormalization-group analysis agree well with those
obtained by a direct numerical method.@S1063-651X~99!02006-1#
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I. INTRODUCTION

Period-doubling transition to chaos has been extensiv
studied in a one-parameter family of one-dimensional~1D!
unimodal maps,

xt11512Axt
2 , ~1!

wherext is a state variable at a discrete timet. As the control
parameterA is increased, the 1D map undergoes an infin
sequence of period-doubling bifurcations accumulating a
critical point Ac , beyond which chaos sets in. Using
renormalization-group~RG! method, Feigenbaum@1# has
discovered universal scaling behavior near the critical po
Ac .

Here we are interested in the period doublings in a sys
consisting of two 1D maps with a one-way coupling,

xt11512Axt
2 , yt11512Byt

22Cxt
2 , ~2!

where x and y are state variables of the first and seco
subsystems,A and B are control parameters of the su
systems, andC is a coupling parameter. Note that the fir
~drive! subsystem acts on the second~response! subsystem,
while the second subsystem does not influence the first
system. This kind of unidirectionally coupled 1D maps ha
been used as a model for open flow systems@2#. In particu-
lar, such systems with unidirectional coupling are activ
discussed recently in application to secure communica
using synchronous chaos@3#.

A kind of non-Feigenbaum scaling behavior was found
the unidirectionally coupled 1D maps~2! near a bicritical
point (Ac ,Bc) where two critical lines of period-doubling
transition to chaos in both subsystems meet@4#. For this
bicritical case, a RG analysis was also developed and
corresponding fixed point, governing the bicritical behavi
was numerically obtained by directly solving the RG fixe
point equation using a polynomial approximation@5#. In this
paper, using two different methods, we also make the
analysis of the bicriticality, the results of which agree w
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with those of previous works. Note that this kind of no
Feigenbaum critical behavior was also found both in an e
tronic system of two periodically driven nonlinearLC cir-
cuits with a unidirectional coupling@4# and in a system of
two unidirectionally coupled Chua’s circuits@6#. It is thus
believed that the bicriticality in the abstract system of t
unidirectionally coupled 1D maps may be observed in a r
system consisting of two period-doubling subsystems wit
unidirectional coupling.

This paper is organized as follows. In Sec. II we study
scaling behavior near a bicritical point (Ac ,Bc), correspond-
ing to a border of chaos in both subsystems, by direc
following a period-doubling sequence converging to t
point (Ac ,Bc) for a fixed value ofC. For this bicritical case,
a type of non-Feigenbaum critical behavior appears in
second subsystem, while the first subsystem is in the Feig
baum critical state. Employing two different methods, w
make the RG analysis of the bicritical behavior in Sec.
To solve the RG fixed-point equation, we first use an a
proximate truncation method@7#, corresponding to the
lowest-order polynomial approximation. Thus we analy
cally obtain the fixed point, associated with the bicritic
behavior, and its relevant eigenvalues. Compared with
previous numerical results@5#, these analytic results are no
bad as the lowest-order approximation. To improve ac
racy, we also employ the ‘‘eigenvalue-matching’’ R
method@8#, equating the stability multipliers of the orbit o
level n ~period 2n) to those of the orbit of the next leveln
11. Thus we numerically obtain the bicritical point, the p
rameter and orbital scaling factors, and the critical stabi
multipliers. We note that the accuracy is improved rema
ably with increasing the leveln. Finally, a summary is given
in Sec. IV.

II. SCALING BEHAVIOR NEAR THE BICRITICAL POINT

In this section we fix the value of the coupling parame
by settingC50.45 and directly follow a period-doubling se
quence converging to the bicritical point (Ac ,Bc), which
corresponds to a border of chaos in both subsystems. For
bicritical case, the second subsystem exhibits a type of n
Feigenbaum critical behavior, while the first subsystem is
the Feigenbaum critical state.
6585 ©1999 The American Physical Society
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6586 PRE 59SANG-YOON KIM
The unidirectionally coupled 1D maps~2! may have many
attractors for fixed values of the parameters@9#. For the case
C50, it breaks up into the two uncoupled 1D maps. If th
both have stable orbits of period 2k, then the composite sys
tem has 2k different stable states distinguished by the ph
shift between the subsystems. This multistability is preser
when the coupling is introduced, at least while its value
small enough. Here we study only the attractors whose
sins include the origin~0,0!. Such attractors become in pha
whenA5B andC50.

Stability of an orbit with periodq is determined by its
stability multipliers,

l15)
t51

q

~22Axt!, l25)
t51

q

~22Byt!. ~3!

Herel1 andl2 determine the stability of the first and seco
subsystems, respectively. An orbit becomes stable when
moduli of both multipliers are less than unity, i.e.,21,l i
,1 for i 51,2.

Figure 1 shows the stability diagram of periodic orbits f
C50.45. As the parameterA is increased, the first subsyste
exhibits a sequence of period-doubling bifurcations at
vertical straight lines, wherel1521. For small values of
the parameterB, the period of oscillation in the second su
system is the same as that in the first subsystem, as in
case of forced oscillation. AsB is increased for a fixed valu
of A, a sequence of period-doubling bifurcations occurs
the second subsystem when crossing the nonvertical l
where l2521. The numbers inside the different regio
denote the period of the oscillation in the second subsyst

We consider a pair of the parameters (An ,Bn), at which
the periodic orbit of leveln ~period 2n) has the stability
multipliers l1,n5l2,n521. Hence, the point (An ,Bn) cor-
responds to a threshold of instability in both subsyste

FIG. 1. Stability diagram of the periodic orbits born via perio
doubling bifurcations forC50.45. The numbers in the differen
regions represent the period of motion in the second subsystem
open circles also denote the point, corresponding to a thresho
instability in both subsystems, wherel1521 andl2521. Such
open circles accumulate to the bicritical point, denoted by the s
circle, which corresponds to a border of chaos in both subsyste
For other details, see the text.
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Some of such points are denoted by the open circles in
1. Then such a sequence of (An ,Bn) converges to the bicriti-
cal point (Ac ,Bc), corresponding to a border of chaos
both systems, with increasing the leveln. The bicritical point
is denoted by the solid circle in Fig. 1. To locate the bicri
cal point with a satisfactory precision, we numerically follo
the orbits of periodq52n up to leveln521 in a quadruple
precision, and obtain the sequences of both the parame
(An ,Bn) and the orbit points (xn ,yn) approaching the origin.
We first note that the sequences ofAn and xn in the first
subsystem are the same as those in the 1D maps@1#. Hence,
only the sequences ofBn andyn in the second subsystem a
given in Table I.

We now study the asymptotic scaling behavior of t
period-doubling sequences in both subsystems near the
critical point. The scaling behavior in the first subsystem
obviously the same as that in the 1D maps@1#. That is, the
sequences$An% and $xn% accumulate to their limit values
A5Ac (51.401 155 189 092 . . . ) and x50, geometrically
as follows:

An2Ac;d1
2n , xn;a1

2n for largen. ~4!

The scaling factorsd1 anda1 are just the Feigenbaum con
stantsd (54.669 . . . ) anda (522.502 . . . ) for the 1D
maps, respectively. However, the second subsystem exh
a non-Feigenbaum critical behavior, unlike the case of
first subsystem. The two sequences$Bn% and$yn% also con-
verge geometrically to their limit valuesB5Bc
(51.090 094 348 701) andy50, respectively, where the
value of Bc is obtained using the superconverging meth
@10#. To obtain the convergence rates of the two sequen
we define the scaling factors of leveln:

d2,n[
Bn212Bn

Bn2Bn11
, a2,n[

yn212yn

yn2yn11
. ~5!

These two sequences$d2,n% and$a2,n% are listed in Table II,
and they converge to their limit values,

d2.2.3928, a2.21.5053, ~6!

he
of

id
s.

TABLE I. Sequences of the parameter and the orbit point,$Bn%
and$yn%, in the second subsystem.

n Bn yn

10 1.090 088 955 364 5.019 18931023

11 1.090 092 109 910 23.333 77531023

12 1.090 093 416 851 2.214 46731023

13 1.090 093 959 979 21.471 02431023

14 1.090 094 186 392 9.771 97031024

15 1.090 094 280 906 26.491 56131024

16 1.090 094 320 376 4.312 39131024

17 1.090 094 336 865 22.864 76231024

18 1.090 094 343 755 1.903 09231024

19 1.090 094 346 634 21.264 24531024

20 1.090 094 347 837 8.398 51831025

21 1.090 094 348 340 25.579 23031025
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respectively. Note that these scaling factors are comple
different from those in the first subsystem~i.e., the Feigen-
baum constants for the 1D maps!.

For evidence of scaling, we compare the chaotic attr
tors, shown in Fig. 2, for the three values of (A,B) near the
bicritical point (Ac ,Bc). All these attractors are the hype
chaotic ones with two positive Lyapunov exponents@11#,

s15 lim
m→`

1

m (
t51

m

lnu2Axtu, s25 lim
m→`

1

m (
t51

m

lnu2Bytu.

~7!

Here the first and second Lyapunov exponentss1 and s2
denote the average exponential divergence rates of ne
orbits in the first and second subsystems, respectively. Fi
2~a! shows the hyperchaotic attractor withs1.0.242 and
s2.0.04 for A5Ac1DA and B5Bc1DB, where DA
5DB50.1. This attractor consists of two pieces. To s
scaling, we first rescaleDA andDB with the parameter scal
ing factorsd1 andd2, respectively. The attractor for the re
caled parameter values ofA5Ac1DA/d1 and B5Bc
1DB/d2 is shown in Fig. 2~b!. It is also the hyperchaotic
attractor withs1.0.121 ands2.0.02. We next magnify the
region in the small box~containing the origin! by the scaling
factora1 for thex axis anda2 for they axis, and then we ge
the picture in Fig. 2~c!. Note that the picture in Fig. 2~c!
reproduces the previous one in Fig. 2~a! approximately. Re-
peating the above procedure once more, we obtain the
pictures in Figs. 2~d! and 2~e!. That is, Fig. 2~d! shows the
hyperchaotic attractor withs.0.061 ands2.0.01 for A
5Ac1DA/d1

2 andB5Bc1DB/d2
2. Magnifying the region in

the small box with the scaling factorsa1
2 for the x axis and

a2
2 for the y axis, we also obtain the picture in Fig. 2~e!,

which reproduces the previous one in Fig. 2~c! with an in-
creased accuracy.

So far we have seen the scaling near the bicritical po
and now turn to a discussion of the behavior exactly at
bicritical point (Ac ,Bc). There exist an infinity of unstable
periodic orbits with period 2n at the bicritical point. The
orbit pointsxn andyn , approaching the zero in the first an
second subsystems, vary asymptotically in proportion toa1

2n

anda2
2n , respectively. The stability multipliersl1,n andl2,n

of the orbits with period 2n also converge to the critica

TABLE II. Sequences of the parameter and orbital scaling f
tors, $d2,n% and$a2,n%, in the second subsystem.

n d2,n a2,n

10 2.429 8 21.505 733 1
11 2.413 7 21.505 515 4
12 2.406 3 21.505 428 1
13 2.398 8 21.505 375 3
14 2.395 6 21.505 344 0
15 2.394 6 21.505 331 6
16 2.393 7 21.505 325 6
17 2.393 1 21.505 321 5
18 2.393 0 21.505 319 8
19 2.392 9 21.505 319 1
20 2.392 8 21.505 318 6
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stability multipliers l1* and l2* , respectively. Herel1*
(521.601 191. . . ) in thefirst subsystem is just the critica
stability multiplier for the case of the 1D maps@1#. However,
as listed in Table III, the second subsystem has the diffe

-

FIG. 2. Hyperchaotic attractors for the three values of (A,B)
near the bicritical point (Ac .Bc); in ~a! (A,B)5(Ac1DA,Bc

1DB) (DA5DB50.1), in ~b! and ~c! (A,B)5(Ac1DA/d1 ,Bc

1DB/d2), and in ~d! and ~e! (A,B)5(Ac1DA/d1
2 ,Bc1DB/d2

2).
The picture in~c! is obtained by magnifying the region in the sma
box in ~b! with the scaling factorsa1 for the x axis anda2 for the
y axis. Similarly, we also obtain the picture~e! by magnifying the
region inside the small box in~d! with the scaling factorsa1

2 for the
x axis anda2

2 for they axis. Comparing the pictures in~a!, ~c!, and
~e!, one can see that each successive magnified picture reprod
the previous one with an accuracy with the depth of resolution.

TABLE III. Sequences of the second-stability multipliers,$l2,n%
of the orbits with period 2n at the bicritical point.

n l2,n

10 21.178 829
11 21.178 842
12 21.178 839
13 21.178 850
14 21.178 855
15 21.178 854
16 21.178 854
17 21.178 855
18 21.178 855
19 21.178 854
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6588 PRE 59SANG-YOON KIM
critical stability multiplier,

l2* 521.178 85. . . . ~8!

Consequently, the periodic orbits at the bicritical point ha
the same stability multipliersl1* and l2* for sufficiently
largen.

III. RENORMALIZATION-GROUP ANALYSIS
OF THE BICRITICAL BEHAVIOR

Employing two different methods, we make the R
analysis of the bicritical behavior. We first use the truncat
method, and analytically obtain the corresponding fix
point and its relevant eigenvalues. These analytic results
not bad as the lowest-order approximation. To improve
accuracy, we also use the numerical eigenvalue-matc
method, and obtain the bicritical point, the parameter a
orbital scaling factors, and the critical stability multiplier
Note that the accuracy in the numerical RG results is
proved remarkably with increasing the leveln.

A. Truncation method

In this subsection, employing the truncation method@7#,
we analytically make the RG analysis of the bicritical beha
ior in the unidirectionally coupled mapT of the form,

T: xt115 f ~xt!, yt115g~xt ,yt!, ~9!

wherext andyt are the state variables at a discrete timet in
the first and second subsystems, respectively. Truncating
map ~9! at its quadratic terms, we have

TP : xt115
a

b
1bxt

2 , yt115
c

d
1dyt

21
e

d
xt

2 , ~10!

which is a five-parameter family of unidirectionally couple
maps. P represents the five parameters, i.e.,P
5(a,b,c,d,e). The construction of Eq.~10! corresponds to a
truncation of the infinite dimensional space of unidirectio
ally coupled maps to a five-dimensional space. The par
etersa, b, c, d, ande can be regarded as the coordinates
the truncated space. We also note that this truncation me
corresponds to the lowest-order polynomial approximatio

We look for fixed points of the renormalization operat
R in the truncated five-dimensional space of unidirectiona
coupled maps,

R~T!5LT2L21. ~11!

Here the rescaling operatorL is given by

L5S a1 0

0 a2
D , ~12!

where a1 and a2 are the rescaling factors in the first an
second subsystems, respectively.

The operationR in the truncated space can be represen
by a transformation of parameters, i.e., a map fromP
[(a,b,c,d,e) to P8[(a8,b8,c8,d8,e8),

a852a2~11a!, ~13a!
e
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b85
2

a1
ab, ~13b!

c852cS c1c21e
a2

b2D , ~13c!

d85
2

a2
cd, ~13d!

e85
4

a1
2 ce~a1c!. ~13e!

The fixed pointP* 5(a* ,b* ,c* ,d* ,e* ) of this map can be
determined by solvingP85P. The parametersb and d set
only the scales in thex andy, respectively, and thus they ar
arbitrary. We now fix the scales inx andy by settingb5d
51. Then, we have, from Eqs.~13a!–~13e!, five equations
for the five unknownsa1 ,a* ,a2 ,c* , ande* . We thus find
one solution, associated with the bicritical behavior, as w
be seen below. The map~10! with a solutionP* (TP*) is the
fixed map of the renormalization transformationR; for brev-
ity TP* will be denoted asT* .

We first note that Eqs.~13a! and ~13b! are only for the
unknownsa1 anda* . We find one solution fora1 anda* ,
associated with the period-doubling bifurcation in the fi
subsystem,

a15212A3522.732 . . . , a* 5
a1

2
. ~14!

Substituting the values fora1 anda* into Eqs.~13c!–~13e!,
we obtain one solution fora2 , c* , ande* , associated with
the bicriticality,

a25
1

2
~11A32A52A15!521.688 . . . , ~15a!

c* 5
a2

2
, e* 511

1

2
~A1523A3!50.338 . . . .

~15b!

Consider an infinitesimal perturbationedP to a fixed
point P* of the transformation of parameters~13a!–~13e!.
Linearizing the transformation atP* , we obtain the equation
for the evolution ofdP,

dP85JdP, ~16!

whereJ is the Jacobian matrix of the transformation atP* .
The 535 Jacobian matrixJ has a semiblock form, be

cause we are considering the unidirectionally coupled ca
Therefore, one can easily obtain its eigenvalues. The
two eigenvalues, associated with the first subsystem,
those of the following 232 matrix,



g
the
in

sec-

PRE 59 6589BICRITICAL BEHAVIOR OF PERIOD DOUBLINGS IN . . .
M15
]~a8,b8!

]~a,b!
U

P*
5S 32a1 0

2/a1 1D . ~17!

Hence, the two eigenvalues ofM1 , d1, andd18 , are given by

d1541A355.732 . . . , d1851. ~18!
ed
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Here the relevant eigenvalued1 is associated with the scalin
of the control parameter in the first subsystem, while
marginal eigenvalued18 is associated with the scale change
x.

The remaining three eigenvalues, associated with the
ond subsystem, are those of the following 333 matrix,
M25
]~c8,d8,e8!

]~c,d,e!
U

P*
5S 4c* 16c* 212a* 2e* 0 2a* 2c*

2/a2 2c* /a2 0

4e* ~a* 12c* !/a1
2 0 4c* ~a* 1c* !/a1

2
D . ~19!
ing
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gh-
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The three eigenvalues ofM2 , d2 , d28 , andd29 , are given by

d25~u1Av !/253.0246 . . . , ~20a!

d285~u2Av !/250.1379 . . . , d2951, ~20b!

where

u5~1717A325A523A15!/2, ~21a!

v5104153A3244A5223A15. ~21b!

The first eigenvalued2 is a relevant eigenvalue, associat
with the scaling of the control parameter in the second s
system, the second eigenvalued28 is an irrelevant one, and
the third eigenvalued29 is a marginal eigenvalue, associat
with the scale change iny.

As shown in Sec. II, stability multipliers of an orbit wit
period 2n at the bicritical point converge to the critical st
bility multipliers l1* andl2* asn→`. We now obtain these
critical stability multipliers analytically. The invariance o
the fixed mapT* under the renormalization transformatio
R implies that, ifT* has a periodic point (x,y) with period
2n, then L21(x,y) is a periodic point ofT* with period
2n11. Since rescaling does not affect the stability multiplie
all the orbits with period 2n (n50,1,2, . . . ) have the same
stability multipliers, which are just the critical stability mu
tipliers l1* andl2* . That is, the critical stability multipliers
have the values of the stability multipliers of the fixed po
(x* ,y* ) of the fixed mapT* ,

l1* 52x* 521.5424 . . . , l2* 52y* 520.8899 . . . ,
~22!

where

x* 5~12A312A3!/2, y* 5~12Aw!/2, ~23a!

w5513A322A52A151A312A3~223A31A15!.
~23b!

Finally, we compare the analytic results fora1 , a2 , d1 ,
d2 , l1* , andl2* with the numerical values obtained in Se
II, and find that the analytic ones are not bad as the low
order approximation.
-

,

t

t-

B. Eigenvalue-matching method

In this subsection, we employ the eigenvalue-match
method @8# and numerically make the RG analysis of th
bicritical behavior in the unidirectionally coupled mapT of
Eq. ~2!. As the leveln increases, the accuracy in the nume
cal RG results are remarkably improved.

The basic idea is to associate a value (A8,B8) for each
(A,B) such thatT(A8,B8)

(n11) locally resemblesT(A,B)
(n) , whereT(n)

is the 2nth-iterated map ofT ~i.e., T(n)5T2n
). A simple way

to implement this idea is to linearize the maps in the nei
borhood of their respective fixed points and equate the c
responding eigenvalues.

Let $zt% and $zt8% be two successive cycles of period 2n

and 2n11, respectively, i.e.,

zt5T(A,B)
(n) ~zt!, zt85T(A8,B8)

(n11)
~zt8!; zt5~xt ,yt!. ~24!

Herext depends only onA, butyt is dependent on bothA and
B, i.e., xt5xt(A) and yt5yt(A,B). Then their linearized
maps atzt andzt8 are given by

DT(A,B)
(n) 5)

t51

2n

DT(A,B)~zt!, ~25a!

DT(A8,B8)
(n11)

5 )
t51

2n11

DT(A8,B8)~zt8!. ~25b!

~HereDT is the linearized map ofT.! Let their eigenvalues,
called the stability multipliers, be@l1,n(A),l2,n(A,B)# and
@l1,n11(A8),l2,n11(A8,B8)#. The recurrence relations fo
the old and new parameters are then given by equating
stability multipliers of leveln, l1,n(A) and l2,n(A,B), to
those of the next leveln11, l1,n11(A8) andl2,n11(A8,B8),
i.e.,

l1,n~A!5l1,n11~A8!, ~26a!

l2,n~A,B!5l2,n11~A8,B8!. ~26b!

The fixed point (A* ,B* ) of the renormalization transfor
mation ~26!,
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6590 PRE 59SANG-YOON KIM
l1,n~A* !5l1,n11~A* !, ~27a!

l2,n~A* ,B* !5l2,n11~A* ,B* !, ~27b!

gives the bicritical point (Ac ,Bc). By linearizing the renor-
malization transformation~26! at the fixed point (A* ,B* ),
we have

S DA

DBD 5S ]A

]A8
U
*

]A

]B8
U
*

]B

]A8
U
*

]B

]B8
U
*

D S DA8

DB8
D ~28!

5DnS DA8

DB8
D , ~29!

where DA5A2A* , DB5B2B* , DA85A82A* , DB8
5B82B* , and

Dn5Gn
21Gn11 , ~30a!

Gn5S dl1,n

dA U
*

0

]l2,n

]A U
*

]l2,n

]B U
*

D , ~30b!

Gn115S dl1,n11

dA8
U
*

0

]l2,n11

]A8
U
*

]l2,n11

]B8
U
*

D . ~30c!

Here Gn
21 is the inverse ofGn and the asterisk denotes th

fixed point (A* ,B* ). After some algebra, we obtain the an
lytic formulas for the eigenvaluesd1,n andd2,n of the matrix
Dn ,

d1,n5

dl1,n11

dA8
U
*

dl1,n

dA U
*

, ~31a!

d2,n5

]l2,n11

]B8
U
*

]l2,n

]B U
*

. ~31b!

As n→`, d1,n andd2,n approachd1 andd2, which are just
the parameter scaling factors in the first and second s
systems, respectively. Note also that as in the 1D case
local rescaling factors of the state variables are simply gi
by

a1,n5
dx

dx8
U
*

5
d1,n

t1,n
, ~32a!
b-
he
n

a2,n5
dy

dy8
U
*

5
d2,n

t2,n
, ~32b!

where

t1,n5

dx8

dA8
U
*

dx

dAU
*

, t2,n5

]y8

]B8
U
*

]y

]BU
*

. ~33!

Here a1,n and a2,n also converge to the orbital scaling fa
tors, a1 anda2, in the first and second subsystems, resp
tively.

Some results for an intermediate leveln are shown in Fig.
3. Figure 3~a! shows the plots of the first stability multiplie
l1,n(A) versusA for the casesn56,7. We note that the
intersection point, denoted by the solid circle, of the tw
curvesl1,6 and l1,7 gives the point (A6* ,l1,6* ) of level 6,
whereA6* andl1,6* are the critical point and the critical sta
bility multiplier in the first subsystem, respectively. As th
level n increases,An* andl1,n* approach their limit valuesA*
andl1* , respectively. Note also that the ratio of the slopes
the curves, l1,6(A) and l1,7(A), for A5A6* gives the

FIG. 3. Plots of~a! the first stability multipliersl1,n(A) versusA
and~b! the second stability multipliersl2,n(A6* ,B) versusB for the
casesn56,7. In ~a!, the intersection point, denoted by the sol
circle, of the two curvesl1,6 andl1,7 gives the point (A6* ,l1,6* ) of
level 6. Asn→`, (An* ,l1,n* ) converges to its limit point (A* ,l1* ).
Similarly, in ~b!, the intersection point, denoted also by the so
circle, of the two successive curvesl2,6(A6* ,B) and l2,7(A6* ,B)
gives the point (B6* ,l2,6* ) of level 6. As n→`, (Bn* ,l2,n* ) also
approaches its limit point (B* ,l2* ). For other details, see the text
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TABLE IV. Sequences of the critical point, the first critical stability multiplier, the parameter and or
scaling factors,$An* %, $l1,n* %, $d1,n% and$a1,n%, in the first subsystem. For comparison, we also list the res
obtained by a direct numerical method in the last row.

n An* l1,n* d1,n a1,n

6 1.401 155 189 088 929 1 21.601 191 211 121 2 4.669 203 072 1 22.502 620 459 5
7 1.401 155 189 092 133 2 21.601 191 342 517 1 4.669 201 428 5 22.502 845 988 3
8 1.401 155 189 092 048 4 21.601 191 326 288 7 4.669 201 631 4 22.502 894 652 0
9 1.401 155 189 092 050 7 21.601 191 328 294 3 4.669 201 606 3 22.502 905 037 7

10 1.401 155 189 092 050 6 21.601 191 328 046 4 4.669 201 609 4 22.502 907 267 8
11 1.401 155 189 092 050 6 21.601 191 328 077 0 4.669 201 609 1 22.502 907 744 9
12 1.401 155 189 092 050 6 21.601 191 328 073 2 4.669 201 609 1 22.502 907 847 2
13 1.401 155 189 092 050 6 21.601 191 328 073 7 4.669 201 609 1 22.502 907 869 1
14 1.401 155 189 092 050 6 21.601 191 328 073 6 4.669 201 609 1 22.502 907 873 8
15 1.401 155 189 092 050 6 21.601 191 328 073 6 4.669 201 609 1 22.502 907 874 8

1.401 155 189 092 050 6 21.601 191 328 073 6 4.669 201 609 1 22.502 907 875 1
.
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parameter scaling factord1,6 of level 6 in the first subsystem
Similarly, Fig. 3~b! shows the plots of the second stabili
multiplier l2,n(A6* ,B) versus B for the casesn56,7.
The intersection point, denoted also by the solid circle,
the two curves l2,6(A6* ,B) and l2,7(A6* ,B) gives the
point (B6* ,l2,6* ) of level 6, whereB6* andl2,6* are the critical
point and the critical stability multiplier in the secon
subsystem, respectively. As the leveln increases,Bn* and
l2,n* also converge to their limit values,B* andl2* , respec-
tively. As in the first subsystem, the ratio of the slopes of
curves,l2,6(A6* ,B) and l2,7(A6* ,B), for B5B6* gives the
parameter scaling factord2,6 of level 6 in the second sub
system.

With increasing the level up ton515, we first solve Eq.
~27! and obtain the bicritical point (An* ,Bn* ) of level n and
the pair of critical stability multipliers (l1,n* ,l2,n* ) of level n.
Next, we use the formulas of Eqs.~31! and ~32! and obtain
the parameter and orbital scaling factors of leveln, respec-
tively. These numerical RG results for the first and seco
subsystems are listed in Tables IV and V, respectively. N
that the accuracy in the numerical RG results is remarka

TABLE V. Sequences of the critical point, the second critic
stability multiplier, the parameter and orbital scaling factors,$Bn* %,
$l2,n* %, $d2,n% and$a2,n%, in the second subsystem. For compariso
we also list the results obtained by a direct numerical method in
last row.

n Bn* l2,n* d2,n a2,n

6 1.090 092 490 313 21.177 467 2.395 07 21.502 785
7 1.090 094 351 702 21.178 671 2.393 58 21.503 173
8 1.090 094 321 847 21.178 625 2.393 59 21.504 426
9 1.090 094 328 376 21.178 649 2.393 10 21.504 894

10 1.090 094 347 652 21.178 820 2.392 80 21.504 993
11 1.090 094 348 817 21.178 844 2.392 81 21.505 163
12 1.090 094 348 536 21.178 830 2.392 78 21.505 263
13 1.090 094 348 675 21.178 847 2.392 74 21.505 280
14 1.090 094 348 704 21.178 856 2.392 73 21.505 296
15 1.090 094 348 701 21.178 853 2.392 73 21.505 311

1.090 094 348 701 21.178 85 2.392 7 21.505 318
f

e

d
te
ly

improved with the leveln and their limit values agree wel
with those obtained by a direct numerical method.

IV. SUMMARY

We have studied the scaling behavior of period doublin
near the bicritical point, corresponding to a thresho
of chaos in both subsystems. For this bicritical case, a t
of non-Feigenbaum critical behavior appears in the sec
~response! subsystem, while the first~drive! subsystem is
in the Feigenbaum critical state. Employing the truncat
and eigenvalue-matching methods, we made the RG ana
of the bicritical behavior. For the case of the truncati
method, we analytically obtained the fixed point, associa
with the bicritical behavior, and its relevant eigenvalue
These analytic RG results are not bad as the lowest-o
approximation. To improve the accuracy, we also employ
the numerical eigenvalue-matching RG method, and
tained the bicritical point, the parameter and orbital scal
factors, and the critical stability multipliers. Note that th
accuracy in the numerical RG results is improved rema
ably with increasing the leveln. Consequently, these numer
cal RG results agree well with the results obtained by a dir
numerical method. Finally, note that this kind of bicritic
behavior was also found in an electronic system@4# and in
differential equations@6#. We thus believe that the bicritical
ity in the abstract system of unidirectionally coupled 1
maps may be observed in the real unidirectionally coup
systems.
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@11# O. E. Rössler, Phys. Lett.71A, 155 ~1979!.


