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Dynamical origin for the occurrence of asynchronous hyperchaos and chaos
via blowout bifurcations
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We investigate the dynamical origin for the occurrence of asynchronous hyperchaos and chaos via blowout
bifurcations in coupled chaotic systems. An asynchronous hyperchaotic or chaotic attractor with a positive or
negative second Lyapunov exponent appears through a blowout bifurcation. It is found that the sign of the
second Lyapunov exponent of the newly born asynchronous attractor, exhibiting on-off intermittency, is deter-
mined through competition between its laminar and bursting components. When the ‘‘strength’’~i.e., a
weighted second Lyapunov exponent! of the bursting component is larger~smaller! than that of the laminar
component, an asynchronous hyperchaotic~chaotic! attractor appears.
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I. INTRODUCTION

Recently, because of its potential practical applicatio
~e.g., see Ref.@1#!, the phenomenon of synchronization
coupled chaotic systems has become a field of inten
study. When identical chaotic systems synchronize, cha
motion may occur on an invariant subspace of the wh
phase space@2–5#. An important problem concerns the st
bility of chaos synchronization@6,7#. When the Lyapunov
exponents corresponding to perturbations transverse to
invariant synchronization subspace are all negative, the
chronous chaotic state is stable, and is an attractor in
whole phase space. However, as a coupling parameter p
a threshold value, the synchronized chaotic attractor~SCA!
can become transversely unstable~i.e., its largest transvers
Lyapunov exponent becomes positive!, and desynchroniza
tion occurs via a blowout bifurcation@8–11#. Depending on
the global dynamics, two kinds of blowout bifurcations m
occur. For the case of a supercritical~nonhysteretic! blowout
bifurcation, an asynchronous attractor is born, and exhi
intermittent bursting, called on-off intermittency@12–20#;
long periods of nearly synchronous motion~off state! are
occasionally interrupted by short-term asynchronous bu
ings ~on state!. On the other hand, for the case of a subcr
cal ~hysteretic! blowout bifurcation, an abrupt disappearan
of the synchronized state occurs, and typical trajecto
starting near the invariant subspace are attracted to ano
distant asynchronous attractor~or infinity!.

Here, we are interested in the type of asynchronous in
mittent attractors born via supercritical blowout bifurcation
In particular, we are interested in whether the intermitt
bursting attractor born at the blowout bifurcation is hyp
chaotic~i.e., has more than one positive Lyapunov expone!

*Electronic address: sykim@kangwon.ac.kr
1063-651X/2003/68~6!/066203~10!/$20.00 68 0662
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or not. Examples of both hyperchaotic attractors@9,21,22#
and chaotic attractors~i.e., an attractor with only one positiv
Lyapunov exponent! @9,23# were given in previous works
However, the dynamical origin for the appearance of su
asynchronous hyperchaotic and chaotic bursting attrac
remains unclear.

In this paper, we investigate the dynamical origin for t
occurrence of asynchronous hyperchaos and chaos via b
out bifurcations in coupled chaotic systems. As a represe
tive model, we consider a system of two coupled on
dimensional~1D! maps with a parametera tuning the degree
of asymmetry of coupling@23#. This model system can b
used to represent the two-cluster dynamics in globa
coupled 1D maps@24#, in which each element is coupled t
all others with equal strength, and the asymmetry param
a is related to a parameter describing the distribution
elements between the two clusters. We also note that
many-coupled case, this kind of asymmetrically coup
maps are usually used to model the open flow systems w
preferred direction of propagation@25#. Depending on the
value ofa, an asynchronous hyperchaotic or chaotic attr
tor appears through a blowout bifurcation. This transition
asynchronous hyperchaos or chaos via a blowout bifurca
corresponds to a transition from a fully synchronized state
a hyperchaotic or chaotic two-cluster state in globa
coupled 1D maps. In Sec. II, we study the type of asynch
nous intermittent attractors born via blowout bifurcations
two coupled 1D maps by varying the asymmetry parame
a. Experimental examples of asymmetric and symme
couplings are provided by Refs.@26,27# that investigate two
chaotic electronic circuits with unidirectional and symmet
couplings, respectively. A typical trajectory on the new
born asynchronous attractor, exhibiting on-off intermitten
may be decomposed into laminar~i.e., nearly synchronous!
and bursting components. It is found that the type of
asynchronous intermittent attractor~corresponding to an in-
©2003 The American Physical Society03-1
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termittent two-cluster state for the case of global couplin!
may be determined through competition between its lam
and bursting components. When the ‘‘strength’’~i.e., its
weighted second Lyapunov exponent! of the bursting com-
ponent is larger~smaller! than that of the laminar componen
an asynchronous hyperchaotic~chaotic! attractor @corre-
sponding to a hyperchaotic~chaotic! two-cluster state for the
globally coupled case# appears. These results are of wid
significance because the~uncoupled! 1D map is a paradigm
model for period-doubling dynamics in a large class of s
tems. As examples, we consider coupled He´non maps@17#
and coupled parametrically forced pendula@28#, which are
high-dimensional invertible period-doubling systems, a
obtain similar results. Finally, a summary is given in Sec.

II. TYPE OF ASYNCHRONOUS INTERMITTENT
ATTRACTORS BORN VIA BLOWOUT BIFURCATIONS

A. Consequence of blowout bifurcations
in two coupled 1D maps

In this section we investigate the dynamical origin for t
appearance of asynchronous hyperchaotic and chaotic a
tors via blowout bifurcations in a representative model s
tem of two coupled 1D maps with a parametera tuning the
asymmetry of coupling. The asymmetric coupling natura
appears in the dynamics of two clusters for the case of glo
coupling @24#, in which each element is coupled to all th
other elements with equal strength. Examples of globa
coupled systems are laser arrays@29#, Josephson junction
arrays @30#, cardiac pacemaker cells@31#, flashing fireflies
@32#, and chirping crickets@33#. As a basic model, we con
siderN globally coupled 1D maps@34#,

xi~ t11!5 f „xi~ t !…1
«

N (
j 51

N

@ f „xj~ t !…2 f „xi~ t !…#, ~1!

wherexi(t) is a state variable of thei th element at a discret
time t, the uncoupled dynamics («50) is governed by the
1D mapf (x)512ax2 with a control parametera, and« is a
coupling parameter. For certain values of«, full synchroni-
zation in which all elements exhibit the same temporal
haviors@i.e., x1(t)5•••5xN(t)] occurs. For other values o
«, the population of elements splits into groups with diffe
ent dynamics. For example, in the case of two clusters,
have

xi 1
~ t !5xi 2

~ t !5•••5xi N1
~ t ![xt ,

xi N111
~ t !5xi N112

~ t !5•••5xi N
~ t ![yt , ~2!

whereN1 and N2 (5N2N1) represent the number of ele
ments in the first and second clusters, exhibiting thex andy
dynamics, respectively. This two-cluster state is a usual c
tering to occur when the full synchronization breaks dow
Under condition(2), the system of globally coupled 1D
maps is reduced to a system of two coupled 1D maps wi
parameterp describing the distribution of elements betwe
the two clusters@24#,
06620
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xt115 f ~xt!1p«@ f ~yt!2 f ~xt!#,

yt115 f ~yt!1~12p!«@ f ~xt!2 f ~yt!#, ~3!

wherep5N2 /N (0<p<1) denotes the fraction of the tota
population of elements in the second cluster. Note that
uneven distribution of elements between the two clust
causes an asymmetry in the coupling. Since the two coup
maps ~3! are invariant under the interchange ofx and y
(x↔y) and a change ofp (p→12p), it is sufficient to
consider only the case of 0<p<1/2. Furthermore, through a
transformation of parameters

p→ 12a

22a
and «→~22a!c, ~4!

we obtain two coupled 1D mapsT, which were used in our
previous work@23#,

T:H xt115 f ~xt!1~12a!c@ f ~yt!2 f ~xt!#

yt115 f ~yt!1c@ f ~xt!2 f ~yt!#.
~5!

Here, c is a coupling parameter anda (0<a<1) is a pa-
rameter tuning the degree of asymmetry of coupling fro
symmetric coupling (a50) to unidirectional coupling (a
51). Consequently, Eq.~5! may be used as a model map f
studying a transition from full synchronization to two-clust
dynamics in globally coupled systems.

The coupled mapT has an invariant synchronization lin
x5y. If an orbit lies on this invariant diagonal, then it
called a synchronous orbit because the state variablesxt and
yt become the same for allt; otherwise it is called an asyn
chronous orbit. For the accuracy of numerical calculatio
@35#, we introduce new coordinates,u andv,

u5
x1y

2
, v5

x2y

2
. ~6!

Under the coordinate change, the invariant diagonalx5y is
transformed into a new invariant linev50. In these new
coordinates, the coupled mapT of Eq. ~5! becomes

T:H ut11512a~ut
21v t

2!22aacutv t

v t11522a@12~22a!c#utv t .
~7!

From now on, we investigate the dynamical origin for t
occurrence of asynchronous hyperchaos and chaos via b
out bifurcations in the new mapT by varying the asymmetry
parametera.

We also note that the coupled mapT is noninvertible,
because its Jacobian determinant det(DT) (DT is the Jaco-
bian matrix of T) becomes zero along the critical curve
C05$(u,v)PR2: u5v or u52v%. Critical curves of rank
k, Ck (k51,2, . . . ), arethen given by the images ofC0 @i.e.,
Ck5Tk(C0)]. Segments of these critical curves can be us
to bound a compact region of the phase space that acts
trapping bounded vessel, called an absorbing areaA, inside
which trajectories bursting away from the invariant linev
50 are confined@36,37#. Furthermore, boundaries of such a
3-2
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absorbing area can also be obtained by the union of segm
of critical curves and portions of unstable manifolds of u
stable periodic orbits. For this case,A is called a mixed
absorbing area. We note that the consequence of the blo
bifurcation of the SCA depends on the existence of an
sorbing area, controlling the global dynamics. In the pr
ence of an absorbing area, an asynchronous attractor w
this absorbing area is born through a supercritical blow
bifurcation. However, in the absence of an absorbing area
abrupt change from the synchronized state occurs via a
critical blowout bifurcation, because almost all points ne
the invariant linev50 eventually move away and never r
turn.

With increase of the control parametera, the coupled map
T exhibits an infinite sequence of period-doubling bifurc
tions of synchronous attractors with period 2n (n
50,1,2, . . . ), ending at the accumulation pointa`

(51.401 155. . . ), in some region of c. This period-
doubling cascade leads to creation of the SCA on the inv
ant linev50. With further increase ofa pasta` , a sequence
of band-merging bifurcations of the SCA takes place. He
after, we fix the value ofa asa51.97, where a single-ban
SCA exists on the invariantv50 line, as shown in Fig. 1~a!.
The longitudinal stability of trajectories on the SCA again
perturbation along thev50 line is determined by its longi
tudinal Lyapunov exponent

s uu5 lim
N→`

1

N (
t51

N

lnu2autu, ~8!

FIG. 1. ~a! One-band SCA on the invariant linev50 for a
51.97 and s@[(12a/2)c#50.23. ~b! Plot of the transverse
Lyapunov exponents' of the SCA vs the scaled coupling param
eters. As s decreases through a threshold values* (.0.2299),s'

becomes positive.
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which is just the Lyapunov exponent in the uncoupled
map. Fora51.97, we haves uu50.6157. On the other hand
the transverse stability of the SCA against perturbat
across the v50 line is determined by its transvers
Lyapunov exponent, which for the mapT is given by

s'5s uu1 lnu122su, ~9!

where s @[(12a/2)c# is a scaled coupling parameter.
plot of s' versuss is shown in Fig. 1~b!. If s is relatively
large such thats uu,2 ln(122s), then the SCA become
transversely stable~i.e., its transverse Lyapunov expone
s' is negative!. Intuitively, this result seems to make sen
since strongly coupled systems tend to synchronize. H
ever, ass is decreased and passes a threshold values* ,

s* 5 1
2 ~12e2s uu!, ~10!

the transverse Lyapunov exponents' of the SCA becomes
positive. Fora51.97, we haves* .0.2299. Consequently
when passings* , the SCA becomes transversely unstab
and then an asynchronous attractor, filling an absorbing a
is born through a supercritical blowout bifurcation.

To determine the type of a newly born asynchronous
tractor, its Lyapunov exponents are numerically calculated
follows. We choose a random initial orbit point with uniform
probability in the range ofuP(12a,1) on a linev5« («
51026) near the invariant linev50 and follow the trajec-
tory until its lengthL becomes 108 @38#. Then we obtain the
Lyapunov exponents through the Gram-Schmidt reorthon
malization~GSR! procedure@39#. For a trajectory segment
we consider the evolution of a set of two orthonormal ta
gent vectors$zt

(1) ,zt
(2)% along the trajectory$wt@[(ut ,v t)#%

(t50,1,2, . . . ). By an application of the linearized map
DT(wt) ~i.e., Jacobian matrix ofT at the orbit pointwt) on
$zt

(1) ,zt
(2)%, we obtain a set of two evolved tangent vecto

$DT(wt)zt
(1) ,DT(wt)zt

(2)%. At each time step, we replace th
evolved tangent vectors with a new set of reorthonormali
tangent vectors$zt11

(1) ,zt11
(2) % using the GSR method:

zt11
(1) 5

DT~wt!zt
(1)

dt11
(1)

, zt11
(2) 5

qt11
(2)

dt11
(2)

, ~11a!

dt11
(1) 5uuDT~wt!zt

(1)uu5A^DT~wt!zt
(1) ,DT~wt!zt

(1)&,
~11b!

dt11
(2) 5uuqt11

(2) uu5A^qt11
(2) ,qt11

(2) &, ~11c!

qt11
(2) 5DT~wt!zt

(2)2^DT~wt!zt
(2) ,zt11

(1) &zt11
(1) , ~11d!

where^,& denotes the inner product of two vectors anddt11
(1)

(dt11
(2) ) represents the length of the evolved first vector~the

component of the evolved second vector orthogonal to
evolved first vector, i.e.,qt11

(2) ). Note that the GSR neve
affects the direction of the first vectorzt11

(1) and the second
vectorzt11

(2) is orthogonal tozt11
(1) . Through this GSR proce

dure, we numerically calculate the first and second Lyapu
exponentss1 ands2 of a trajectory segment with lengthL,
3-3
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s15
1

L (
t50

L21

r t
(1) , r t

(1)5 ln dt11
(1) , ~12a!

s25
1

L (
t50

L21

r t
(2) , r t

(2)5 ln dt11
(2) , ~12b!

where r t
(1) (r t

(2)) denotes the rate of exponential growth
the length of the first vector~the component of the evolve
second vector orthogonal to the evolved first vector! at the
time t. In this way, we obtain an approximation for the fir
and second Lyapunov exponents of the asynchronous at
tor born through the blowout bifurcation.

Figures 2~a! and 2~b! show s1 and s2 of the asynchro-
nous attractors born through blowout bifurcations fora50
~up triangles!, 0.852 ~crosses!, and 1 ~down triangles!. For
the case of unidirectional coupling (a51), s1 is just the
longitudinal Lyapunov exponents uu of the SCA. On the
other hand, asa is decreased toward zero, the value ofs1
becomes smaller@see Fig. 2~a!#. However,s1 is always posi-

FIG. 2. Plots of the~a! first (s1) and~b! second (s2) Lyapunov
exponents of the newly born asynchronous attractors born thro
supercritical blowout bifurcations vs the deviationDs (5s2s* )
from the blowout bifurcation points* (.0.2299) fora51.97 with
a50 ~up triangles!, 0.852 ~crosses!, and 1 ~down triangles!. The
length of a trajectory segment for the calculation ofs1 and s2 is
L5108, and straight line segments between neighboring data s
bols are plotted only to guide the eye. For reference, the transv
Lyapunov exponent of the SCA,s' , is represented by a dashe
line in ~b!. For Ds520.0016, examples of~c! hyperchaotic (s1

50.6087 ands250.0024) and~d! chaotic (s150.6157 ands25
20.0028) attractors are given whena50 and 1, respectively. In
both ~c! and ~d!, the initial orbit point is (u0 ,v0)5(0.5,0.01), 5
3103 points are computed before plotting, and the next 43104

points are plotted. In~c! segments of unstable manifolds~whose
direction is denoted by arrows! of an asynchronous period-2 sadd
~denoted by open circles! connect to segments of the critical curv
Ck (k51,2) ~dots denote where these segments connect!, and hence
define a mixed absorbing area which a hyperchaotic attractor
In ~d!, a chaotic attractor fills an absorbing area bounded by s
ments of the critical curvesCk (k51,2,3,4).
06620
ac-

tive for all a. For this case, the type of the asynchrono
attractor withs1.0 is determined through the sign ofs2.
For the symmetric coupling case (a50), the asynchronous
attractor is hyperchaotic withs2.0. On the other hand, asa
is increased from zero, the value ofs2 decreases, eventuall
it becomes zero for a threshold valuea* (.0.852), and then
it becomes negative@see Fig. 2~b!#. Hence, an asynchronou
chaotic attractor withs2,0 appears fora.a* . As ex-
amples forDs(5s2s* )520.0016, see Figs. 2~c! and 2~d!
that show the asynchronous hyperchaotic (s150.6087 and
s250.0024) and chaotic (s150.6157 ands2520.0028)
attractors whena50 and 1, respectively.

As shown in Fig. 3, the time series of the variabled
(5uvu) of typical trajectories on the newly born asynchr
nous attractors exhibits on-off intermittency, in which lon
episodes of nearly synchronous evolution are occasion
interrupted by short-term bursts. To characterize the on
intermittent time series, we use a small quantityd* for the
threshold value ofd such that ford,d* the signal is con-
sidered to be in the laminar~off! state and ford>d* it is
considered to be in the bursting~on! state. So far, statistica
properties of such on-off intermittent attractors have be
well characterized through investigation of the distribution
the laminar lengths and the scaling of the average lam
length and the average bursting amplitude@14–20#.

However, although examples were given in previo
works ~e.g., see Refs.@9,21–23#!, the dynamical origin for
the appearance of asynchronous hyperchaotic and chaot
termittent attractors through blowout bifurcations rema
unclear. Hence, we investigate the type of asynchronous

gh

-
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s.
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FIG. 3. Time series of the variabled(5uvu), representing the
deviation from the invariantv50 line, for a51.97 and Ds5
20.0016 with~a! a50 and~b! a51. In both cases, the initial orbi
point is (u0 ,v0)5(0.5,0.01).
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termittent attractors by varying the asymmetry parametera.
As explained above, a typical trajectory, exhibiting on-o
intermittency, may be decomposed into its laminar and bu
ing components. Then the second Lyapunov exponents2 of
an asynchronous attractor@see Eq.~12b! for the second
Lyapunov exponent of a trajectory segment# can be given by
the sum of the two weighted second Lyapunov exponent
the laminar and bursting components,L2

l andL2
b :

s25L2
l 1L2

b ~13a!

5L2
b2uL2

l u, ~13b!

where the laminar component always has a nega
weighted second Lyapunov exponent (L2

l ,0). Here, the
weighted second Lyapunov exponentL2

i for each componen
( i 5 l ,b) is given by the product of the fractionm i of time
spent in thei state and its second Lyapunov exponents2

i ,
i.e.,

L2
i 5m is2

i ; m i5
Li

L
, s2

i 5
1

Li
( 8

tP istate
r t

(2) ~ i 5 l ,b!,

~14!

where Li is the time spent in thei state for a trajectory
segment of lengthL and the primed summation is performe
in eachi state. As can be seen in Eq.~13b!, the sign ofs2 is
determined through competition of the laminar and burst
components. Hence, when the strength~i.e., the weighted
second Lyapunov exponentL2

b) of the bursting component i
larger ~smaller! than that~i.e., uL2

l u) of the laminar compo-
nent, an asynchronous hyperchaotic~chaotic! attractor ap-
pears. We also note that the weighted Lyapunov expon
L2

l andL2
b depend on the threshold valued* , althoughs2 is

independent ofd* . With decreasingd* , L2
l decreases to

zero because the timem l spent in the laminar state goes
zero; thusL2

b (5uL2
l u1s2) converges tos2. Here, we again

emphasize thats2, determining the type of asynchronou
attractors, depends only on the difference betweenL2

b and
uL2

l u, which is independent ofd* @see Eq.~13b!#. Hence,
althoughL2

l (b) depends ond* , the conclusion as to the typ
of asynchronous attractors is independent ofd* . Hereafter,
we fix the value of the threshold value ofd at d* 51025.

Figures 4~a! and 4~b! show the strength of the burstin
and laminar components,L2

b anduL2
l u, respectively. As men-

tioned above, the type of newly born asynchronous attra
is determined through competition between the laminar
the bursting components as follows. We first note that
a50 ~up triangles!, the bursting component is dominan
becauseL2

b.uL2
l u. However, asa is increased from zero

L2
b decreases, whileuL2

l u is nearly independent ofa. Even-
tually, for a threshold valuea* @.0.852 ~crosses!#, the
strength of the bursting and laminar components beco
balanced~i.e., L2

b5uL2
l u), and then the laminar compone

becomes dominant fora.a* @e.g.,a51 ~down triangles!#,
06620
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becauseL2
b,uL2

l u. Consequently, fora,a* , there is a hy-
perchaotic attractor withs2.0, while for a.a* , there is a
chaotic attractor withs2,0.

The fractionm l (b) of the laminar~bursting! time @i.e., the
time spent in the laminar~bursting! state# and the second
Lyapunov exponents2

l (b) of the laminar~bursting! compo-
nent are also given in Fig. 5. For the case of the lami
component, bothm l ands2

l are nearly independent ofa, and
hence its weighted second Lyapunov exponentL2

l

(5m ls2
l ) becomes nearly the same, independently ofa. On

the other hand, the second Lyapunov exponents2
b of the

bursting component decreases with increasinga from zero
@a50 ~up triangles!, 0.852 ~crosses!, and 1 ~down tri-
angles!#, while its fractionmb (512m l) of the bursting time
is nearly independent ofa. Consequently, the strength of th
bursting component@i.e., L2

b(5mbs2
b)] becomes smaller as

a is increased from zero. Thus, for a threshold valuea*
(.0.852), the strength of the laminar and bursting com
nents becomes balanced~i.e., L2

b5uL2
l u), and then a transi-

tion from asynchronous hyperchaos to chaos occurs.
We believe that the transition we have found from a h

perchaotic to a chaotic asynchronous attractor can be un
stood as follows. After the blowout bifurcation, the asy
chronous attractor includes an infinite number
asynchronous unstable periodic orbits that are off the inv
ant line v50. Some of these unstable periodic orbits ha

FIG. 4. Plots of strength of the~a! bursting and~b! laminar
components@i.e., ~a! L2

b and ~b! uL2
l u] vs Ds (5s2s* ) for a

51.97 with a50 ~up triangles!, 0.852~crosses!, and 1 ~down tri-
angles!. The threshold value of the variabled(5uvu) is d*
51025, and straight line segments between neighboring data s
bols are plotted just to guide the eye. Note that asa is increased
from zero,L2

b decreases, whileuL2
l u is nearly independent ofa.
3-5
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two positive Lyapunov exponents and some others have
one positive Lyapunov exponent. It is conjectured that aa
increases from zero, the strength of the group of async
nous unstable periodic orbits with negative second Lyapu
exponents might increase, which may result in the obser
decrease ins2

b .
Finally, we discuss implication of the above results for t

case of global coupling. The transition from synchrono
chaos to asynchronous hyperchaos or chaos via a blow
bifurcation corresponds to a transition from a fully synch
nized state to a two-cluster state in globally coupled
maps. Depending on the value of the parameterp ~describing
the distribution of elements between the two clusters!, the
intermittent two-cluster state is hyperchaotic or chaotic. T
type of this intermittent two-cluster state may be determin
through a competition between its laminar and bursting co
ponents. If the bursting~laminar! component becomes dom
nant, then a hyperchaotic~chaotic! two-cluster state appears

B. Consequence of blowout bifurcations
in high-dimensional invertible systems

Since the~noninvertible! 1D map is a paradigm model fo
period-doubling dynamics in a large class of systems,
results obtained in the preceding section are of wider sign
cance. As examples, we consider coupled He´non maps@17#
and coupled parametrically forced pendula@28# which are
high-dimensional invertible systems exhibiting period do
blings and find similar results.

First, we consider two coupled He´non maps, often used a
a representative model for the Poincare´ map of coupled os-
cillators:

FIG. 5. Plots of~a! @~c!# the fractionm l (b) of the laminar~burst-
ing! time and~b! @~d!# the second Lyapunov exponents2

l (b) of the
laminar ~bursting! component vsDs (5s2s* ) for a51.97 with
a50 ~up triangles!, 0.852 ~crosses!, and 1 ~down triangles!. The
threshold value of the variabled(5uvu) is d* 51025, and straight
line segments between neighboring data symbols are plotted on
guide the eye. Note that asa is increased from zero,s2

b decreases,
while m l (b) ands2

l are nearly independent ofa.
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xt11
(1) 5 f ~xt

(1)!2yt
(1)1~12a!c@ f ~xt

(2)!2 f ~xt
(1)!#,

~15a!

yt11
(1) 5bxt

(1) , ~15b!

xt11
(2) 5 f ~xt

(2)!2yt
(2)1c@ f ~xt

(1)!2 f ~xt
(2)!#, ~15c!

yt11
(2) 5bxt

(2) , ~15d!

where (xt
( i ) ,yt

( i )) ( i 51,2) is a state vector of thei th sub-
system at a discrete timet, f (x)512ax2, c is a coupling
parameter,a (0<a<1) is a parameter tuning the degree
asymmetry of coupling, and the Jacobian determinant of
system isb2 (ubu,1). As in the case of two coupled 1D
maps, the two coupled He´non maps may also be used as
model system for studying the two-cluster dynamics in ma
globally coupled He´non maps.

As in the coupled 1D maps, we introduce new coordina
for the accuracy of numerical calculations,

u(1)5
x(1)1x(2)

2
, u(2)5

y(1)1y(2)

2
,

v (1)5
x(1)2x(2)

2
, v (2)5

y(1)2y(2)

2
. ~16!

Then, the coupled He´non maps of Eq.~15! become

ut11
(1) 512a~ut

(1)21v t
(1)2!22aacut

(1)v t
(1)2ut

(2) ,
~17a!

ut11
(2) 5but

(1) , ~17b!

v t11
(1) 522a@12~22a!c#ut

(1)v t
(1)2v t

(2) , ~17c!

v t11
(2) 5bv t

(1) . ~17d!

In this new map, we investigate the type of asynchrono
intermittent attractors born via blowout bifurcations by var
ing the asymmetry parametera when b50.1 anda51.83.
Synchronous orbits lie on an invariant plane wherev (1)

5v (2)50. When the scaled coupling parameters @5(1
2a/2)c# passes a threshold values* (.0.1787), the SCA
on the invariant plane becomes transversely unstable,
cause its largest transverse Lyapunov exponent beco
positive. Then, a new asynchronous attractor appears thro
a supercritical blowout bifurcation. To calculate th
Lyapunov exponents of the newly born asynchronous att
tor, we choose a random value foru0

(1) with uniform prob-
ability in the range ofu0

(1)P(20.5,0.5) and follow a trajec-
tory starting from an initial orbit point (u0

(1) ,bu0
(1) ,«,b«)

(«51025) until its lengthL becomes 108. As shown in Fig.
6~a!, the second Lyapunov exponents2 of the asynchronous
attractor depends on the asymmetry parametera @a50 ~up
triangles!, 0.905 ~crosses!, and 1 ~down triangles!#. There
exists a threshold valuea* (.0.905) such that fora,a*
the asynchronous attractor is hyperchaotic withs2.0, while
for a.a* it is chaotic withs2,0. Figures 6~b! and 6~c!
show examples of the asynchronous hyperchaotic and

to
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otic attractors forDs(5s2s* )520.0016 witha50 and 1,
respectively. As in the coupled 1D maps, we use a thresh
value d* (51024) for the variabled @[ 1

2 (uv (1)u1uv (2)u)#,
representing the deviation from the invariant plane. Wh
d,d* , the system is said to be in the laminar~off! state,
while for d>d* it is said to be in the bursting~on! state. As
in Sec. II A we find that the type of an asynchronous int
mittent attractor is determined through the competition
tween its laminar and bursting components@see Eq.~13b!#.
Figures 6~d! and 6~e! show the strength of the bursting an
laminar components~i.e., L2

b and uL2
l u), respectively. Note

that asa increases from zero@a50 ~up triangles!, 0.905

FIG. 6. Consequence of blowout bifurcations in two coup
Hénon maps forb50.1 anda51.83. When the scaled couplin
parameters passes a threshold values* (50.1787), an intermittent
asynchronous attractor is born via a blowout bifurcation. The len
of a trajectory segment for the calculation of the Lyapunov ex
nents of the asynchronous attractor isL5108 and the threshold
value of the variabled @5

1
2 (uv1u1uv2u)#, representing the devia

tion from the invariant plane, isd* 51024. ~a! Plot of s2 vs Ds
(5s2s* ) for a50 ~up triangles!, 0.905 ~crosses!, and 1 ~down
triangles!. The dashed line represents the largest transv
Lyapunov exponent of the SCA. Note thats2 depends ona. Pro-
jections of~b! hyperchaotic (s150.4340 ands250.0031) and~c!
chaotic (s150.4406 and s2520.0024) attractors onto the
u(1)-v (1) plane are given forDs520.0016 witha50 and 1, re-
spectively. In both ~b! and ~c! the initial orbit point is
(u0

(1) ,u0
(2) ,v0

(1) ,v0
(2))5(0.5,0.05,0.01,0.001), the 53103 points are

computed before plotting, and the next 53104 points are plotted.
Plots of L2

b and uL2
l u vs Ds are also given in~d! and ~e!, respec-

tively. The symbols are the same as those in~a!. For a,a*
(.0.905),L2

b.uL2
l u, while for a.a* , L2

b,uL2
l u. In ~a!, ~d!, and

~e!, straight line segments between neighboring data symbols
plotted only to guide the eye.
06620
ld
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~crosses!, and 1~down triangles!#, L2
b decreases, whileuL2

l u
is nearly independent ofa. For a,a* (.0.905), the burst-
ing component is dominant becauseL2

b.uL2
l u, and hence a

hyperchaotic attractor withs2.0 appears. On the othe
hand, for a.a* , a chaotic attractor withs2,0 appears
because the laminar component becomes dominant~i.e., L2

b

,uL2
l u).

As a second example, we consider a system of t
coupled parametrically forced pendula:

ẋ15y11~12a!c~x22x1!, ~18a!

ẏ15 f ~x1 ,y1 ,t !1~12a!c~y22y1!, ~18b!

ẋ25y21c~x12x2!, ~18c!

ẏ25 f ~x2 ,y2 ,t !1c~y12y2!, ~18d!

where (xi ,yi) ( i 51,2) is a state vector of thei th subsystem,
f (x,y,t)522pbVy22p(V22Acos 2pt)sin 2px, x is a
normalized angle with rangexP@0,1), y is a normalized an-
gular velocity, the overdot denotes a derivative with resp
to time t, b is a normalized damping parameter,V is a nor-
malized natural frequency of the unforced pendulum,A is a
normalized driving amplitude of the vertical oscillation o
the suspension point,c is a coupling parameter, anda is a
parameter tuning the degree of the asymmetry of coupl
As in two coupled 1D maps, these two coupled parame
cally forced pendula may also be used as a model for inv
tigating the two-cluster dynamics in many globally coupl
pendula.

As in the coupled He´non maps, we introduce new coord
nates,

u15
x11x2

2
, u25

y11y2

2
, v15

x12x2

2
, v25

y12y2

2
.

~19!

Then, the equations of motion of Eq.~18! become

u̇15u21acv1 , ~20a!

u̇2522pbVu222p~V22A cos 2pt !

3sin 2pu1cos 2pv11a cv2 , ~20b!

v̇15v22~22a!cv1 , ~20c!

v̇2522pbVv222p~V22A cos 2pt !

3cos 2pu1sin 2pv12~22a!cv2 . ~20d!

The phase space of the coupled parametrically forced p
dula is five dimensional with coordinatesu1 , u2 , v1 , v2,

h
-

se

re
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and t. Since the system is periodic int, it is convenient to
regard time as a circular coordinate in the phase space
also consider the surface of section, theu1-u2-v1-v2 hyper-
surface at integer times~i.e., t5m, m: integer!. Then, using
the fourth-order Runge-Kutta method with a time steph
50.02, we integrate Eq.~20! and follow a trajectory. This
phase-space trajectory intersects the surface of section
sequence of points. This sequence of points corresponds
mapping on the 4D hypersurface. The map can be comp
by stroboscopically sampling the orbit pointswm

@[„u1(m),u2(m),v1(m),v2(m)…# at the discrete timem. We
call the transformationwm→wm11 the Poincare´ map, and
write wm115P(wm). This 4D Poincare´ map P has a con-
stant Jacobian determinant ofe24pbV24s, where s @5(1
2a/2)c# is the scaled coupling parameter, and synchron
orbits lie on the invariant plane wherev15v250.

As an example, we consider the 4D Poincare´ map P for
the case ofb51.0, V50.5, andA50.85. When the scaled
coupling parameter s passes a threshold values*
(.0.324), a new asynchronous attractor appears throu
supercritical blowout bifurcation, as the SCA on the invaria
plane becomes transversely unstable~i.e., its largest trans-
verse Lyapunov exponent becomes positive!. To calculate the
Lyapunov exponents of the newly born asynchronous att
tor, we choose a random value foru1(0) @u2(0)# with uni-
form probability in the range ofu1(0)P(20.15,0.15)
@u2(0)P(20.5,0.5)# and follow a trajectory starting from a
initial orbit point „u1(0),u2(0),«,«… («51025) until its
length L becomes 107. As shown in Fig. 7~a!, the second
Lyapunov exponents2 of the asynchronous attractor d
pends on the asymmetry parametera @a50 ~up triangles!,
0.84 ~crosses!, and 1 ~down triangles!#. For a,a*
(.0.84), the asynchronous attractor is hyperchaotic w
s2.0, while fora.a* , it is chaotic withs2,0. Examples
of asynchronous hyperchaotic and chaotic attractors forDs
520.006 witha50 and 1 are given in Figs. 7~b! and 7~c!,
respectively. As in the coupled He´non maps, the asynchro
nous attractor exhibits on-off intermittency, and hence
type may be determined through the competition between
laminar and bursting components@see Eq.~13b!#. Figures
7~d! and 7~e! show the strength of the bursting and lamin
components,L2

b anduL2
l u, respectively. We note that asa is

increased from zero@a50 ~up triangles!, 0.84~crosses!, and
1 ~down triangles!#, the strength of the bursting compone
~i.e., L2

b) decreases, while the strength of the laminar co
ponent~i.e., uL2

l u) is nearly independent ofa. For a,a*
(.0.84), L2

b.uL2
l u, and hence a hyperchaotic attractor w

s2.0 appears. On the other hand, fora.a* , a chaotic
attractor withs2,0 appears becauseL2

b,uL2
l u.

III. SUMMARY

We have investigated the dynamical origin for the appe
ance of asynchronous hyperchaotic and chaotic attractor
blowout bifurcations in a representative model system of t
coupled~noninvertible! 1D maps by varying the asymmetr
parametera. Note that the transition from synchronou
chaos to asynchronous hyperchaos or chaos via a blow
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bifurcation corresponds to a transition from a fully synchr
nized state to a hyperchaotic or chaotic two-cluster state
system of globally coupled 1D maps. It has been found t
the type of a newly born on-off intermittent asynchrono
attractor~corresponding to an intermittent two-cluster sta
for the case of global coupling! is determined via competi
tion between its laminar and bursting components. If
bursting ~laminar! component becomes dominant, then
asynchronous hyperchaotic~chaotic! attractor @correspond-
ing to a hyperchaotic~chaotic! two-cluster state for the glo
bally coupled case# appears. Since the~uncoupled! 1D map
represents a paradigm model for the period-doubling dyn

FIG. 7. Consequence of blowout bifurcations in two coupl
parametrically forced pendula forb51.0, V50.5, andA50.85.
When the scaled coupling parameters passes a threshold values*
(.0.324), an intermittent asynchronous attractor is born via
blowout bifurcation. The length of a trajectory segment for the c
culation of the Lyapunov exponents of an asynchronous attracto
the 4D Poincare´ map P is L5107 and the threshold value of th
variable d @[ 1

2 (uv1u1uv2u)#, representing the deviation from th
invariant plane, isd* 51024. ~a! Plot of s2 vs Ds (5s2s* ) for
a50 ~up triangles!, 0.84 ~crosses!, and 1 ~down triangles!. The
dashed line represents the largest transverse Lyapunov expone
the SCA. Note thats2 depends ona. Projections of~b! hypercha-
otic (s150.628 ands250.017) and~c! chaotic (s150.648 and
s2520.008) attractors onto theu1-v1 plane are given forDs5
20.006 with a50 and 1, respectively. In both~b! and ~c!, the
initial orbit point is (u1 ,u2 ,v1 ,v2)5(0.1,0.1,0.01,0.01), the 5
3103 points are computed before plotting, and the next 33104

points are plotted. Plots ofL2
b anduL2

l u vs Ds are also given in~d!
and~e!, respectively. The symbols are the same as those in~a!. For
a,a* (.0.84), L2

b.uL2
l u, while for a.a* , L2

b,uL2
l u. In ~a!,

~d!, and~e!, straight line segments between neighboring data sy
bols are plotted only to guide the eye.
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ics in many systems such as forced oscillators, the ab
results are of wider significance. As examples, two coup
Hénon maps and two coupled parametrically forced pend
which are high-dimensional invertible period-doubling sy
tems have been investigated and similar results have b
found.
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