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We investigate the dynamical origin for the occurrence of asynchronous hyperchaos and chaos via blowout
bifurcations in coupled chaotic systems. An asynchronous hyperchaotic or chaotic attractor with a positive or
negative second Lyapunov exponent appears through a blowout bifurcation. It is found that the sign of the
second Lyapunov exponent of the newly born asynchronous attractor, exhibiting on-off intermittency, is deter-
mined through competition between its laminar and bursting components. When the “stréhgth’a
weighted second Lyapunov exponenf the bursting component is largémalle)y than that of the laminar
component, an asynchronous hyperchati@otio attractor appears.
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I. INTRODUCTION or not. Examples of both hyperchaotic attractfgs?1,27
and chaotic attractoi@.e., an attractor with only one positive
Recently, because of its potential practical applicationdyapunov exponent[9,23] were given in previous works.
(e.g., see Ref[1]), the phenomenon of synchronization in However, the dynamical origin for the appearance of such
coupled chaotic systems has become a field of intensivasynchronous hyperchaotic and chaotic bursting attractors
study. When identical chaotic systems synchronize, chaotipemains unclear.
motion may occur on an invariant subspace of the whole In this paper, we investigate the dynamical origin for the
phase spacf2-5|. An important problem concerns the sta- occurrence of asynchronous hyperchaos and chaos via blow-
bility of chaos synchronizatiof6,7]. When the Lyapunov out bifurcations in coupled chaotic systems. As a representa-
exponents corresponding to perturbations transverse to thiwe model, we consider a system of two coupled one-
invariant synchronization subspace are all negative, the syrdimensional1D) maps with a parameter tuning the degree
chronous chaotic state is stable, and is an attractor in thef asymmetry of coupling23]. This model system can be
whole phase space. However, as a coupling parameter passesed to represent the two-cluster dynamics in globally
a threshold value, the synchronized chaotic attra(s@A) coupled 1D map$24], in which each element is coupled to
can become transversely unstalile., its largest transverse all others with equal strength, and the asymmetry parameter
Lyapunov exponent becomes positivand desynchroniza- « is related to a parameter describing the distribution of
tion occurs via a blowout bifurcatiof8—11]. Depending on elements between the two clusters. We also note that for
the global dynamics, two kinds of blowout bifurcations may many-coupled case, this kind of asymmetrically coupled
occur. For the case of a supercriti¢abnhystereticblowout  maps are usually used to model the open flow systems with a
bifurcation, an asynchronous attractor is born, and exhibitpreferred direction of propagatidr25]. Depending on the
intermittent bursting, called on-off intermittend2—20;  value ofa, an asynchronous hyperchaotic or chaotic attrac-
long periods of nearly synchronous motigoff statg are  tor appears through a blowout bifurcation. This transition to
occasionally interrupted by short-term asynchronous burstasynchronous hyperchaos or chaos via a blowout bifurcation
ings (on statg. On the other hand, for the case of a subcriti-corresponds to a transition from a fully synchronized state to
cal (hystereti¢ blowout bifurcation, an abrupt disappearancea hyperchaotic or chaotic two-cluster state in globally
of the synchronized state occurs, and typical trajectoriesoupled 1D maps. In Sec. Il, we study the type of asynchro-
starting near the invariant subspace are attracted to anotheous intermittent attractors born via blowout bifurcations in
distant asynchronous attract@r infinity). two coupled 1D maps by varying the asymmetry parameter
Here, we are interested in the type of asynchronous intere. Experimental examples of asymmetric and symmetric
mittent attractors born via supercritical blowout bifurcations.couplings are provided by Refi26,27] that investigate two
In particular, we are interested in whether the intermittentchaotic electronic circuits with unidirectional and symmetric
bursting attractor born at the blowout bifurcation is hyper-couplings, respectively. A typical trajectory on the newly
chaotic(i.e., has more than one positive Lyapunov exponentborn asynchronous attractor, exhibiting on-off intermittency,
may be decomposed into lamin@re., nearly synchronouis
and bursting components. It is found that the type of the
*Electronic address: sykim@kangwon.ac.kr asynchronous intermittent attract@orresponding to an in-
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termittent two-cluster state for the case of global coupling Xt 1=TF(x) + pe[f(y) —fF(x)],
may be determined through competition between its laminar
and bursting components. When the “strengtfi’e., its Vis1=T(yo+(1—p)e[f(x)—f(yp], ®)

weighted second Lyapunov expongenf the bursting com-
ponent is largetsmallep than that of the laminar component, wherep=N,/N (0<p=1) denotes the fraction of the total
an asynchronous hyperchaotichaotio attractor [corre-  population of elements in the second cluster. Note that an
sponding to a hyperchaotichaotig two-cluster state for the uneven distribution of elements between the two clusters
globally coupled cageappears. These results are of widercauses an asymmetry in the coupling. Since the two coupled
significance because tliancoupledl 1D map is a paradigm maps (3) are invariant under the interchange »fand y
model for period-doubling dynamics in a large class of sys{x«<Yy) and a change op (p—1—p), it is sufficient to
tems. As examples, we consider couplecthble maps17]  consider only the case ofOp=<1/2. Furthermore, through a
and coupled parametrically forced pend{i28], which are transformation of parameters

high-dimensional invertible period-doubling systems, and
obtain similar results. Finally, a summary is given in Sec. Ill.

—
peﬂ and e—(2—a)c, (4)
Il. TYPE OF ASYNCHRONOUS INTERMITTENT

ATTRACTORS BORN VIA BLOWOUT BIFEURCATIONS we obtain two coupled 1D mapg which were used in our

previous work{23],
A. Consequence of blowout bifurcations
in two coupled 1D maps | Xer1=Fx) + (1= a)c[f(y) = f(x)]

In this section we investigate the dynamical origin for the Y=y +elf(x)—f(y)].
appearance of asynchronous hyperchaotic and chaotic attrac- _ _ )
tors via blowout bifurcations in a representative model sysHere ¢ is a coupling parameter and (0<a<1) is a pa-
tem of two coupled 1D maps with a parametetuning the ~ fameter tuning the degree of asymmetry of coupllng from
asymmetry of coupling. The asymmetric coupling naturallySymmetric coupling &=0) to unidirectional coupling ¢
appears in the dynamics of two clusters for the case of globaf 1)- Consequently, Eq5) may be used as a model map for
coupling [24], in which each element is coupled to all the studying a transition from full synchronization to two-cluster
other elements with equal strength. Examples of globallydynamics in globally coupled systems. o
coupled systems are laser arrdi29], Josephson junction =~ The coupled maf has an invariant synchronization line
arrays[30], cardiac pacemaker cel[81], flashing fireflies X=Y- If an orbit lies on this invariant diagonal, then it is

[32], and chirping cricket§33]. As a basic model, we con- called a synchronous orbit because the state variaplasd
siderN globally coupled 1D mapg34], y; become the same for atl otherwise it is called an asyn-

chronous orbit. For the accuracy of numerical calculations
[35], we introduce new coordinates,andv,

©)

N

X(t+ D) =106(0)+ 5 3, [FGO)= T, (@)
=1 Xty

UT,U

X—y
. . . . - C)
wherex;(t) is a state variable of thi¢h element at a discrete
time t, the choupIezd d_ynamlc&:FO) is governed by the Under the coordinate change, the invariant diagomay is
1D mapf(x)=1—ax with a control parametea, ande is a . : . o
transformed into a new invariant line=0. In these new

coupling parameter. For certain valuessgffull synchroni- .
zation in which all elements exhibit the same temporal be_coordlnates, the coupled mapof Eq. (5) becomes

haviors[i.e.,xlgt)= <o =xXn(0)] occurs. For other vglues_ of ut+l=1—a(ut2+vt2)—2aacutvt

e, the population of elements splits into groups with differ- : (7)

ent dynamics. For example, in the case of two clusters, we Uir1= —28[1-(2—a)C]uy.

have . . . -
From now on, we investigate the dynamical origin for the

X (O=x_()=--=%_ (=X, occur_rence_of a;ynchronous hyperchaqs and chaos via blow-
! 2 Ny out bifurcations in the new map by varying the asymmetry
parameter.
Xiy o (D=Xiy (D= =X (D=y1, ) We also note that the coupled mdpis noninvertible,

because its Jacobian determinant B&tf (DT is the Jaco-
whereN; andN, (=N—N;) represent the number of ele- bian matrix of T) becomes zero along the critical curves,
ments in the first and second clusters, exhibitingxtamdy  Co={(u,v) e R% u=v or u=—y}. Critical curves of rank
dynamics, respectively. This two-cluster state is a usual clusk, Cy (k=1,2,...), arghen given by the images @, [i.e.,
tering to occur when the full synchronization breaks down.C,=TX(C,)]. Segments of these critical curves can be used
Under condition(2), the system of globally coupled 1D to bound a compact region of the phase space that acts as a
maps is reduced to a system of two coupled 1D maps with &apping bounded vessel, called an absorbing ate@side
parametep describing the distribution of elements betweenwhich trajectories bursting away from the invariant line
the two cluster$24], =0 are confinedi36,37. Furthermore, boundaries of such an
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05 y T - which is just the Lyapunov exponent in the uncoupled 1D
@ map. Fora=1.97, we haver=0.6157. On the other hand,
the transverse stability of the SCA against perturbation
across thev=0 line is determined by its transverse
Lyapunov exponent, which for the mdpis given by

S 00 -
O’L=0'H+|n|l—23|, 9)
wheres [=(1—a/2)c] is a scaled coupling parameter. A
05 . . . plot of o, versuss is shown in Fig. 1b). If s is relatively
.2 0.0 1.2 large such thato;<—In(1-2s), then the SCA becomes
u transversely stabléi.e., its transverse Lyapunov exponent
0.01 o, is negative. Intuitively, this result seems to make sense

since strongly coupled systems tend to synchronize. How-
ever, ass is decreased and passes a threshold v&liye

. s*=1(1-e 7N, (10)
B 0.00
the transverse Lyapunov exponent of the SCA becomes
positive. Fora=1.97, we haves* =0.2299. Consequently,
when passing*, the SCA becomes transversely unstable,
and then an asynchronous attractor, filling an absorbing area,
-0'812280 — 2'299 02318 is born through a supercritical blowout bifurcation.
| s ’ To determine the type of a newly born asynchronous at-
tractor, its Lyapunov exponents are numerically calculated as
FIG. 1. (a) One-band SCA on the invariant line=0 for a  follows. We choose a random initial orbit point with uniform
=1.97 and s[=(1—a/2)c]=0.23. (b) Plot of the transverse probability in the range ofie (1—a,1) on a linev=¢ (&
Lyapunov exponentr, of the SCA vs the scaled coupling param- _— 1076) near the invariant lin@ =0 and follow the trajec-
eters. As s decreases through a threshold vasie(=0.2299),0. oy yntil its lengthL becomes 19[38]. Then we obtain the
becomes positive. Lyapunov exponents through the Gram-Schmidt reorthonor-
absorbing area can also be obtained by the union of segmerffé@lization(GSR procedure{39]. For a trajectory segment,
of critical curves and portions of unstable manifolds of un-We consider the evolution of a set of two orthonormal tan-
stable periodic orbits. For this casd, is called a mixed ~gent vector§z™,z(*)} along the trajectorfwi[=(u;,v) ]}
absorbing area. We note that the consequence of the blowo(#=0,1,2 . ..). By anapplication of the linearized map
bifurcation of the SCA depends on the existence of an abDPT(wy) (i.e., Jacobian matrix of at the orbit pointw;) on
sorbing area, controlling the global dynamics. In the pres{z",Z?}, we obtain a set of two evolved tangent vectors,
ence of an absorbing area, an asynchronous attractor withfD T(w;)z> ,DT(w,)z?}. At each time step, we replace the
this absorbing area is born through a supercritical blowouevolved tangent vectors with a new set of reorthonormalized
bifurcation. However, in the absence of an absorbing area, aangent vector§z); ,zZ?;} using the GSR method:
abrupt change from the synchronized state occurs via a sub-

(2)

critical blowout bifurcation, because almost all points near DT(wy)zY q

N A A (1) _ t (2) _ t+1
the invariant linev =0 eventually move away and never re- a0 AT o) (11a
turn. dt+1 dt+1

With increase of the control parametgrthe coupled map ) @) D D
T exhibits an infinite sequence of period-doubling bifurca- A1 =[IDT(w)zM||= (D T(wy)z" ,DT(w)z"),

tions of synchronous attractors with period™ 2(n (11b
=0,1,2...), ending at the accumulation point,,

(=1.401155...), in some region ofc. This period- di?,=|la2s]|= V(qttijl’qt:i:l% (119
doubling cascade leads to creation of the SCA on the invari-

ant linev = 0. With further increase o pasta.., a sequence q?,=DT(w)Z?—(DT(w)Z?,Z2V)2Y,, (110

of band-merging bifurcations of the SCA takes place. Here-

after, we fix the value o asa=1.97, where a single-band where(,) denotes the inner product of two vectors ajﬁ;i)l
SCA exists on the invariant=0 line, as shown in Fig.(d). (dﬁ)l) represents the length of the evolved first vedtbe
The longitudinal stability of trajectories on the SCA againstcomponent of the evolved second vector orthogonal to the
perturbation along the =0 line is determined by its longi- evolved first vector, i.e.g®)). Note that the GSR never

tudinal Lyapunov exponent affects the direction of the first vectat?); and the second
LN vectorz?), is orthogonal tazY); . Through this GSR proce-
o= lim < > In|2auy, (8  dure, we numerically calculate the first and second Lyapunov
N—=N = exponentsr; and o, of a trajectory segment with length
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FIG. 2. Plots of thea) first (o) and(b) second ¢5) Lyapunov
exponents of the newly born asynchronous attractors born through
supercritical blowout bifurcations vs the deviatids (=s—s*)
from the blowout bifurcation poins* (=0.2299) fora=1.97 with 0.00
a=0 (up triangle$, 0.852(crossey and 1 (down triangles The 0 20000 40000
length of a trajectory segment for the calculationegf and o, is t

L=10%, and straight line segments between neighboring data sym-
bols are plotted only to guide the eye. For reference, the transversaae
Lyapunov exponent of the SCAx, , is represented by a dashed
line in (b). For As=—0.0016, examples ofc) hyperchaotic &,
=0.6087 ando,=0.0024) andd) chaotic (;=0.6157 ando,=
—0.0028) attractors are given when=0 and 1, respectively. In
both (c) and (d), the initial orbit point is (y,v,)=(0.5,0.01), 5 tive for all «. For this case, the type of the asynchronous
X 10° points are computed before plotting, and the next14* attractor witho;>0 is determined through the sign of,.
points are plotted. Ir{c) segments of unstable manifoléwhose  For the symmetric coupling case € 0), the asynchronous
direction is denoted by arrowsf an asynchronous period-2 saddle attractor is hyperchaotic with,>0. On the other hand, as
(denoted by open circlesonnect to segments of the critical curves js increased from zero, the value @f decreases, eventually
Ci (k=1,2) (dots denote where these segments connand hence it hecomes zero for a threshold valu& (=0.852), and then
define a mixeq absorbing area which a hyperchaotic attractor fillsy hecomes negativisee Fig. 20)]. Hence, an asynchronous
In (d), a chaotlc_:_attractor fills an absorbing area bounded by Se0znaotic attractor Witho,<0 appears fora>a*. As ex-
ments of the critical curveSy (k=1.2,34). amples forAs(=s—s*)=—0.0016, see Figs.(&) and Zd)
that show the asynchronous hyperchaotig € 0.6087 and

FIG. 3. Time series of the variabé{=|v|), representing the
viation from the invarianv=0 line, for a=1.97 andAs=
—0.0016 with(a) =0 and(b) @=1. In both cases, the initial orbit
point is (Ug,vo) =(0.5,0.01).

L-1
1 =0.0024) and chaotica;=0.6157 ando,=—0.0028)
— (1) (1— (1) 02 1 2
T1TL tzzo e, re=indey, (123 attractors wherw=0 and 1, respectively.
As shown in Fig. 3, the time series of the varialie
= (=|v|) of typical trajectories on the newly born asynchro-
o= 2:0 r§2), r52)=ln dﬁ)l, (12  nous attractors exhibits on-off intermittency, in which long

episodes of nearly synchronous evolution are occasionally
interrupted by short-term bursts. To characterize the on-off
wherer{ (r{?) denotes the rate of exponential growth of intermittent time series, we use a small quantlty for the
the length of the first vectofthe component of the evolved threshold value ofl such that ford<d* the signal is con-
second vector orthogonal to the evolved first vectirthe  sidered to be in the lamindoff) state and ford=d* it is
time t. In this way, we obtain an approximation for the first considered to be in the burstirign) state. So far, statistical
and second Lyapunov exponents of the asynchronous attragroperties of such on-off intermittent attractors have been
tor born through the blowout bifurcation. well characterized through investigation of the distribution of
Figures 2a) and 2b) show o; and o, of the asynchro- the laminar lengths and the scaling of the average laminar
nous attractors born through blowout bifurcations o0 length and the average bursting amplitlidd —20.
(up triangle$, 0.852(crosses and 1(down triangles For However, although examples were given in previous
the case of unidirectional couplingrE1), o, is just the works (e.g., see Refd9,21-23), the dynamical origin for
longitudinal Lyapunov exponentr; of the SCA. On the the appearance of asynchronous hyperchaotic and chaotic in-
other hand, asv is decreased toward zero, the valueogf  termittent attractors through blowout bifurcations remains
becomes smalldsee Fig. 2a)]. However,o; is always posi- unclear. Hence, we investigate the type of asynchronous in-
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termittent attractors by varying the asymmetry parameater 0.030 - T
As explained above, a typical trajectory, exhibiting on-off 1@
intermittency, may be decomposed into its laminar and burst- ;
ing components. Then the second Lyapunov exponegnif 1
an asynchronous attractdsee Eg.(12b) for the second o o
Lyapunov exponent of a trajectory segmiecdin be given by < 0015 ]
the sum of the two weighted second Lyapunov exponents of
the laminar and bursting components, and A5:
_ Al b ) 1 .
72=Azt A (133 0'o-oo(.)oous -0.0008 0.0000
As
=A3=[A3, (130) 0.030 o .
where the laminar component always has a negative
weighted second Lyapunov exponem'2(<0). Here, the .
weighted second Lyapunov exponeyt for each component <" 0.015 | .
(i=1,b) is given by the product of the fraction; of time -
spent in thei state and its second Lyapunov exponett
ie.,
0.000 ; ' ;
. _ L1 -0.0016 -0.0008 0.0000
Ay=pioh; w=—, oy=— X' 1P (i=lb), As
L L' teistate
(14) FIG. 4. Plots of strength of théa) bursting and(b) laminar

componentdi.e., (8 A5 and (b) |[A}]] vs As (=s—s*) for a

. . . . . =1.97 witha=0 (up triangle$, 0.852(crossel and 1(down tri-
where L' is the time spent in thé state for a trajectory angles. The threshold value of the variabld(=|v|) is d*
segment of length and the primed summation is performed —10-5, and straight line segments between neighboring data sym-
in eachi state. As can be seen in E3:3b), the sign ofo, i pols are plotted just to guide the eye. Note thatais increased
determined through competition of the laminar and burstingrom zero, A% decreases, whileA}| is nearly independent af.
components. Hence, when the strengtle., the weighted
second Lyapunov exponent) of the bursting component is because\5<|A}|. Consequently, forr<<a*, there is a hy-
larger (smalle than that(i.e., |A5]) of the laminar compo-  perchaotic attractor witkr,>0, while for a> a*, there is a
nent, an asynchronous hyperchachaotio attractor ap-  chaotic attractor withr,<O0.
pears. We also note that the weighted Lyapunov exponents The fractionup, of the laminar(bursting time [i.e., the
A} andA3 depend on the threshold valdé, althougho,is  time spent in the laminafbursting statd and the second
independent ofd*. With decreasingd*, Al decreases to Lyapunov exponent{?) of the laminar(bursting compo-
zero because the time, spent in the laminar state goes to nent are also given in Fig. 5. For the case of the laminar
zero; thusA§ (=|AY| + o) converges tar,. Here, we again  component, both, and’, are nearly independent ef, and
emphasize that-,, determining the type of asynchronous hence its weighted second Lyapunov exponemfz
attractors, depends only on the difference betwﬁénand (:Mlglz) becomes nearly the same, independentlyofn
|AY], which is independent of* [see Eq.(13b]. Hence, the other hand, the second Lyapunov exponeRtof the
althoughA Y™ depends oml*, the conclusion as to the type bursting component decreases with increasingrom zero
of asynchronous attractors is independentdf Hereafter, [«=0 (up triangle$, 0.852 (crosses and 1 (down tri-
we fix the value of the threshold value dfat d* =10"°. angles], while its fractionu, (=1— u,) of the bursting time

Figures 4a) and 4b) show the strength of the bursting is nearly independent af. Consequently, the strength of the

and laminar components, and|A}|, respectively. As men-  pursting componerfi.e., AJ(= uyo2)] becomes smaller as
tioned above, the type of newly born asynchronous attractog s increased from zero. Thus, for a threshold vakfe
is determined through competition between the laminar ang~0.852), the strength of the laminar and bursting compo-
the bursting components as follows. We first note that foments becomes balancéc., AS=|AL]), and then a transi-
a=0 (up triangles, the bursting component is dominant, tjon from asynchronous hyperchaos to chaos occurs.
becauseA3>|AL|. However, asa is increased from zero, e believe that the transition we have found from a hy-
A3 decreases, whilp\}| is nearly independent af. Even-  perchaotic to a chaotic asynchronous attractor can be under-
tually, for a threshold valuex* [=0.852 (crosses, the stood as follows. After the blowout bifurcation, the asyn-
strength of the bursting and laminar components becomeshronous attractor includes an infinite number of
balanced(i.e., A2=|A'2|), and then the laminar component asynchronous unstable periodic orbits that are off the invari-
becomes dominant fax>a™* [e.g.,a=1 (down triangley],  ant linev=0. Some of these unstable periodic orbits have
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e e I x&ﬁ=f(x§”>—y§”+(1—a>c[f(x§2>>—f<x§”>],(15a)
S 06} 4 =™ -0.045 | - y =bxM, (15b)
(i =) —y@+elf )~ ({1, (150
0.2 . ! . -0.090 . 1 .
-0.0016  -0.0008 0.0000 -0.0016  -0.0008 0.0000
As As yiPi=bx{?, (150
0.90 ———7— 0.060 where & ,y{") (i=1,2) is a state vector of thith sub-

(© . . . .
X system at a discrete time f(x)=1—ax?, c is a coupling

parameterg (O<a=<1) is a parameter tuning the degree of

asymmetry of coupling, and the Jacobian determinant of this

system isb? (|b|<1). As in the case of two coupled 1D

. maps, the two coupled Hen maps may also be used as a

L L L | L H H H

0-?80016 00008 0.0000 0-0_250016 00008 0.0000 model system for studying the two-cluster dynamics in many
As As globally coupled Heon maps.

As in the coupled 1D maps, we introduce new coordinates

FIG. 5. Plots of(a) [(c)] the fractionpu,(y, of the laminar(burst-  for the accuracy of numerical calculations,
ing) time and(b) [(d)] the second Lyapunov exponem}” of the

laminar (bursting component vsAs (=s—s*) for a=1.97 with " x4 x(2) 2 yD 4y

a=0 (up triangle$, 0.852(crossey and 1 (down triangles The u :T’ u :T'
threshold value of the variabld(=|v|) is d* =105, and straight

line segments between neighboring data symbols are plotted only to x(1_x(2) y(l)_y(2)

guide the eye. Note that asis increased from zerar) decreases, v = @=__-7
while w,,y and 0"2 are nearly independent of.

=7 045 |- 4 g 0.043

(16)

N Then, the coupled H®n maps of Eq(15) become
two positive Lyapunov exponents and some others have only

one positive Lyapunov exponent. It is conjectured thatras u =1-auM?+vM?)—2aacuM®M—ul?,
increases from zero, the strength of the group of asynchro- (17a
nous unstable periodic orbits with negative second Lyapunov
exponents might increase, which may result in the observed u? =bu®, (17b
decrease inr5.

Finally, we discuss implication of the above results for the v =-2a[1-(2—a)cluPvP—0®, (179
case of global coupling. The transition from synchronous
chaos to asynchronous hyperchaos or chaos via a blowout vﬁ)fbvt(l). (179
bifurcation corresponds to a transition from a fully synchro- . . )
nized state to a two-cluster state in globally coupled 1DIN this new map, we investigate the type of asynchronous
maps. Depending on the value of the parampterescribing intermittent attractors born via blowout bifurcations by vary-
the distribution of elements between the two cludtetise  ing the asymmetry parameter whenb=0.1 anda=1.83.
intermittent two-cluster state is hyperchaotic or chaotic. TheSynchronous orbits lie on an invariant plane wher@
type of this intermittent two-cluster state may be determined=v®=0. When the scaled coupling parametef = (1
through a competition between its laminar and bursting com=a/2)c] passes a threshold valsg (=0.1787), the SCA
ponents. If the burstingaminab component becomes domi- 0N the invariant plane becomes transversely unstable, be-

nant, then a hyperchaotichaotig two-cluster state appears. cause its largest transverse Lyapunov exponent becomes
positive. Then, a new asynchronous attractor appears through

a supercritical blowout bifurcation. To calculate the
B. Consequence of blowout bifurcations Lyapunov exponents of the newly born asynchronous attrac-
in high-dimensional invertible systems tor, we choose a random value fof" with uniform prob-

Since the(noninvertiblé 1D map is a paradigm model for ability in the range otif") e (—0.5,0.5) and follow a trajec-
period-doubling dynamics in a large class of systems, théory starting from an initial orbit point P, bulV e,be)
results obtained in the preceding section are of wider signifi{e =10"°) until its lengthL becomes 18 As shown in Fig.
cance. As examples, we consider couplecétemapg17] 6(a), the second Lyapunov exponens of the asynchronous
and coupled parametrically forced pend{i8] which are  attractor depends on the asymmetry parametgee=0 (up
high-dimensional invertible systems exhibiting period dou-triangles, 0.905 (crosses and 1 (down triangleg]. There
blings and find similar results. exists a threshold value* (=0.905) such that for<a*

First, we consider two coupled Hen maps, often used as the asynchronous attractor is hyperchaotic wish-0, while
a representative model for the Poincanap of coupled os- for a>a* it is chaotic witho,<0. Figures €) and Gc)
cillators: show examples of the asynchronous hyperchaotic and cha-
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0.006 —— | : (crossel and 1(down triangley], A5 decreases, whileA |
FTe 1 is nearly independent af. For a<a™* (=0.905), the burst-
N e 1 ing component is dominant becaus§>|A%|, and hence a
0.000 ~Sma hyperchaotic attractor witho,>0 appears. On the other
| | hand, for @>a*, a chaotic attractor withr,<O appears
-0.003 . ! . because the laminar component becomes domi(rinzmIAg
-0.0016 -oggoa 0.0000 <| A'2|) )

As a second example, we consider a system of two

0.3 04 © ' coupled parametrically forced pendula:
00 X1=Y1+ (1= a)c(x—Xy), (189
03 . y1=f(x,y1,0)+(1-a@)c(y— Y1), (18b)
0.7 0.2 1.1
u(1) .
0.02 | X2=Yo+C(X1—Xp), (189
(@
' — Vo= (Xa.Y2, 1)+ C(Y1—Y2), 18
< 001 | Fonf 1 y2=T(X2,y2,) +c(y1—y2) (180
I where ;,y;) (i=1,2) is a state vector of th¢h subsystem,
000 L0 1. 000 1 f(x,y,t)=—27BOy—2m(Q%—Acos 2rt)sin 27, X is a
-0.0016  -0.0008  0.0000 -0.0016  -0.0008  0.0000 normalized angle with rangee[0,1), y is @ normalized an-
As As gular velocity, the overdot denotes a derivative with respect

FIG. 6. Consequence of blowout bifurcations in two coupledf0 timet, 8 is a normalized damping parameté,is a nor-
Héenon maps forb=0.1 anda=1.83. When the scaled coupling Malized natural frequency of the unforced penduléns a
parametes passes a threshold valg& (=0.1787), an intermittent normalized driVing amplitude of the vertical oscillation of
asynchronous attractor is born via a blowout bifurcation. The lengttthe suspension poing, is a coupling parameter, and is a
of a trajectory segment for the calculation of the Lyapunov expoparameter tuning the degree of the asymmetry of coupling.
nents of the asynchronous attractorlis=10° and the threshold As in two coupled 1D maps, these two coupled parametri-
value of the variablel [ =3(|v4|+|v,|)], representing the devia- cally forced pendula may also be used as a model for inves-
tion from the invariant plane, is* =10"%. (a) Plot of o, vs As tigating the two-cluster dynamics in many globally coupled
(=s—s*) for =0 (up triangle$, 0.905 (crossel and 1 (down pendula.
triangles. The dashed line represents the largest transverse As in the coupled Heon maps, we introduce new coordi-
Lyapunov exponent of the SCA. Note tha} depends onx. Pro- nates,
jections of(b) hyperchaotic §;=0.4340 ando,=0.0031) andc)
chaotic (;=0.4406 and o,=—0.0024) attractors onto the

u@y@ plane are given fods=—0.0016 witha=0 and 1, re- X" X2 ~ Yat¥2 - XamXe o YiTVa
spectively. In both () and (c) the initial orbit point is 2 2 2 2
(U u@ v 1 2y=(0.5,0.05,0.01,0.001), thex510° points are (19

computed before plotting, and the nexk80* points are plotted.

Plots of A5 and|A}| vs As are also given ir{d) and (e), respec-  Then, the equations of motion of E(1.8) become
tively. The symbols are the same as those(@h For a<a*
(=0.905), A5>| A}, while for a>a*, AS<|AL|. In (a), (d), and

(e), straight line segments between neighboring data symbols are
plotted only to guide the eye.

l.Jl:UZ'f'CYCUl, (203)

. _ U= —27BQU,— 2m(Q%— A cos 2nt)
otic attractors fold s(=s—s*)= —0.0016 witha=0 and 1,

respectively. As in the coupled 1D maps, we use a threshold X'sin 27uU,C0S 2rv + @ Cup, (20b)
valued* (=10 *) for the variabled [=3(Jo®|+|v?)])],
representing the deviation from the invariant plane. When

d<d*, the system is said to be in the laminaff) state, V1=~ (2= a)Cuy, (200
while for d=d* it is said to be in the burstin(pn) state. As

in Sec. Il A we find that the type of an asynchronous inter- vo=—27B0,—2m(Q%— A cos 2mt)

mittent attractor is determined through the competition be- )

tween its laminar and bursting componefgse Eq.(13b)]. X cos 2musin 2mvy —(2—a)Cv,. (200

Figures &d) and 6e) show the strength of the bursting and
laminar componentsi.e., A‘z’ and |A'2|), respectively. Note The phase space of the coupled parametrically forced pen-
that asa increases from zerpa=0 (up triangle$, 0.905 dula is five dimensional with coordinates, u,, vy, v,
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andt. Since the system is periodic init is convenient to 0.02 Fay 3
regard time as a circular coordinate in the phase space. Wk

0.01 F~=~~_ -

also consider the surface of section, theu,-v4-v, hyper-
surface at integer times.e., t=m, m: intege). Then, using
the fourth-order Runge-Kutta method with a time step
=0.02, we integrate Eq20) and follow a trajectory. This
phase-space trajectory intersects the surface of section in i
sequence of points. This sequence of points corresponds to
mapping on the 4D hypersurface. The map can be computec
by stroboscopically sampling the orbit pointsv,,
[=(us(m),uy(m),v4(m),v,(m))] at the discrete timen. We
call the transformatiorw,,—Ww,,; the Poincaremap, and
write Wy, 1=P(W,,). This 4D Poincaremap P has a con-
stant Jacobian determinant ef *7#?~4S wheres [=(1
—al2)c] is the scaled coupling parameter, and synchronous
orbits lie on the invariant plane whetg=v,=0.

As an example, we consider the 4D Poincarap P for
the case of3=1.0, 2=0.5, andA=0.85. When the scaled
coupling parameters passes a threshold valus*

(=0.324), a new asynchronous attractor appears through ¢< 0-02

supercritical blowout bifurcation, as the SCA on the invariant
plane becomes transversely unstable., its largest trans-
verse Lyapunov exponent becomes posjtife calculate the
Lyapunov exponents of the newly born asynchronous attrac-

0.06

= 0.00

0.00

"0.006

-0.003
As

0.000

0.00
-0.006

-0.003
As

0.000

tor, we choose a random value fo{(0) [u,(0)] with uni-
form probability in the range ofu,(0)e(—0.15,0.15)
[u,(0) e (—0.5,0.5)] and follow a trajectory starting from an

. . . . _ _5 . .
initialorbit point (ul(o)'UZ(O)’S"?) (‘f"_lo ) unl its (=0.324), an intermittent asynchronous attractor is born via a
length L becomes 10 As shown in Fig. 7a), the second  piowout bifurcation. The length of a trajectory segment for the cal-
Lyapunov exponentr, of the asynchronous attractor de- cyjation of the Lyapunov exponents of an asynchronous attractor in
pends on the asymmetry parametef @=0 (up triangle$,  the 4D PoincdrenapP is L=10" and the threshold value of the
0.84 (crossey and 1 (down triangleg]. For a<a®  variabled [=4(|v|+|v,|)], representing the deviation from the
(=0.84), the asynchronous attractor is hyperchaotic withnvariant plane, isd* =1074. (a) Plot of o, vs As (=s—s*) for
05>0, while fora> a*, itis chaotic witho,<0. Examples «=0 (up triangle$, 0.84 (crosses and 1 (down triangles The
of asynchronous hyperchaotic and chaotic attractorsAfor dashed line represents the largest transverse Lyapunov exponent of
= —0.006 witha=0 and 1 are given in Figs.(d) and 7c), the SCA. Note thatr, depends onv. Projections of(b) hypercha-
respectively. As in the coupled Hen maps, the asynchro- otic (¢,=0.628 ando,=0.017) and(c) chaotic (r;=0.648 and
nous attractor exhibits on-off intermittency, and hence itso2=—0.008) attractors onto the;-v; plane are given foAs=
type may be determined through the competition between its 0-006 with a=0 and 1, respectively. In bottb) and (c), the
laminar and bursting componenfisee Eq.(13b)]. Figures initial orbit point is (uj,uy,v1,05)=(0.1,0.1,0.01,0.01), the 5
7(d) and Te) show the strength of the bursting and laminar X 10° points are computed before plotting, and the next1®'
componentsAg and|A'2|, respectively. We note that asis points are plottc_ad. Plots of5 and|A ;| vs As are also given _|r(d)
increased from zerpa= 0 (up triangle$, 0.84(crosses and and(‘i)’ respectlveLy. Th|e sympols are the *Sam% as tPo$a).niFor

X : a<a*(=0.84), AJ>|A3|, while for a>a*, A3<|A}|. In (a),
1 (down triangley], the strength of the bursting component . . : !
- b . . (d), and(e), straight line segments between neighboring data sym-
(i.e., A7) decreases, while the strength of the laminar COMyy1s are plotted only to guide the eye.
ponent(i.e., [A}|) is nearly independent of. For a<a*
(=0.84), A5>|A}|, and hence a hyperchaotic attractor with
0,>0 appears. On the other hand, fat>a*, a chaotic
attractor witha,<0 appears becausﬁe2< |A'2|.

FIG. 7. Consequence of blowout bifurcations in two coupled
parametrically forced pendula fgg=1.0, =0.5, andA=0.85.
When the scaled coupling paramesgpasses a threshold vals&

bifurcation corresponds to a transition from a fully synchro-
nized state to a hyperchaotic or chaotic two-cluster state in a
system of globally coupled 1D maps. It has been found that
the type of a newly born on-off intermittent asynchronous
attractor (corresponding to an intermittent two-cluster state
for the case of global couplings determined via competi-
We have investigated the dynamical origin for the appeartion between its laminar and bursting components. If the
ance of asynchronous hyperchaotic and chaotic attractors viaursting (lamina) component becomes dominant, then an
blowout bifurcations in a representative model system of twaasynchronous hyperchaotichaotig attractor[correspond-
coupled(noninvertible 1D maps by varying the asymmetry ing to a hyperchaoti¢chaotig two-cluster state for the glo-
parametera. Note that the transition from synchronous bally coupled caseappears. Since th@ncoupled 1D map
chaos to asynchronous hyperchaos or chaos via a blowowpresents a paradigm model for the period-doubling dynam-

. SUMMARY
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