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Bicritical scaling behavior in unidirectionally coupled oscillators

Sang-Yoon Kini and Woochang Lim
Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea
(Received 3 September 2000; published 27 February)2001

We study the scaling behavior of period doublings in a system of two unidirectionally coupled parametri-
cally forced pendulums near a bicritical point where two critical lines of period-doubling transition to chaos in
both subsystems meet. When crossing a bicritical point, a hyperchaotic attractor with two positive Lyapunov
exponents appears, i.e., a transition to hyperchaos occurs. Varying the control parameters of the two sub-
systems, the unidirectionally coupled parametrically forced pendulums exhibit multiple period-doubling tran-
stions to hyperchaos. For each transition to hyperchaos, using both a “residue-matching” renormalization
group method and a direct numerical method, we make an analysis of the bicritical scaling behavior. It is thus
found that the second response subsystem exhibits a new type of non-Feigenbaum scaling behavior, while the
first drive subsystem is in the usual Feigenbaum critical state. The universality of the bicriticality is also
examined for several different types of unidirectional couplings.
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[. INTRODUCTION scaling behavior near each period-doubling transition point is
the same as that for the 1D map.

Many low-dimensional nonlinear systems exhibit period- Here we follow sequences of period doublings in two uni-
doubling transitions to chaos. Using a renormalization grouplirectionally coupled PFPs by varying the two control pa-
(RG) method, Feigenbaum had discovered universal scalingametersA andB of the two subsystems for a fixed value of
behavior near the accumulation point of the period-doublinghe coupling paramete€. Scaling behavior is thus investi-
cascadgl]. After that, efforts have been made in studies ofgated near a bicritical point.,B.) where two critical lines
coupled systems to attempt to generalize to high-dimensionaif period-doubling transitions to chaos in both subsystems
nonlinear system$2—9]. Here we are concerned with the meet. Note that this bicritical point corresponds to a border
critical scaling behavior of period doublings in unidirection- of chaos in both the subsystems. Hence, when crossing such
ally coupled oscillators. These unidirectionally coupled sys-a bicritical point, a hyperchaotic attractor with two positive-
tems have been used as models for open-flow sysig@fls Lyapunov exponentgl7] appears, i.e., a transition to hyper-
In particular, they were actively discussed recently in rela-chaos occurs. With varyind\ and B, the undirectionally
tion to secure communication using chaos synchronizatiocoupled PFPs undergo a cascade of period-doubling transi-
[11]. tions to hyperchaos. Using both renormalization griR()

The coupled system investigated in this paper is two uniiethod and a direct numerical method, we investigate the
directionally coupled parametrically forced pendulumsbicritical scaling behavior for each transition to hyperchaos,
(PFPs. For this unidirectionally coupled system, the drive and find that the response subsystem exhibits a new kind of
subsystem acts on the response subsystem, while the meen-Feigenbaum scaling behavior, while the drive subsystem
sponse subsystem does not influence the drive one as in otherin the usual Feigenbaum’s critical state. Note that this
unidirectionally coupled systems consisting of two Chua’sbicritical scaling behavior is the same as that in the two
circuits[12] and two Duffing oscillator§$13]. Hence the two  unidirectionally coupled 1D magd,8]. In addition, this kind
unidirectionally coupled PFPs have a skew product structuref bicritical behavior was also observed in other systems
[14]. For a single PFP, vertical oscillation of its support leadsconsisting of unidirectionally coupled circuif®]. Hence,
to a time-periodic variation of its natural frequerdb]. As  such bicriticality may be a general phenomenon occurring in
the amplitude of the vertical oscillation is increased, the low-many unidirectionally coupled systems consisting of period-
est stationary point undergoes a cascade of “resurrections,doubling subsystems.

i.e., it becomes stabilized after its instability, destabilize This paper is organized as follows. We first introduce two
again, and so forttad infinitum Recently, we have studied unidirectionally coupled PFPs in Sec. Il, and then discuss
“multiple period-doubling transitions to chaos,” associated stability, bifurcations, and Lyapunov exponents. In particu-
with such resurrectionfl6]. In each case of the resurrec- lar, a convenient real quantity called the “residufl’8] is
tions, an infinite sequence of period-doubling bifurcationsused to characterize stability of periodic orbits and their bi-
follows and leads to chaos. Consequently, an infinite seriefurcations. We then develop a “residue-matching” RG
of period-doubling transitions to chaos occur successivelynethod, equating the residues of the orbit of levéperiod
with increasing amplitude. This is in contrast to the one-2") to those of the orbit of the next level+-1 in Sec. IIl.
dimensional (1D) map [1], where only a single period- Using both residue-matching RG method and the direct nu-
doubling transition to chaos occurs. However, the criticalmerical method, we investigate scaling behaviors near the
bicritical points in Sec. IV and find a new kind of non-
Feigenbaum scaling behaviors in the second response sub-
*Electronic address: sykim@cc.kangwon.ac.kr system. To examine the universality of the bicriticality, sev-
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eral different types of unidirectional couplings are alsothis hypersurface in a sequence of points. This sequence of

studied. Finally, a summary is given in Sec. V. points corresponds to a mapping on the 4D hypersurface.
This map plot of an initial orbit poinz(0) can be computed
Il. STABILITY, BIFURCATIONS, AND LYAPUNOV by stroboscopically sampling the orbit poinzgém) at the
EXPONENTS discrete timem. We call the transformatiorz(m)—z(m

+1) the Poincarenap, and writez(m-+1)=P(z(m)). This

X ) e SIS 4D Poincaremap(with the inversion symmetr§) may have
four-dimensional4D) Poincaremap of the two unidirection-  ay attractors for fixed values of parameter values. Aor

ally coupled PFPs, using the Floquet thegtp]. Bifurca-  _pg 3nq c=0, it breaks up into two uncoupled identical
tions asso.mated with the stability and Lyapunov eXponentf\No-dimensionaI(ZD) maps possessing the inversion sym-
are also discussed. _ s metry. If each uncoupled 2D map has either an asymmetric
A single PFP with a vertically oscillating support can be stable orbitz [=(x,y)] or its conjugate orbiz*, then the
described by two first-order ordinary differential equationsComposite 4D map has one of the four pairs of orbitsz)

[15], (z",z%), (z,7*), and (*,z). For the first and secon(dhird
and fourth pairs, the 2D uncoupled maps have the same
(differeny kind of orbits. Hereafter, the corresponding pairs
- will be called the “samedifferent) pairs.” To classify the
y=Talx,y,0), (1D orpits in the composite 4D map, we should also take the
_ ; hase shift between the uncoupled 2D maps into consider-
where f(x,y,t)=—278Qy—2m(Q2—Acos 2it)sin 2zx, P ; .
X is a ng(rmgliz)ed anglﬁ V\)I/ith rag@ee[o,l), thg overdot ation. If gach 2D map his qstable orbit of p.er!ddtzen the
denotes a derivative with respect to times is a normalized fr? mpr:)sne iDﬂNm;a\lp_f(I)aS Zjlge_r(:alnt iltattesthdltszlhr!gwsr:tgdt by
damping parametef) is the normalized natural frequency of 1€ phase shi (N=0,..., )‘. ote that this muftista-
the unforced pendulum, amlis the normalized driving am- b|||§y IS preservgd when the coupling is mtroduceq, at least
plitude of the vertical oscillation of the suspension point.WhIIe its value is small enough. Hereafter, an orbit will be

Note that as a result of the vertical oscillation, the frequencfglflfed an orbit Ofdt%ﬁ)eNS(d) 'Ift I corrr]esponrsizbtomtlhe s?hme
of the pendulum varies periodically with time. Two identical (differen pair and there exists a phase siifbetween the

PFPs are then coupled together with a unidirectionalState variables, andz, of the first and second .2D mafie.,
coupling type to yield a skew-product system, ?S?:ZZ(m+ N)] when we come to the poir€=0 and
X1=Y, (23 The linear stability of ag-periodic orbit of the 4D Poin-
’ caremap P, such thatP9(z(0))=z(0), is determined from
(2b) the linearized-map matrid [=DP9(z(0))] of P9 at an or-

bit point z(0). Here PY means they-times iterated map. Us-
ing the Floquet theor}19], the matrixM can be obtained by
integrating the linearized differential equations for small per-
- turbations with four initial perturbationdx , 8y, , x5, 8y,)
Y2=fa(X2,¥2,1) + Cly2—y1), (2d) =(1,0,0,9,(0,1,0,9,(0,0,1,0), and (0,0,0,1) over the period

whereA andB are the normalized driving amplitudes of the & Since the unidirectionally coupled system has a skew
vertical oscillations of the suspension points of the two PFPgroduct structur¢14], the linearized-map matrik has the
and C is a coupling parameter. For this unidirectionally following semiblock form:

coupled system, the first master PFP with state variables

andy, can be regarded as a driving for the second slave or M; O
response PFP with state variablgsandy, through the cou- - My M)’
pling term. These unidirectionally coupled PFPs also have an

inversion symmetnys because the transformation

In this section, we discuss stability of period orbits in the

X=Yy, (19

y1=Ffa(X1,y1,0),

Xo=Yo+ C(Xp—Xy), (20

4

where0 is the 2x 2 null matrix. Hence, in order to determine
SiX;— —X1, Yi——Y1, Xo——Xs, Yo——y, (3)  the eigenvalues d¥, it is sufficient to solve the eigenvalue
problems of the two X2 submatriced; andM, indepen-
leaves Egs(2) invariant. If an orbitz(t)[=(z,(t),z,(t))],  dently. HereM(A) andM,(B,C) determine the stability of
where z,=(x;,y;) (i=1,2), is invariant undeB, then it is  the first drive and second response subsystems, respectively.
called a symmetric orbit. Otherwise, it is called an asymmetNote also that the first submatrid, is just the linearized

ric orbit and has its conjugate orki(t). Poincaremap of the PFR16], and the coupling affects only
The phase space of the two unidirectionally coupled PFPthe second submatriii,.
is five dimensional with coordinates, y;, X2, Y,, andt. The eigenvalues; ; and\; , of M; (i=1,2) are called the

Since the unidirectionally coupled PFPs are periodig ihis Floquet(stability) multipliers, which characterize the stabil-
convenient to regard time as a circular coordinaih mod ity of the ith subsystem. Note also that the first pair of Flo-
1) in the phase space. We then consider the surface of sequet multipliers §; 1,\; o) is just the pair of Floquet multi-
tion, the x;-y1-X»-y, hypersurface at integer timdse., t pliers of the uncoupled PFPL6] and the coupling affects
=m, mis an integex. The phase-space trajectory intersectsonly the second pair of Floquet multipliera {;,\,,). By
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using the Liouville formula[20], we obtain constant Jaco- =—27BQ and o, +0,,=—2(7BQ—C). Note also that
bian determinant®, andD, of the submatriced; andM,,  the first pair of Lyapunov exponentsr{;,o; ;) is just the
respectively, where pair of Lyapunov exponents of the uncoupled HEB] and
the coupling affects only the second pair of Lyapunov expo-
_ o 27BQ _ a—2(mBOQ-C)
D,=e 9, D,=e 4. ) nents ¢p1,029-

Hence theith pair of Floquet multipliers lies either on the
circle of radius\/D; or on the real axis in the complex plane.
The periodic orbit becomes stable when all its four Floquet
multipliers lie inside the unit circle in the complex plane In this section, we develop a residue-matching RG
(i.e., their moduli are less than unjtyHere we consider the method, equating the residues of the orbit of levéperiod
case ofD;<1; D, is always less than unity, whil®, be-  2") to those of the orbit of the next leveh-1. Note that this
comes less than unity fa8<wB€). Then, the two pairs of RG scheme can be easily applied to the 4D Poinoaap P
Floquet multipliers never cross the unit circle in the complexof the unidirectionally coupled PFPs.

plane except at the real axis, and hence Hopf bifurcations do The basic idea of the residue-matching RG method is to
not occur. Consequently, the stable periodic orbit can lose itgssociate a valueA( B’) for each @,B) such thatPEE\Té’,)
stability only when a Floquet multipliex; passes through 1 locally resemble®" A By whereP™ is the 2'th-iterated map

—1 on the real axis. n o2
A more convenient real quantitR; (i=1,2), called the of P (i, PMW=P?). HereA andB are the control param-
residue[18] and defined by eters of the_tw_o subsys_tems, respec_tlvely, and the_couplmg
parametec is fixed. A simple way to implement this idea is
1+D,— 7T to Iinear!ze the maps in the neighborhoo_d of th(_air respective
201+D) (6) flxgq pomts. and equate the cor_respondlng' residues, charac-
' terizing their stability. This residue-matching RG method
- ; o A P . can be regarded as a generalized version of the eigenvalue-
trace of the submatridM;, respectively. Then the Floquet two un|d|rect|o_nalIy—co_upled 1.D mag§]. Note also that the
multipliers x; can be expressed in terms &f as follows: residue matching in slightly dlfferent'cont_exts h'as bet_an also
: used for the study of break-up of invariant circles in the

Ill. RESIDUE-MATCHING RENORMALIZATION GROUP
METHOD

RiE

(1 +D area-preserving twist mapa3|.

= {1 2R+ 2\(Ri— R} D(Ri—RiH}E (7) Consider two successive orbits of period and 2'*1,
{z(m)} and{z’(m)}, such that

h /
where 2(m)=P{Rg (M), Z(m)=P{H D (M), (9
_ 0\ 2 2
,*Fm, _*2:@_ (8)  Wherez=(z;,2,;) andz;=(x;,y;). Here the state variablg
"t2(1+Dy) b 2(1+Dy) of the first subsystem depends only Arbut the state vari-

. o ) ablez, of the second subsystem is dependent on Bo#md
For Ri1<R; <R, 2» Floquet multipliers occur in complex- g Linearizing P™ and P Y at z(m) andz'(m), respec-
conjugate pairsX;,\;*) on the circle of radius/D;, while tively, we obtain
they come in real pairs\,D;/\;) on the real axis fofR;

<R or R>R},. Note also that the Floquet multipliers can 2"

cross the unit circle only at the real axise., at\;=1 or DP(A B)= H DP(a,g)(z(m)),

—1). For\j=1 and —1, the values ofR; are 0 and 1, =1

respectively. Hence, when<OR;<1, the pair of Floquet ot (10
multipliers \; lies inside the unit circle. AR; decreases

(n+1) _
through O(i.e., a Floquet multiplien; increases through 1), DPar 87 H DP(a B (2 (M),

the periodic orbit loses its stability via a saddle-node or

pitchfork bifurcation. On the other hand, & increases \whereDP is the linearized Poincarmap of P. Then the
through 1(i.e., a Floquet multiplier decreases throughl),  eigenvalues of the linearized-map matrices, called the Flo-
it becomes unstable via a period-doubling bifurcation. Forquet multipliers, determine the stability of the periodic or-
more detail on the bifurcations, refer to RE21]. bits. However, as explained in Sec. I, it is more convenient
Finally, we briefly discuss Lyapunov exponef@2] of an  to use the residue®, andR,, defined in Eq(6), to charac-
orbit in the 4D PoincarenapP. The two submatriced; and  terize the stability of periodic oscillations in the first and
M, of M determine Lyapunov exponentsr{;,o1,) and  second subsystems, respectively. The recurrence relations for
(021,02, characterizing the average exponential rates othe old and new parameters are then given by equating the
d|vergence of nearby orbits in the first and second subresidues of leveh, Rin(A) andR,,(A,B), to those of the

systems, respectively, wheeg ;= o, for i=1,2. Since the next leveln+1, Rini1(A) andRy,41(A',B'), ie.,
two submatrices have constant Jacobian determinants of Eq.

(5), the two pairs of Lyapunov exponents satisfy ;+ o » Rin(A)=Ryn+1(A"), (113
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Ron(AB)=Ron+1(A",B"). (11b
The fixed point A* ,B*) of the renormalization transfor-
mation (11),

Rl,n(A*):Rl,mr 1(A%), (128

Ron(A*,B*)=Rons1(A*,BY). (12b
gives the bicritical point4.,B;), corresponding to a border
of chaos in both subsystems, for a fixédBy linearizing the
renormalization transformation at the fixed poidt*(B*),
we obtain

|

dA
IA'

JA
JB’
*

*

AA
) = 13

AA’
AB) | 4B AB’
A’

o).

An:r‘r:ll-‘nJrl-

B
B’

* *

AA’
AR (14

where

(15

dRqp
dA

IRan
dA

, 16
IRan (16)

JB

*

de,n+l
dA’

0

i (17)

Fhia=
aRZ,nJrl

IA’

aRZ,nJrl‘
B’

* ‘ *

wherel' ;1 is the inverse of",, and the asterisk denotes the
fixed point (A*,B*). After some algebra, we obtain the ana-
lytic formulas for the eigenvalues, , and 8, , of the matrix
Ay,

de,n+l

dA’
*
W, (1839

dA

51,n:

aRz,m— 1
JB’
IRon
B

Oyn= (18b
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As n—o, the eigenvalues of leve, §;, and 5, approach
their limit values §; and &,, which are just the parameter
scaling factors in the first and second subsystems, respec-
tively.

In addition to the parameter scaling factors, one can also
obtain the orbital scaling factors. To look for simple scaling
in the phase space at the bicritical poia(,B}) of leveln,
we first locate the most rarefied region by choosing a
2"-periodic orbit pointz(™(0) that has the largest distance
from its nearest orbit poinz™(2"Y) [=P2" '(z(0))].
Then, the local rescaling factors of the state variables are
simply given by

dX n dy n
1 1
=5 =0, 19
®xy.n Xm’n+1 @y .n dyl,n+l (193
dy, .n d
2 yo.n
=3 = , 19b
axz,n dxz,n+1 a’yz,n dyz,n+1 ( )
where
dxl]nzx(ln)(o)_X(ln)(znfl)' dyl]nEy(ln)(o)_y(ln)(znfl)'
(203
dxz,nEX(zn)(O)_X(zn)(znfl), dyzynzy(zn)(O)_y(zn)(znfl)_
(20b)

As n—x, both the rescaling factom;xl,n and @y n of level

n converge to the orbital scaling facta; in the first sub-
system, whileaXZ,n and ay, n converge to the orbital scaling

factor «, in the second subsystem.

Using the above residue-matching RG method, we make a
numerical analysis of the bicritical scaling behavior and thus
obtain the bicritical point, the parameter and orbital scaling
factors, and the critical residues. The numerical accuracy is
improved remarkably with increasing level These RG re-
sults will be given in Sec. IV along with the scaling results
obtained by the direct numerical method.

IV. SCALING BEHAVIORS NEAR THE BICRITICAL
POINTS

In this section, by varying the two control parametérs
andB of the two subsystems for a fixed value of the coupling
parametelC, we study the bicritical scaling behaviors in the
two unidirectionally coupled PFPs wit=1.0 and(2=0.5.
When crossing a bicritical point corresponding to a border of
chaos in both subsystems, a transition to hyperchaos occurs,
i.e., a hyperchaotic attractor with two positive Lyapunov ex-
ponents appears. Since an infinite series of period-doubling
transitions to chaos occur successively with increasing am-
plitude A of the first drive subsysterfi6], the unidirection-
ally coupled PFPs also may exhibit multiple period-doubling
transitions to hyperchaos. Here we investigate the first three
period-doubling transitions to hyperchaos. For each transi-
tion to hyperchaos, various bicritical scaling behaviors are
investigated by using both the residue-matching RG method
and the direct numerical method. A new type of non-
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0.808 - T y T y T down of the inversion symmetry, the first subsystem exhibits
an infinite sequence of period-doubling bifurcations at the
\ 1 vertical straight lines in Fig. 1, wherg;=1, accumulating

. at a critical line, denoted by a vertical dashed line. When
crossing the vertical critical line, a transition to chaos occurs
in the first subsystem. For small values of the paramBter
the second subsystem exhibits a forced response with the
same period of the first subsystem. Bss increased for a
fixed value ofA, the second subsystem also undergoes an
infinite sequence of period-doubling bifurcations at the non-
vertical lines, whereR,=1, accumulating at a critical line,
denoted by a nonvertical dashed line. When crossing the
nonvertical critical line, a transition to chaos takes place in
the second subsystem. Note that the two critical lines meet at
a bicritical point, denoted by a solid circle, corresponding to
| a threshold of chaos in both the subsystems. Consequently,

0.795 0.796 0.797 0.798 | 45
A

FIG. 1. First stability diagram of asymmetric periodic orbits
born via period-doubling bifurcations fo€=—0.2. Each stable
region is labeled by a pair of numbens,(,q,), whereq, andq, are
the periods of oscillations in the first and second subsystems, re-
spectively. When crossing the vertical and nonvertical dashed lines, - 1.30
transitions to chaos occur in the first and second subsystems, re-
spectively. Note that these two critical lines meet at the first bicriti-
cal point, denoted by the solid circle, which corresponds to a border
of chaos in both subsystems. Furthermore, the open circles denote
the points corresponding to a threshold of instability in both sub-
systems, wher®&; =1 andR,=1. Such open circles also accumu-
late to the first bicritical point. 1.15 . ' . '

0.798047 0.798049 0.798051
Feigenbaum scaling behaviors are thus found in the second A
response subsystem. To examine the universality of the bi-
criticality, we also study several different types of unidirec- 1.11 T I :
tional couplings. Note that these bicritical scaling behaviors
are the same as those in the unidirectionally coupled 1D
maps[7,8].

We now fix the coupling parameter &= —0.2, and
study period-doubling bifurcations by increasiig from
zero. Hence the periodic orbits that exist fr@w 0 become
the “mother” orbits for such period-doubling cascades.
These mother orbits are orbits of type ‘0" because they
are in-phaséphase shiftN=0) and consist of the same pairs
when coming t)A=B andC=0 (refer to Sec. Il for type of
orhits).

Figure 1 shows the first stability diagram of asymmetric
periodic orbits. Each stable region is labeled by a pair of 1.07
numbers ¢,,9,), whereq; andq, are the periods of oscil- 0.802368 0.802377 0.802386
lations in the first and second subsystems, respectively. Like B

the case of the uncoupled PIEFG], as the parameteh is FIG. 2. Plots of(a) the first residudr; ,(A) versusA and(b) the

increased, the stationary point;(y;) [=(0,0)] in the first  gecond residuk, (A% ,B) versusB for the cases =5,6. In(a), the
subsystem, which is a symmetric one with respect to thgntersection point, denoted by the solid circle, of the two cuRges
inversion operation, becomes unstable through a symmetrymdR, ¢ gives the point A% ,R% ) of level 5. Asn—o, (A% ,an’)
conserving period-doubling bifurcation, and then a new symconverges to its limit pointA* ,R?). Similarly, in (b), the intersec-
metric orbit with period 2 is born. However, the symmetric tion point, denoted also by the solid circle, of the two successive
period-2 orbit loses its stability via a symmetry-breakingcurve R, (A} ,B) and R, A% ,B) gives the point B R3¢ of
pitchfork bifurcation, which leads to the birth of a conjugatelevel 5. As n—«, (B} ,R5,) also approaches its limit point
pair of asymmetric orbits with period 2. After this break- (B*,R}).

0.806 -

0.804 | “®

0.802 \

(4,4)

i 1.09

R2n
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TABLE |I. Sequences of the critical point, the first critical residue, the parameter, and orbital scaling
factors{Ar}, {R1n}, {01a), {ay, o}y @nd{ay o} in the first subsystem obtained by the residue-matching RG

method.

n A:; RI,n O1n @y, .n Qy..n

3 0.798 049141 319 1.30047 4,672 271 —2.440 —2.337
4 0.798 049 183 564 1.30061 4.668 814 —2.530 —2.573
5 0.798 049182 420 1.30059 4.669 250 —2.492 —2.476
6 0.798 049 182 454 1.300 60 4.669 195 —2.507 —2.514
7 0.798 049182 451 1.300 60 4.669 202 —2.501 —2.499
8 0.798 049 182 452 1.30060 4.669 201 —2.504 —2.505
9 0.798 049 182451 1.30059 4.669 203 —2.503 —2.502

when crossing the bicritical point, a hyperchaotic attractorcritical residues R%,,,R%,,) of leveln. Next, using Eqs(18)

with two positive Lyapunov exponents appears. This is theyng(19), we obtain the parameter and orbital scaling factors
first transition to hyperchaos. On further increashigmul-  f |evel n, respectively. Then, as the levels increased, the
tiple transitions to hyperchaos occur. As examples, secondyqences of the critical points, critical residues, and param-
and third transitions to hyperchaos will be also discusseqyer and orbital scaling factors of levelconverge to their

below. S
. . . . respective limit values.
Employing the residue-matching RG method developed in The RG results for the first drive subsystem are listed in

Sec. Ill, we make an analysis of the scaling behavior near th‘la'able I. Asn is increased, the sequence of the parameter

first bicritical point. Figure 2 shows some RG results ob- . e
tained by matching the residues of intermediate lewel scaling factord, , converges to a limit valué, (=4.669),

=5,6. Plots of the first residu®,,(A) versusA for the and the sequences of the orbital scaling facm{lsvn and
cases oin=5,6 are shown in Fig. (). Note that the inter- @y, n approach the same limit value; (=-2.5), as in
section point, denoted by the solid circle, of the two curveshe single PFR16]. Note that these limit valued, and a;
R1s(A) and R, g(A) gives the point A7 ,R7 ), WhereAZ  agree well with Feigenbaum constamdts(=4.660 . . . ) and
andR1 sare the critical point and critical residue of level 5in o (=—2.5®...) for the 1Dmaps, respectiveljl]. With

the first subsystem, respectively. As shown in B@a, the  increasingn, the sequence of the critical resid@,, also
ratio of the slopes of the curve®, s andRy 6, for A=A;  converges to a limit valuR* (=1.3006). As shown in Eq.
gives the parameter scaling factdy s of level 5 in the first  (5), the determinanD; of the linearized-map matrik; for
subsystem. Similarly, Fig.(B) shows plots of the second the g-periodic (@=2") orbit of level n goes to zero as
residueR,,(As ,B) versusB for the cases oh=5,6. The . Then, one can easily see from EJ) that the pair
intersection point, denoted also by the solid circle, of the twogf  critical Floquet multipliers X};,A¥,) becomes
curves Rp(A5,B) and R,¢(A;,B) gives the point (1_2R* 0). Note also that the value off, (=—1.601)
(B5 ,R35), whereBz andRj s are the critical point and criti-  agrees well with the 1D critical Floguet multipliex*

cal residue of level 5 in the second subsystem, respectively=—1.601 . ..)[1]. Consequently, the first drive subsystem
As shown in Eq(18b), the ratio of the slopes of the curves pecomes in the usual Feigenbaum critical state.

R, s(A% ,B) andR, o As ,B) for B=Bj gives the parameter ~ However, the scaling behavior in the second response
scaling factord, 5 of level 5 in the second subsystem. In- subsystem exhibits a new type of non-Feigenbaum scaling
creasing the level up tm=9, we first solve Eq.12) to  behavior, as shown in Table Il. As is increased, the se-
obtain the bicritical point A} ,Bj;) of level n and a pair of quence of the parameter scaling fact#®y, approaches a

TABLE Il. Sequences of the critical point, the second critical residue, the parameter, and orbital scaling
factors{By}, {R3n}, {920}, 1y, o}y @and{ay, o} in the second subsystem obtained by the residue-matching

RG method.
n B: R;,n 52,n @x,.n @y, n
3 0.802 33615 1.0712 2.437 —-1.59 —1.51
4 0.802 372 86 1.0846 2.407 —-1.57 —-1.62
5 0.802 377 20 1.088 4 2.403 —-1.50 —1.47
6 0.802377 13 1.0882 2.403 —1.53 —-1.55
7 0.802377 10 1.0881 2.395 —-1.50 —1.49
8 0.802377 24 1.0897 2.394 —-151 —1.52
9 0.802377 21 1.0890 2.393 —1.50 —1.50
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limit value 8,(=2.39), and the sequences of the orbital scal- TABLE lll. Sequences of the parameter and orbital scaling fac-
ing factorsa,, , anday, , converge to the same limit value t0rs{dz}, {ax, o}, andiay, o} in the second subsystem obtained

a(=—1.5). Note that these limit values, and a, agree by directly following the “self-similar” parameter and orbital se-

well with the scaling factorss,(=2.32...) anda,(=  dUeNCes.

—1.50®...) in the second response subsystem for the 5

unidirectionally-coupled 1D maps, respectivgl;8]. With 2n Fxg.n @ya.n

increasingn, the sequence of the critical resid®,, also 4 1.035 —1.548 -1.571

converges to a limit valu&* (=1.089), and hence the cor- 5 1.836 -1.511 —1.495

responding pair of critical Floquet multiplieraf ;,\7 ,) be- 6 2.475 —1.511 —1.522

comes (1 2R3 ,0) [=(—1.178,0). Here the value ok}, 7 2.543 —1.506 —1.499

also agrees well with the second critical Floquet multiplier 8 2.273 —1.506 —-1.511
> (=—1.17...) in thesecond response subsystem for 9 2.474 —1.505 —1.502

the unidirectionally coupled 1D magd§g,8]. Consequently,

the bicritical scaling behavior in the unidirectionally coupled

PFPs becomes the same as that in the unidirectionally Yon-1"Y2n

coupled 1D maps. R ZTLEVA

To confirm the RG results, we also investigate the bicriti-
cal scaling behaviors by the direct numerical method. ConThe sequencgd, .} is listed in Table Ill, and it seems to
sider a pair of the parameterd{,B,) at which the periodic converge to a limit value,(~2.4), which confirms the RG
orbit of level n (period 2") has the residueR; ,=R,,=1.  result of &, (=2.39). Both the sequenceﬁaxzm} and

Note that the point 4, ,B,) corresponds to a threshold of {ay, n} also seem to approach the same limjt (=—1.5),
instability in both subsystems. Some of such points are degpich also agrees well with the RG result @f (=—1.5).

noted by open circles in Fig. 1. Then the sequence o To demonstrate the parameter scaling, we study the “to-

(An,Bn) converges to the first bicritical 'po'intAél) B, pography” of the parameter plane. Figure 3 shows the phase
denoted by the solid circle, as the levelis increased. To diagrams near the first bicritical poinAKl) BWY). States in
locate the first bicritical point with a satisfactory precision, e

we directly follow the orbits of period 2up to leveln=10,

and obtain the sequences of both the paramei&rsH,) 0.808 0.805 |
and the orbit pointg,[ =(z;,,2,,)] that has the maximum ' - S
distance from its nearest orbit point, whezig,= (X; Vi n)

(i=12). @ 0.804

0 0,803 |

The asymptotic scaling behaviors of the above sequence:

near the first bicritical point are investigated in both sub- | S s

16
132

. =St in bot @ il |
systems. Note that the scaling behavior in the first drive sub- 0.800 - - : 167 ' “”7' . ’ ——
system is obviously the same as that in the uncoupled PFF 0.796  0.798 0.7976 / 0.798
[16]. Hence, as in the uncoupled PFP, the sequefidgs A A

{X1n}, and {y;,} converge to their limit valuesAl”
(=0.798 049 182 45) X} (=0.1005455),y7 (=0.567 171)
geometrically with the 1D asymptotic ratios, respectively, 0.8035 k-

An_Af:l)wﬁin’ len—X;NaIn, yl,n_yINaIn'
(21 o

0.8025
Here the limit values are obtained using the superconverging
method[24], and the scaling factor§; and «; are just the
Feigenbaum constants §(=4.68...) and a(=
—2.5@...), for the 1Dmaps, respectively. However, the A
second response subsystem exhibits a non-Feigenbaum scal-; 3 phase diagrams near the first bicritical poisit{, (M)

ing behavior. The sequencé8n}, {Xyn}, and{y,n} also  for c=—0.2. States in the parameter plane are determined by their
converge geometrically to their limit valuesB Lyapunov exponents. White areas correspond to periodic states and
(=0.802377), x5(=0.100111), y5(=0.56865), respec- the numbers denote the periods. Vertical and horizontal dashes de-
tively, where the limit values are also obtained using thenote chaotic states in the first and second subsystems, respectively,
superconverging method. To get the convergence rates of tlaad crosses correspond to hyperchaotic states with two positive
sequences, we define the scaling factors of level Lyapunov exponents. The pictures (b) and (c) are obtained by
magnifying the regions in the small boxes in the previous pictures
by the scaling facto#; for the A axis andé, for the B axis. Each
Son= Q. = , (22 successive picture reproduces the previous one with an accuracy
S = T = P 27 Xgn—Xzp+1 increasing with the depth of resolution.

'
It

0.7980 0.7981

Bn-1—Bn _ Xon-1"Xzn
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0.04 ' X;-X, plane with the origin shifted atx¢ ,x3) for A=A
] +AA and B=BY+AB, where AA=0.00085 andAB
& 0.00 ] =0.0037. This hyperchaotic attractor has two positive
S Lyapunov exponentsg; ;=0.107 ando,;=0.045. To see
] scaling, we first rescaldA andAB with the parameter scal-
0.04 - ing factorss; and &,, respectively. The 2D projection of the
-0.03  0.00 0.03 attractor for the rescaled parameter values AofA{Y

XX, +AA/5, andB=B{)+AB/ 6, is shown in Fig. 4b). It is
also the hyperchaotic attractor withr;=0.055 and o,

0.04 L 0.04 =0.023. We next magnify the region in the small b@on-
L . _ taining the origin by the scaling factow, for thex, axis and
" 0.00 T ?“ 0.00 | a, for the x, axis, and then we get the magnified picture in
VT = Fig. 4(c). Note that the picture in Fig.(d) reproduces the
- |g . i . previous one in Fig. @) approximately. Repeating the above
.0.04 N R .0.04 N procedure once more, we obtain the two pictures in Figs.
-0.03 0.00 0.03 -0.03 0.00 0.03 4(d) and 4e). That is, Fig. 4d) shows the hyperchaotic at-
X X, o, (X,-X;) tractor with o, ~0.027 ando,=0.012 forA=AM+AA/ 52
0.04 ———— 0.04 —r—r—— and B=B{"+ AB/&5. Magnifying the region in the small
(d) (e) box with the scaling factora? for thex, axis andas3 for the

—

% o “ ™ *><N
X, 0.00 - K 1 9000 4

x N
_“| 4 3 - 4

X, axis, we also obtain the magnified picture in Fige)4
- which reproduces the previous one in Figc)dwith an in-
creased accuracy.
| We now turn to a brief discussion of the behavior exactly
-0.04 — : -0.04 ——L— irst bicriti int A B ist infini
503 000 003 503 000 003 at the first bl|cr|.t|cal pomt. AL ,EC ). Thgre exist infinite
X -x" 0 2(X -X") unstable periodic orbits with period' 2forming the skeleton
v I of the bicritical attractor. The orbit pointg ,, and z,,, that
FIG. 4. Hyperchaotic attractors for the three values AfE) _have th_e maximum distances from their nearest orbit points
near the first bicritical point A ,B()) for C=-0.2; in (@ In the first and second subsystems are found to converge
(A,B)=(AY+AA,BM+AB) (AA=0.00085AB=0.0037), in geometrically to their limit pointszi and z5 with the
(b) and(c) (/1°~,B)=(A2£1)+1AA/ 51,82(‘;1)+AB/ d,),andin(d)and(e)  asymptotic ratiosy; and a,, respectively. The residudg, ,
(A,B):(AE )+ A.A/.51,B£ )+A!3/5%). The picture in(c) is ob-  andR,, of the orbits with period 2 are also found to con-
tained by magnifying the region in the small box (ip) with the verge to the critical residueR* andR} , respectively.

scaling factorsy, for the x; axis anda, for the x, axis. Similarly, . . o .. (1)
we also obtain the picturée) by magnifying the region inside the With further increase o from its first critical pointAc™,

small box in(d) with the scaling factors? for thex, axis ande?  the stationary pointxy,y;) [=(0,0)] in the first subsystem
for the x, axis. Comparing the pictures {@), (c), and(e), one can undergoes a cascade of “resurrections,” i.e., it becomes re-
see that each successive magnified picture reproduces the previosigbilized after it loses its stability, destabilizes again and so
one with an accuracy with the depth of resolution. forth ad infinitum (For detail on such resurrections, refer to
Ref. [16].) For each case of the resurrections, an infinite

the parameter plane are determined by calculating theisequence of period-doubling bifurcations follows after
Lyapunov exponents. White areas correspond to periodibreakdown of the inversion symmetry. Consequently, the
states and the numbers denote the periods. On the othenidirectionally coupled PFPs exhibit multiple transitions to
hand, vertical and horizontal dashes denote chaotic states hyperchaos. As examples, we investigate the scaling behav-
the first and second subsystems, respectively, and crossigss associated with the second and third transitions to hy-
correspond to hyperchaotic states with two positiveperchaos. Figure 5 shows the second and third stability dia-
Lyapunov exponents. The pictures in Figgh)3and 3c) are  grams of asymmetric periodic orbits. Each stable region is
obtained by magnifying the regions in the small boxes in thdabeled by a pair of numbersi{,q,), whereq; andq, are
previous pictures by the scaling factéy for the A axis and  the periods of oscillations in the first and second subsystems,
5, for the B axis. Note that each successive picture reprofespectively. When crossing the verti¢abnvertica) critical
duces the previous one with an accuracy increasing with théne, denoted by a dashed line, a transition to chaos occurs in
depth of resolution. Hence the configuration of states in Figthe first (secondl subsystem. Note that the critical lines
3 demonstrates the parameter scaling near the bicriticah Figs. Ha and 8b) meet at the second and third
point. bicritical points A% ,B®) and AL ,BY), where

For another evidence of scaling, we also compare the hytA®) ,B{))=(3.501110775,3.51832) and AP ,B{®)
perchaotic attractors, shown in Fig. 4, for the three values o (10.508 324 894 38,10.534 88), respectively. The scaling
(A,B) near the first bicritical pointA(" ,B{)). Figure 4a8)  behaviors near these bicritical points are found to be the
shows the 2D projection of a hyperchaotic attractor onto thesame as those near the first bicritical point.

(
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3.540 |- .

@ 3505

10.57 - -]

m 10.55

10.53 [

10.494 10.501 10.508
A

FIG. 5. (a) Second andb) third stability diagrams of asymmet-

ric periodic orbits forC= —0.2. Here each stable region is labeled

by a pair of numbersd, ,q,), whereq, andq, denote the periods

PHYSICAL REVIEW E 63 036223

0.796 [~ T T T T T

m 0 794 B (4,8)

&8 (16,16)

(4,4)

0.792 N 1 N 1 N I:
0.796 0.797 0.798

A

FIG. 6. First stability diagram of asymmetric periodic orbits for
the fourth type of coupling wittg; =0 andg,=C(x,—Xx;) for C
=—0.1. Here each stable region is labeled by a pair of numbers
(d1.92), whereq; andq, denote the periods of oscillations in the
first and second subsystems, respectively. The (vestical and
non-vertica) critical lines, denoted by the dashed lines, of period-
doubling transitions to chaos meet at the bicritical point, denoted by
the solid circle. Note that the structure of this stability diagram is
the same as that of the first stability diagram for the first type of
coupling.

where fA(x,y,t)=—27BQy— 27 (02— A cos 2rt)sin 27X,

and A and B are the control parameters of the two sub-
systems. For this unidirectionally coupled system, the first
PFP with state variables; andy,; is a master subsystem
driving the second slave or response PFP with state variables
X, andy, through the generalized coupling tergisandgs,.

The bicritical behaviors are investigated for the cases of the
following six types of couplings:

of oscillations in the first and second subsystems, respectively. The
(vertical and nonverticalcritical lines, denoted by dashed lines in
(@ and (b), of period-doubling transitions to chaos in both sub-
systems meet at the second and third bicritical points, denoted by
the solid circles, respectively. Note that the structure of these sec-
ond and third stability diagrams is the same as that of the first
stability diagram.

To examine universality in the bicritical behavior, we also
consider a system consisting of two PFPs with a unidirec-
tional coupling of general type, described by

9:=C(X2—X1), 92=C(y2—VY1), (249
9:=C(X2—X1), 92=0, (24b)
9:=0, 92=C(y2—Vy1), (249
9:=0, 92=C(xa—Xy), (24d

91=C05—x9), g>=C(y;-Y7), (249

9:=C(3=x7), 92=C(y3-¥)), (24

X1=Y1, (239
y1=falxs,y1.b), (23b)
X2=Y2+01(X1,Y1.X2,Y2), (239
y2=fa(Xz,Y2,1) +0a(X1,Y1.%2,Y2), (230

whereC is a coupling parametefHere the first type of cou-
pling is just the coupling considered in E).] It is thus
found that the scaling behaviors near the bicritical points are
the same irrespective of the type of couplings although the
type of mother orbits for the period-doubling cascades de-
pends on the type of couplings. As an example, consider the
fourth type of coupling in Eq(24d). Figure 6 shows the first
stability diagram of asymmetric periodic orbits f&@=
—0.1. We first note the “universal” structure of the stability
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diagram. The scaling behavior near the bicritical point isthe unidirectionally coupled PFPs exhibit a cascade of tran-
found to be the same as that for the first type of couplingsitions to hyperchaos. Using both the residue-matching RG
although the type of mother orbits is different from that for method and the direct numerical method, we have investi-
the first type of coupling. For this case, the type of mothergated scaling behaviors near the bicritical points for several
orbits that exist fronB=0 is “14" because they are out-of- cases of unidirectional couplings and found a new kind of
phase orbits with phase shift=1 and consist of the same non-Feigenbaum scaling behavior in the response subsystem.
pairs when coming tA=B and C=0 (refer to Sec. Il for Note also that this bicritical scaling behavior is the same as
type of orbits. that in the unidirectionally coupled 1D maps. We thus sup-
pose that the bicriticality may occur generally in a large class
V. SUMMARY of unidirectionally coupled systems consisting of period-

. _— i ] _ doubling subsystems.
We have studied the bicritical scaling behavior of period

doublings in two unidirectionally coupled PFPs. When cross-

ing a bicritical point corresponding to a threshold of chaos in ACKNOWLEDGMENT

both subsystems, a hyperchaotic attractor with two
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