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Bicritical scaling behavior in unidirectionally coupled oscillators

Sang-Yoon Kim* and Woochang Lim
Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea

~Received 3 September 2000; published 27 February 2001!

We study the scaling behavior of period doublings in a system of two unidirectionally coupled parametri-
cally forced pendulums near a bicritical point where two critical lines of period-doubling transition to chaos in
both subsystems meet. When crossing a bicritical point, a hyperchaotic attractor with two positive Lyapunov
exponents appears, i.e., a transition to hyperchaos occurs. Varying the control parameters of the two sub-
systems, the unidirectionally coupled parametrically forced pendulums exhibit multiple period-doubling tran-
stions to hyperchaos. For each transition to hyperchaos, using both a ‘‘residue-matching’’ renormalization
group method and a direct numerical method, we make an analysis of the bicritical scaling behavior. It is thus
found that the second response subsystem exhibits a new type of non-Feigenbaum scaling behavior, while the
first drive subsystem is in the usual Feigenbaum critical state. The universality of the bicriticality is also
examined for several different types of unidirectional couplings.
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I. INTRODUCTION

Many low-dimensional nonlinear systems exhibit perio
doubling transitions to chaos. Using a renormalization gro
~RG! method, Feigenbaum had discovered universal sca
behavior near the accumulation point of the period-doubl
cascade@1#. After that, efforts have been made in studies
coupled systems to attempt to generalize to high-dimensi
nonlinear systems@2–9#. Here we are concerned with th
critical scaling behavior of period doublings in unidirectio
ally coupled oscillators. These unidirectionally coupled s
tems have been used as models for open-flow systems@10#.
In particular, they were actively discussed recently in re
tion to secure communication using chaos synchroniza
@11#.

The coupled system investigated in this paper is two u
directionally coupled parametrically forced pendulum
~PFPs!. For this unidirectionally coupled system, the dri
subsystem acts on the response subsystem, while the
sponse subsystem does not influence the drive one as in
unidirectionally coupled systems consisting of two Chu
circuits @12# and two Duffing oscillators@13#. Hence the two
unidirectionally coupled PFPs have a skew product struc
@14#. For a single PFP, vertical oscillation of its support lea
to a time-periodic variation of its natural frequency@15#. As
the amplitude of the vertical oscillation is increased, the lo
est stationary point undergoes a cascade of ‘‘resurrection
i.e., it becomes stabilized after its instability, destabil
again, and so forthad infinitum. Recently, we have studie
‘‘multiple period-doubling transitions to chaos,’’ associat
with such resurrections@16#. In each case of the resurre
tions, an infinite sequence of period-doubling bifurcatio
follows and leads to chaos. Consequently, an infinite se
of period-doubling transitions to chaos occur successiv
with increasing amplitude. This is in contrast to the on
dimensional ~1D! map @1#, where only a single period
doubling transition to chaos occurs. However, the criti
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scaling behavior near each period-doubling transition poin
the same as that for the 1D map.

Here we follow sequences of period doublings in two u
directionally coupled PFPs by varying the two control p
rametersA andB of the two subsystems for a fixed value
the coupling parameterC. Scaling behavior is thus investi
gated near a bicritical point (Ac ,Bc) where two critical lines
of period-doubling transitions to chaos in both subsyste
meet. Note that this bicritical point corresponds to a bor
of chaos in both the subsystems. Hence, when crossing
a bicritical point, a hyperchaotic attractor with two positiv
Lyapunov exponents@17# appears, i.e., a transition to hype
chaos occurs. With varyingA and B, the undirectionally
coupled PFPs undergo a cascade of period-doubling tra
tions to hyperchaos. Using both renormalization group~RG!
method and a direct numerical method, we investigate
bicritical scaling behavior for each transition to hypercha
and find that the response subsystem exhibits a new kin
non-Feigenbaum scaling behavior, while the drive subsys
is in the usual Feigenbaum’s critical state. Note that t
bicritical scaling behavior is the same as that in the t
unidirectionally coupled 1D maps@7,8#. In addition, this kind
of bicritical behavior was also observed in other syste
consisting of unidirectionally coupled circuits@9#. Hence,
such bicriticality may be a general phenomenon occurring
many unidirectionally coupled systems consisting of perio
doubling subsystems.

This paper is organized as follows. We first introduce tw
unidirectionally coupled PFPs in Sec. II, and then disc
stability, bifurcations, and Lyapunov exponents. In partic
lar, a convenient real quantity called the ‘‘residue’’@18# is
used to characterize stability of periodic orbits and their
furcations. We then develop a ‘‘residue-matching’’ R
method, equating the residues of the orbit of leveln ~period
2n) to those of the orbit of the next leveln11 in Sec. III.
Using both residue-matching RG method and the direct
merical method, we investigate scaling behaviors near
bicritical points in Sec. IV and find a new kind of non
Feigenbaum scaling behaviors in the second response
system. To examine the universality of the bicriticality, se
©2001 The American Physical Society23-1
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eral different types of unidirectional couplings are al
studied. Finally, a summary is given in Sec. V.

II. STABILITY, BIFURCATIONS, AND LYAPUNOV
EXPONENTS

In this section, we discuss stability of period orbits in t
four-dimensional~4D! Poincare´ map of the two unidirection-
ally coupled PFPs, using the Floquet theory@19#. Bifurca-
tions associated with the stability and Lyapunov expone
are also discussed.

A single PFP with a vertically oscillating support can
described by two first-order ordinary differential equatio
@15#,

ẋ5y, ~1a!

ẏ5 f A~x,y,t !, ~1b!

where f A(x,y,t)522pbVy22p(V22A cos 2pt)sin 2px,
x is a normalized angle with rangexP@0,1), the overdot
denotes a derivative with respect to timet, b is a normalized
damping parameter,V is the normalized natural frequency o
the unforced pendulum, andA is the normalized driving am
plitude of the vertical oscillation of the suspension poi
Note that as a result of the vertical oscillation, the frequen
of the pendulum varies periodically with time. Two identic
PFPs are then coupled together with a unidirection
coupling type to yield a skew-product system,

ẋ15y1 , ~2a!

ẏ15 f A~x1 ,y1 ,t !, ~2b!

ẋ25y21C~x22x1!, ~2c!

ẏ25 f B~x2 ,y2 ,t !1C~y22y1!, ~2d!

whereA andB are the normalized driving amplitudes of th
vertical oscillations of the suspension points of the two PF
and C is a coupling parameter. For this unidirectiona
coupled system, the first master PFP with state variablex1
andy1 can be regarded as a driving for the second slave
response PFP with state variablesx2 andy2 through the cou-
pling term. These unidirectionally coupled PFPs also have
inversion symmetryS because the transformation

S:x1→2x1 , y1→2y1 , x2→2x2 , y2→2y2 ~3!

leaves Eqs.~2! invariant. If an orbitz(t)@[„z1(t),z2(t)…#,
where zi5(xi ,yi) ( i 51,2), is invariant underS, then it is
called a symmetric orbit. Otherwise, it is called an asymm
ric orbit and has its conjugate orbitSz(t).

The phase space of the two unidirectionally coupled P
is five dimensional with coordinatesx1 , y1 , x2 , y2, and t.
Since the unidirectionally coupled PFPs are periodic int, it is
convenient to regard time as a circular coordinate~with mod
1) in the phase space. We then consider the surface of
tion, the x1-y1-x2-y2 hypersurface at integer times~i.e., t
5m, m is an integer!. The phase-space trajectory interse
03622
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this hypersurface in a sequence of points. This sequenc
points corresponds to a mapping on the 4D hypersurfa
This map plot of an initial orbit pointz(0) can be computed
by stroboscopically sampling the orbit pointsz(m) at the
discrete timem. We call the transformationz(m)→z(m
11) the Poincare´ map, and writez(m11)5P(z(m)). This
4D Poincare´ map~with the inversion symmetryS) may have
many attractors for fixed values of parameter values. FoA
5B and C50, it breaks up into two uncoupled identica
two-dimensional~2D! maps possessing the inversion sym
metry. If each uncoupled 2D map has either an asymme
stable orbitz @5(x,y)# or its conjugate orbitz* , then the
composite 4D map has one of the four pairs of orbits, (z,z),
(z* ,z* ), (z,z* ), and (z* ,z). For the first and second~third
and fourth! pairs, the 2D uncoupled maps have the sa
~different! kind of orbits. Hereafter, the corresponding pa
will be called the ‘‘same~different! pairs.’’ To classify the
orbits in the composite 4D map, we should also take
phase shift between the uncoupled 2D maps into consi
ation. If each 2D map has a stable orbit of period 2n, then the
composite 4D map has 2n different states distinguished b
the phase shiftN (N50, . . . ,2n21). Note that this multista-
bility is preserved when the coupling is introduced, at le
while its value is small enough. Hereafter, an orbit will b
called an orbit of typeNs(d) if it corresponds to the sam
~different! pair and there exists a phase shiftN between the
state variablesz1 andz2 of the first and second 2D maps@i.e.,
z1(m)5z2(m1N)# when we come to the pointC50 and
A5B.

The linear stability of aq-periodic orbit of the 4D Poin-
carémap P, such thatPq

„z(0)…5z(0), is determined from
the linearized-map matrixM @[DPq

„z(0)…# of Pq at an or-
bit point z(0). HerePq means theq-times iterated map. Us
ing the Floquet theory@19#, the matrixM can be obtained by
integrating the linearized differential equations for small p
turbations with four initial perturbation (dx1 ,dy1 ,dx2 ,dy2)
5(1,0,0,0),(0,1,0,0),(0,0,1,0), and (0,0,0,1) over the perio
q. Since the unidirectionally coupled system has a sk
product structure@14#, the linearized-map matrixM has the
following semiblock form:

M5S M1 0

M3 M2
D , ~4!

where0 is the 232 null matrix. Hence, in order to determin
the eigenvalues ofM, it is sufficient to solve the eigenvalu
problems of the two 232 submatricesM1 andM2 indepen-
dently. HereM1(A) andM2(B,C) determine the stability of
the first drive and second response subsystems, respect
Note also that the first submatrixM1 is just the linearized
Poincare´ map of the PFP@16#, and the coupling affects only
the second submatrixM2.

The eigenvaluesl i ,1 andl i ,2 of Mi ( i 51,2) are called the
Floquet~stability! multipliers, which characterize the stabi
ity of the i th subsystem. Note also that the first pair of Fl
quet multipliers (l1,1,l1,2) is just the pair of Floquet multi-
pliers of the uncoupled PFP@16# and the coupling affects
only the second pair of Floquet multipliers (l2,1,l2,2). By
3-2
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using the Liouville formula@20#, we obtain constant Jaco
bian determinantsD1 andD2 of the submatricesM1 andM2,
respectively, where

D15e22pbVq, D25e22(pbV2C)q. ~5!

Hence thei th pair of Floquet multipliers lies either on th
circle of radiusADi or on the real axis in the complex plan
The periodic orbit becomes stable when all its four Floq
multipliers lie inside the unit circle in the complex plan
~i.e., their moduli are less than unity!. Here we consider the
case ofDi,1; D1 is always less than unity, whileD2 be-
comes less than unity forC,pbV. Then, the two pairs of
Floquet multipliers never cross the unit circle in the comp
plane except at the real axis, and hence Hopf bifurcations
not occur. Consequently, the stable periodic orbit can lose
stability only when a Floquet multiplierl i passes through 1
or 21 on the real axis.

A more convenient real quantityRi ( i 51,2), called the
residue@18# and defined by

Ri[
11Di2Ti

2~11Di !
, ~6!

is used to characterize the stability of periodic oscillations
the i th subsystem. HereDi and Ti are the determinant an
trace of the submatrixMi , respectively. Then the Floque
multipliers l i can be expressed in terms ofRi as follows:

l i5
~11Di !

2
$122Ri62A~Ri2Ri ,1* !~Ri2Ri ,2* !%, ~7!

where

Ri ,1* 5
~12ADi !

2

2~11Di !
, Ri ,2* 5

~11ADi !
2

2~11Di !
. ~8!

For Ri ,1* ,Ri,Ri ,2* , Floquet multipliers occur in complex
conjugate pairs (l i ,l i* ) on the circle of radiusADi , while
they come in real pairs (l i ,Di /l i) on the real axis forRi

,Ri ,1* or R.Ri ,2* . Note also that the Floquet multipliers ca
cross the unit circle only at the real axis~i.e., at l i51 or
21). For l i51 and 21, the values ofRi are 0 and 1,
respectively. Hence, when 0,Ri,1, the pair of Floquet
multipliers l i lies inside the unit circle. AsRi decreases
through 0~i.e., a Floquet multiplierl i increases through 1)
the periodic orbit loses its stability via a saddle-node
pitchfork bifurcation. On the other hand, asRi increases
through 1~i.e., a Floquet multiplier decreases through21),
it becomes unstable via a period-doubling bifurcation. F
more detail on the bifurcations, refer to Ref.@21#.

Finally, we briefly discuss Lyapunov exponents@22# of an
orbit in the 4D Poincare´ mapP. The two submatricesM1 and
M2 of M determine Lyapunov exponents (s1,1,s1,2) and
(s2,1,s2,2), characterizing the average exponential rates
divergence of nearby orbits in the first and second s
systems, respectively, wheres i ,1>s i ,2 for i 51,2. Since the
two submatrices have constant Jacobian determinants o
~5!, the two pairs of Lyapunov exponents satisfys1,11s1,2
03622
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522pbV and s2,11s2,2522(pbV2C). Note also that
the first pair of Lyapunov exponents (s1,1,s1,2) is just the
pair of Lyapunov exponents of the uncoupled PFP@16# and
the coupling affects only the second pair of Lyapunov exp
nents (s2,1,s2,2).

III. RESIDUE-MATCHING RENORMALIZATION GROUP
METHOD

In this section, we develop a residue-matching R
method, equating the residues of the orbit of leveln ~period
2n) to those of the orbit of the next leveln11. Note that this
RG scheme can be easily applied to the 4D Poincare´ mapP
of the unidirectionally coupled PFPs.

The basic idea of the residue-matching RG method is
associate a value (A8,B8) for each (A,B) such thatP(A8,B8)

(n11)

locally resemblesP(A,B)
(n) , whereP(n) is the 2nth-iterated map

of P ~i.e., P(n)5P2n
). HereA andB are the control param

eters of the two subsystems, respectively, and the coup
parameterC is fixed. A simple way to implement this idea i
to linearize the maps in the neighborhood of their respec
fixed points and equate the corresponding residues, cha
terizing their stability. This residue-matching RG meth
can be regarded as a generalized version of the eigenva
matching RG method, that has been successfully used in
two unidirectionally-coupled 1D maps@8#. Note also that the
residue matching in slightly different contexts has been a
used for the study of break-up of invariant circles in t
area-preserving twist maps@23#.

Consider two successive orbits of period 2n and 2n11,
$z(m)% and$z8(m)%, such that

z~m!5P(A,B)
(n)

„z~m!…, z8~m!5P(A8,B8)
(n11)

„z8~m!…, ~9!

wherez5(z1 ,z2) andzi5(xi ,yi). Here the state variablez1
of the first subsystem depends only onA but the state vari-
ablez2 of the second subsystem is dependent on bothA and
B. Linearizing P(n) and P(n11) at z(m) and z8(m), respec-
tively, we obtain

DP(A,B)
(n) 5 )

m51

2n

DP(A,B)„z~m!…,

~10!

DP(A8,B8)
(n11)

5 )
m51

2n11

DP(A8,B8)„z8~m!…,

where DP is the linearized Poincare´ map of P. Then the
eigenvalues of the linearized-map matrices, called the F
quet multipliers, determine the stability of the periodic o
bits. However, as explained in Sec. II, it is more conveni
to use the residuesR1 andR2, defined in Eq.~6!, to charac-
terize the stability of periodic oscillations in the first an
second subsystems, respectively. The recurrence relation
the old and new parameters are then given by equating
residues of leveln, R1,n(A) andR2,n(A,B), to those of the
next leveln11, R1,n11(A8) andR2,n11(A8,B8), i.e.,

R1,n~A!5R1,n11~A8!, ~11a!
3-3
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R2,n~A,B!5R2,n11~A8,B8!. ~11b!

The fixed point (A* ,B* ) of the renormalization transfor
mation ~11!,

R1,n~A* !5R1,n11~A* !, ~12a!

R2,n~A* ,B* !5R2,n11~A* ,B* !. ~12b!

gives the bicritical point (Ac ,Bc), corresponding to a borde
of chaos in both subsystems, for a fixedC. By linearizing the
renormalization transformation at the fixed point (A* ,B* ),
we obtain

S DA

DBD 5S ]A

]A8
U
*

]A

]B8
U
*

]B

]A8
U
*

]B

]B8
U
*

D S DA8

DB8
D ~13!

5DnS DA8

DB8
D , ~14!

where

Dn5Gn
21Gn11 , ~15!

Gn5S dR1,n

dA U
*

0

]R2,n

]A U
*

]R2,n

]B U
*

D , ~16!

Gn115S dR1,n11

dA8
U
*

0

]R2,n11

]A8
U
*

]R2,n11

]B8
U
*

D , ~17!

whereGn
21 is the inverse ofGn and the asterisk denotes th

fixed point (A* ,B* ). After some algebra, we obtain the an
lytic formulas for the eigenvaluesd1,n andd2,n of the matrix
Dn ,

d1,n5

dR1,n11

dA8
U
*

dR1,n

dA U
*

, ~18a!

d2,n5

]R2,n11

]B8
U
*

]R2,n

]B U
*

. ~18b!
03622
As n→`, the eigenvalues of leveln, d1,n andd2,n approach
their limit valuesd1 and d2, which are just the paramete
scaling factors in the first and second subsystems, res
tively.

In addition to the parameter scaling factors, one can a
obtain the orbital scaling factors. To look for simple scali
in the phase space at the bicritical point (An* ,Bn* ) of level n,
we first locate the most rarefied region by choosing
2n-periodic orbit pointz(n)(0) that has the largest distanc
from its nearest orbit pointz(n)(2n21) @5P2n21

„z(0)…#.
Then, the local rescaling factors of the state variables
simply given by

ax1 ,n5
dx1 ,n

dx1 ,n11
, ay1 ,n5

dy1 ,n

dy1 ,n11
, ~19a!

ax2 ,n5
dx2 ,n

dx2 ,n11
, ay2 ,n5

dy2 ,n

dy2 ,n11
, ~19b!

where

dx1 ,n[x1
(n)~0!2x1

(n)~2n21!, dy1 ,n[y1
(n)~0!2y1

(n)~2n21!,
~20a!

dx2 ,n[x2
(n)~0!2x2

(n)~2n21!, dy2 ,n[y2
(n)~0!2y2

(n)~2n21!.
~20b!

As n→`, both the rescaling factorsax1 ,n anday1 ,n of level

n converge to the orbital scaling factora1 in the first sub-
system, whileax2 ,n anday2 ,n converge to the orbital scaling

factor a2 in the second subsystem.
Using the above residue-matching RG method, we mak

numerical analysis of the bicritical scaling behavior and th
obtain the bicritical point, the parameter and orbital scal
factors, and the critical residues. The numerical accurac
improved remarkably with increasing leveln. These RG re-
sults will be given in Sec. IV along with the scaling resu
obtained by the direct numerical method.

IV. SCALING BEHAVIORS NEAR THE BICRITICAL
POINTS

In this section, by varying the two control parametersA
andB of the two subsystems for a fixed value of the coupli
parameterC, we study the bicritical scaling behaviors in th
two unidirectionally coupled PFPs withb51.0 andV50.5.
When crossing a bicritical point corresponding to a border
chaos in both subsystems, a transition to hyperchaos oc
i.e., a hyperchaotic attractor with two positive Lyapunov e
ponents appears. Since an infinite series of period-doub
transitions to chaos occur successively with increasing
plitude A of the first drive subsystem@16#, the unidirection-
ally coupled PFPs also may exhibit multiple period-doubli
transitions to hyperchaos. Here we investigate the first th
period-doubling transitions to hyperchaos. For each tra
tion to hyperchaos, various bicritical scaling behaviors
investigated by using both the residue-matching RG met
and the direct numerical method. A new type of no
3-4
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Feigenbaum scaling behaviors are thus found in the sec
response subsystem. To examine the universality of the
criticality, we also study several different types of unidire
tional couplings. Note that these bicritical scaling behavi
are the same as those in the unidirectionally coupled
maps@7,8#.

We now fix the coupling parameter asC520.2, and
study period-doubling bifurcations by increasingB from
zero. Hence the periodic orbits that exist fromB50 become
the ‘‘mother’’ orbits for such period-doubling cascade
These mother orbits are orbits of type ‘‘0s , ’’ because they
are in-phase~phase shiftN50! and consist of the same pai
when coming toA5B andC50 ~refer to Sec. II for type of
orbits!.

Figure 1 shows the first stability diagram of asymmet
periodic orbits. Each stable region is labeled by a pair
numbers (q1 ,q2), whereq1 andq2 are the periods of oscil
lations in the first and second subsystems, respectively.
the case of the uncoupled PFP@16#, as the parameterA is
increased, the stationary point (x̂1 ,ŷ1) @5(0,0)# in the first
subsystem, which is a symmetric one with respect to
inversion operation, becomes unstable through a symme
conserving period-doubling bifurcation, and then a new sy
metric orbit with period 2 is born. However, the symmet
period-2 orbit loses its stability via a symmetry-breaki
pitchfork bifurcation, which leads to the birth of a conjuga
pair of asymmetric orbits with period 2. After this brea

FIG. 1. First stability diagram of asymmetric periodic orb
born via period-doubling bifurcations forC520.2. Each stable
region is labeled by a pair of numbers (q1 ,q2), whereq1 andq2 are
the periods of oscillations in the first and second subsystems
spectively. When crossing the vertical and nonvertical dashed li
transitions to chaos occur in the first and second subsystems
spectively. Note that these two critical lines meet at the first bicr
cal point, denoted by the solid circle, which corresponds to a bo
of chaos in both subsystems. Furthermore, the open circles de
the points corresponding to a threshold of instability in both s
systems, whereR151 andR251. Such open circles also accum
late to the first bicritical point.
03622
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down of the inversion symmetry, the first subsystem exhib
an infinite sequence of period-doubling bifurcations at
vertical straight lines in Fig. 1, whereR151, accumulating
at a critical line, denoted by a vertical dashed line. Wh
crossing the vertical critical line, a transition to chaos occ
in the first subsystem. For small values of the parameteB,
the second subsystem exhibits a forced response with
same period of the first subsystem. AsB is increased for a
fixed value ofA, the second subsystem also undergoes
infinite sequence of period-doubling bifurcations at the no
vertical lines, whereR251, accumulating at a critical line
denoted by a nonvertical dashed line. When crossing
nonvertical critical line, a transition to chaos takes place
the second subsystem. Note that the two critical lines mee
a bicritical point, denoted by a solid circle, corresponding
a threshold of chaos in both the subsystems. Conseque

FIG. 2. Plots of~a! the first residueR1,n(A) versusA and~b! the
second residueR2,n(A5* ,B) versusB for the casesn55,6. In~a!, the
intersection point, denoted by the solid circle, of the two curvesR1,5

andR1,6 gives the point (A5* ,R1,5* ) of level 5. Asn→`, (An* ,R1,n* )
converges to its limit point (A* ,R1* ). Similarly, in ~b!, the intersec-
tion point, denoted also by the solid circle, of the two success
curve R2,5(A5* ,B) and R2,6(A5* ,B) gives the point (B5* ,R2,5* ) of
level 5. As n→`, (Bn* ,R2,n* ) also approaches its limit poin
(B* ,R2* ).
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TABLE I. Sequences of the critical point, the first critical residue, the parameter, and orbital sc
factors$An* %, $R1,n* %, $d1,n%, $ax1 ,n%, and$ay1 ,n% in the first subsystem obtained by the residue-matching
method.

n An* R1,n* d1,n ax1 ,n ay1 ,n

3 0.798 049 141 319 1.300 47 4.672 271 22.440 22.337
4 0.798 049 183 564 1.300 61 4.668 814 22.530 22.573
5 0.798 049 182 420 1.300 59 4.669 250 22.492 22.476
6 0.798 049 182 454 1.300 60 4.669 195 22.507 22.514
7 0.798 049 182 451 1.300 60 4.669 202 22.501 22.499
8 0.798 049 182 452 1.300 60 4.669 201 22.504 22.505
9 0.798 049 182 451 1.300 59 4.669 203 22.503 22.502
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when crossing the bicritical point, a hyperchaotic attrac
with two positive Lyapunov exponents appears. This is
first transition to hyperchaos. On further increasingA, mul-
tiple transitions to hyperchaos occur. As examples, sec
and third transitions to hyperchaos will be also discus
below.

Employing the residue-matching RG method developed
Sec. III, we make an analysis of the scaling behavior near
first bicritical point. Figure 2 shows some RG results o
tained by matching the residues of intermediate leven
55,6. Plots of the first residueR1,n(A) versusA for the
cases ofn55,6 are shown in Fig. 2~a!. Note that the inter-
section point, denoted by the solid circle, of the two curv
R1,5(A) and R1,6(A) gives the point (A5* ,R1,5* ), whereA5*
andR1,5* are the critical point and critical residue of level 5
the first subsystem, respectively. As shown in Eq.~18a!, the
ratio of the slopes of the curves,R1,5 andR1,6, for A5A5*
gives the parameter scaling factord1,5 of level 5 in the first
subsystem. Similarly, Fig. 2~b! shows plots of the secon
residueR2,n(A5* ,B) versusB for the cases ofn55,6. The
intersection point, denoted also by the solid circle, of the t
curves R2,5(A5* ,B) and R2,6(A5* ,B) gives the point
(B5* ,R2,5* ), whereB5* andR2,5* are the critical point and criti-
cal residue of level 5 in the second subsystem, respectiv
As shown in Eq.~18b!, the ratio of the slopes of the curve
R2,5(A5* ,B) andR2,6(A5* ,B) for B5B5* gives the paramete
scaling factord2,5 of level 5 in the second subsystem. I
creasing the level up ton59, we first solve Eq.~12! to
obtain the bicritical point (An* ,Bn* ) of level n and a pair of
03622
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d
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n
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ly.

critical residues (R1,n* ,R2,n* ) of level n. Next, using Eqs.~18!
and~19!, we obtain the parameter and orbital scaling fact
of level n, respectively. Then, as the leveln is increased, the
sequences of the critical points, critical residues, and par
eter and orbital scaling factors of leveln converge to their
respective limit values.

The RG results for the first drive subsystem are listed
Table I. As n is increased, the sequence of the parame
scaling factord1,n converges to a limit valued1 (.4.669),
and the sequences of the orbital scaling factorsax1 ,n and

ay1 ,n approach the same limit valuea1 (.22.5), as in

the single PFP@16#. Note that these limit valuesd1 anda1

agree well with Feigenbaum constantsd (54.669 . . . ) and
a (522.502 . . . ) for the 1Dmaps, respectively@1#. With
increasingn, the sequence of the critical residueR1,n* also
converges to a limit valueR* (.1.3006). As shown in Eq.
~5!, the determinantD1 of the linearized-map matrixM1 for
the q-periodic (q52n) orbit of level n goes to zero asn
→`. Then, one can easily see from Eq.~7! that the pair
of critical Floquet multipliers (l1,1* ,l1,2* ) becomes
(122R1* ,0). Note also that the value ofl1,1* (.21.601)
agrees well with the 1D critical Floquet multiplierl*
(521.601 . . . ) @1#. Consequently, the first drive subsyste
becomes in the usual Feigenbaum critical state.

However, the scaling behavior in the second respo
subsystem exhibits a new type of non-Feigenbaum sca
behavior, as shown in Table II. Asn is increased, the se
quence of the parameter scaling factord2,n approaches a
caling
hing
TABLE II. Sequences of the critical point, the second critical residue, the parameter, and orbital s
factors$Bn* %, $R2,n* %, $d2,n%, $ax2 ,n%, and$ay2 ,n% in the second subsystem obtained by the residue-matc
RG method.

n Bn* R2,n* d2,n ax2 ,n ay2 ,n

3 0.802 336 15 1.071 2 2.437 21.59 21.51
4 0.802 372 86 1.084 6 2.407 21.57 21.62
5 0.802 377 20 1.088 4 2.403 21.50 21.47
6 0.802 377 13 1.088 2 2.403 21.53 21.55
7 0.802 377 10 1.088 1 2.395 21.50 21.49
8 0.802 377 24 1.089 7 2.394 21.51 21.52
9 0.802 377 21 1.089 0 2.393 21.50 21.50
3-6
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limit value d2(.2.39), and the sequences of the orbital sc
ing factorsax2 ,n anday2 ,n converge to the same limit valu

a2(.21.5). Note that these limit valuesd2 and a2 agree
well with the scaling factorsd2(52.392 . . . ) and a2(5
21.505 . . . ) in the second response subsystem for t
unidirectionally-coupled 1D maps, respectively@7,8#. With
increasingn, the sequence of the critical residueR2,n* also
converges to a limit valueR* (.1.089), and hence the co
responding pair of critical Floquet multipliers (l2,1* ,l2,2* ) be-
comes (122R2* ,0) @.(21.178,0)#. Here the value ofl2,1*
also agrees well with the second critical Floquet multipl
l2* (521.178 . . . ) in thesecond response subsystem
the unidirectionally coupled 1D maps@7,8#. Consequently,
the bicritical scaling behavior in the unidirectionally coupl
PFPs becomes the same as that in the unidirection
coupled 1D maps.

To confirm the RG results, we also investigate the bicr
cal scaling behaviors by the direct numerical method. C
sider a pair of the parameters (An ,Bn) at which the periodic
orbit of level n ~period 2n) has the residuesR1,n5R2,n51.
Note that the point (An ,Bn) corresponds to a threshold o
instability in both subsystems. Some of such points are
noted by open circles in Fig. 1. Then the sequence
(An ,Bn) converges to the first bicritical point (Ac

(1) ,Bc
(1)),

denoted by the solid circle, as the leveln is increased. To
locate the first bicritical point with a satisfactory precisio
we directly follow the orbits of period 2n up to leveln510,
and obtain the sequences of both the parameters (An ,Bn)
and the orbit pointszn@5(z1,n ,z2,n)# that has the maximum
distance from its nearest orbit point, wherezi ,n5(xi ,n ,yi ,n)
( i 51,2).

The asymptotic scaling behaviors of the above sequen
near the first bicritical point are investigated in both su
systems. Note that the scaling behavior in the first drive s
system is obviously the same as that in the uncoupled
@16#. Hence, as in the uncoupled PFP, the sequences$An%,
$x1,n%, and $y1,n% converge to their limit valuesAc

(1)

(50.798 049 182 45),x1* (50.100 545 5),y1* (50.567 171)
geometrically with the 1D asymptotic ratios, respectively

An2Ac
(1);d1

2n , x1,n2x1* ;a1
2n , y1,n2y1* ;a1

2n .
~21!

Here the limit values are obtained using the superconverg
method@24#, and the scaling factorsd1 and a1 are just the
Feigenbaum constants d(54.669 . . . ) and a(5
22.502 . . . ), for the 1Dmaps, respectively. However, th
second response subsystem exhibits a non-Feigenbaum
ing behavior. The sequences$Bn%, $x2,n%, and $y2,n% also
converge geometrically to their limit valuesBc

(1)

(50.802 377), x2* (50.100 111), y2* (50.568 65), respec
tively, where the limit values are also obtained using
superconverging method. To get the convergence rates o
sequences, we define the scaling factors of leveln,

d2,n[
Bn212Bn

Bn2Bn11
, ax2 ,n[

x2,n212x2,n

x2,n2x2,n11
, ~22!
03622
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.

The sequence$d2,n% is listed in Table III, and it seems to
converge to a limit valued2(;2.4), which confirms the RG
result of d2 (.2.39). Both the sequences$ax2 ,n% and

$ay2 ,n% also seem to approach the same limita2 (.21.5),

which also agrees well with the RG result ofa2 (.21.5).
To demonstrate the parameter scaling, we study the ‘

pography’’ of the parameter plane. Figure 3 shows the ph
diagrams near the first bicritical point (Ac

(1) ,Bc
(1)). States in

TABLE III. Sequences of the parameter and orbital scaling f
tors $d2,n%, $ax2 ,n%, and$ay2 ,n% in the second subsystem obtaine
by directly following the ‘‘self-similar’’ parameter and orbital se
quences.

n d2,n ax2 ,n ay2 ,n

4 1.035 21.548 21.571
5 1.836 21.511 21.495
6 2.475 21.511 21.522
7 2.543 21.506 21.499
8 2.273 21.506 21.511
9 2.474 21.505 21.502

FIG. 3. Phase diagrams near the first bicritical point (Ac
(1) ,Bc

(1))
for C520.2. States in the parameter plane are determined by t
Lyapunov exponents. White areas correspond to periodic states
the numbers denote the periods. Vertical and horizontal dashe
note chaotic states in the first and second subsystems, respect
and crosses correspond to hyperchaotic states with two pos
Lyapunov exponents. The pictures in~b! and ~c! are obtained by
magnifying the regions in the small boxes in the previous pictu
by the scaling factord1 for the A axis andd2 for the B axis. Each
successive picture reproduces the previous one with an accu
increasing with the depth of resolution.
3-7
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the parameter plane are determined by calculating t
Lyapunov exponents. White areas correspond to perio
states and the numbers denote the periods. On the o
hand, vertical and horizontal dashes denote chaotic state
the first and second subsystems, respectively, and cro
correspond to hyperchaotic states with two posit
Lyapunov exponents. The pictures in Figs. 3~b! and 3~c! are
obtained by magnifying the regions in the small boxes in
previous pictures by the scaling factord1 for the A axis and
d2 for the B axis. Note that each successive picture rep
duces the previous one with an accuracy increasing with
depth of resolution. Hence the configuration of states in F
3 demonstrates the parameter scaling near the bicri
point.

For another evidence of scaling, we also compare the
perchaotic attractors, shown in Fig. 4, for the three value
(A,B) near the first bicritical point (Ac

(1) ,Bc
(1)). Figure 4~a!

shows the 2D projection of a hyperchaotic attractor onto

FIG. 4. Hyperchaotic attractors for the three values of (A,B)
near the first bicritical point (Ac

(1) ,Bc
(1)) for C520.2; in ~a!

(A,B)5(Ac
(1)1DA,Bc

(1)1DB) (DA50.000 85,DB50.0037), in
~b! and~c! (A,B)5(Ac

(1)1DA/d1 ,Bc
(1)1DB/d2), and in~d! and~e!

(A,B)5(Ac
(1)1DA/d1

2 ,Bc
(1)1DB/d2

2). The picture in ~c! is ob-
tained by magnifying the region in the small box in~b! with the
scaling factorsa1 for the x1 axis anda2 for the x2 axis. Similarly,
we also obtain the picture~e! by magnifying the region inside the
small box in~d! with the scaling factorsa1

2 for the x1 axis anda2
2

for the x2 axis. Comparing the pictures in~a!, ~c!, and~e!, one can
see that each successive magnified picture reproduces the pre
one with an accuracy with the depth of resolution.
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x1-x2 plane with the origin shifted at (x1* ,x2* ) for A5Ac
(1)

1DA and B5Bc
(1)1DB, where DA50.000 85 andDB

50.0037. This hyperchaotic attractor has two posit
Lyapunov exponents,s1,1.0.107 ands2,1.0.045. To see
scaling, we first rescaleDA andDB with the parameter scal
ing factorsd1 andd2, respectively. The 2D projection of th
attractor for the rescaled parameter values ofA5Ac

(1)

1DA/d1 and B5Bc
(1)1DB/d2 is shown in Fig. 4~b!. It is

also the hyperchaotic attractor withs1.0.055 and s2

.0.023. We next magnify the region in the small box~con-
taining the origin! by the scaling factora1 for thex1 axis and
a2 for the x2 axis, and then we get the magnified picture
Fig. 4~c!. Note that the picture in Fig. 4~c! reproduces the
previous one in Fig. 4~a! approximately. Repeating the abov
procedure once more, we obtain the two pictures in F
4~d! and 4~e!. That is, Fig. 4~d! shows the hyperchaotic at
tractor withs1.0.027 ands2.0.012 forA5Ac

(1)1DA/d1
2

and B5Bc
(1)1DB/d2

2 . Magnifying the region in the smal
box with the scaling factorsa1

2 for thex1 axis anda2
2 for the

x2 axis, we also obtain the magnified picture in Fig. 4~e!,
which reproduces the previous one in Fig. 4~c! with an in-
creased accuracy.

We now turn to a brief discussion of the behavior exac
at the first bicritical point (Ac

(1) ,Bc
(1)). There exist infinite

unstable periodic orbits with period 2n, forming the skeleton
of the bicritical attractor. The orbit pointsz1,n and z2,n that
have the maximum distances from their nearest orbit po
in the first and second subsystems are found to conve
geometrically to their limit pointsz1* and z2* with the
asymptotic ratiosa1 anda2, respectively. The residuesR1,n

andR2,n of the orbits with period 2n are also found to con-
verge to the critical residuesR1* andR2* , respectively.

With further increase ofA from its first critical pointAc
(1) ,

the stationary point (x̂1 ,ŷ1) @5(0,0)# in the first subsystem
undergoes a cascade of ‘‘resurrections,’’ i.e., it becomes
stabilized after it loses its stability, destabilizes again and
forth ad infinitum. ~For detail on such resurrections, refer
Ref. @16#.! For each case of the resurrections, an infin
sequence of period-doubling bifurcations follows aft
breakdown of the inversion symmetry. Consequently,
unidirectionally coupled PFPs exhibit multiple transitions
hyperchaos. As examples, we investigate the scaling be
iors associated with the second and third transitions to
perchaos. Figure 5 shows the second and third stability
grams of asymmetric periodic orbits. Each stable region
labeled by a pair of numbers (q1 ,q2), whereq1 andq2 are
the periods of oscillations in the first and second subsyste
respectively. When crossing the vertical~nonvertical! critical
line, denoted by a dashed line, a transition to chaos occu
the first ~second! subsystem. Note that the critical line
in Figs. 5~a! and 5~b! meet at the second and thir
bicritical points (Ac

(2) ,Bc
(2)) and (Ac

(3) ,Bc
(3)), where

(Ac
(2) ,Bc

(2))5(3.501 110 775,3.518 32) and (Ac
(3) ,Bc

(3))
5(10.508 324 894 38,10.534 88), respectively. The sca
behaviors near these bicritical points are found to be
same as those near the first bicritical point.

ous
3-8
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To examine universality in the bicritical behavior, we al
consider a system consisting of two PFPs with a unidir
tional coupling of general type, described by

ẋ15y1 , ~23a!

ẏ15 f A~x1 ,y1 ,t !, ~23b!

ẋ25y21g1~x1 ,y1 ,x2 ,y2!, ~23c!

ẏ25 f B~x2 ,y2 ,t !1g2~x1 ,y1 ,x2 ,y2!, ~23d!

FIG. 5. ~a! Second and~b! third stability diagrams of asymmet
ric periodic orbits forC520.2. Here each stable region is label
by a pair of numbers (q1 ,q2), whereq1 andq2 denote the periods
of oscillations in the first and second subsystems, respectively.
~vertical and nonvertical! critical lines, denoted by dashed lines
~a! and ~b!, of period-doubling transitions to chaos in both su
systems meet at the second and third bicritical points, denote
the solid circles, respectively. Note that the structure of these
ond and third stability diagrams is the same as that of the
stability diagram.
03622
-

where f A(x,y,t)522pbVy22p(V22A cos 2pt)sin 2px,
and A and B are the control parameters of the two su
systems. For this unidirectionally coupled system, the fi
PFP with state variablesx1 and y1 is a master subsystem
driving the second slave or response PFP with state varia
x2 andy2 through the generalized coupling termsg1 andg2.
The bicritical behaviors are investigated for the cases of
following six types of couplings:

g15C~x22x1!, g25C~y22y1!, ~24a!

g15C~x22x1!, g250, ~24b!

g150, g25C~y22y1!, ~24c!

g150, g25C~x22x1!, ~24d!

g15C~x2
22x1

2!, g25C~y2
22y1

2!, ~24e!

g15C~x2
32x1

3!, g25C~y2
32y1

3!, ~24f!

whereC is a coupling parameter.@Here the first type of cou-
pling is just the coupling considered in Eq.~2!.# It is thus
found that the scaling behaviors near the bicritical points
the same irrespective of the type of couplings although
type of mother orbits for the period-doubling cascades
pends on the type of couplings. As an example, consider
fourth type of coupling in Eq.~24d!. Figure 6 shows the firs
stability diagram of asymmetric periodic orbits forC5
20.1. We first note the ‘‘universal’’ structure of the stabilit

he

by
c-

st

FIG. 6. First stability diagram of asymmetric periodic orbits f
the fourth type of coupling withg150 andg25C(x22x1) for C
520.1. Here each stable region is labeled by a pair of numb
(q1 ,q2), whereq1 andq2 denote the periods of oscillations in th
first and second subsystems, respectively. The two~vertical and
non-vertical! critical lines, denoted by the dashed lines, of perio
doubling transitions to chaos meet at the bicritical point, denoted
the solid circle. Note that the structure of this stability diagram
the same as that of the first stability diagram for the first type
coupling.
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diagram. The scaling behavior near the bicritical point
found to be the same as that for the first type of coupl
although the type of mother orbits is different from that f
the first type of coupling. For this case, the type of moth
orbits that exist fromB50 is ‘‘1 s’’ because they are out-of
phase orbits with phase shiftN51 and consist of the sam
pairs when coming toA5B and C50 ~refer to Sec. II for
type of orbits!.

V. SUMMARY

We have studied the bicritical scaling behavior of peri
doublings in two unidirectionally coupled PFPs. When cro
ing a bicritical point corresponding to a threshold of chaos
both subsystems, a hyperchaotic attractor with t
Lyapunov exponents appears, i.e., a transition to hyperch
occurs. Varying the control parameters of both subsyste
fur

.P

d

03622
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the unidirectionally coupled PFPs exhibit a cascade of tr
sitions to hyperchaos. Using both the residue-matching
method and the direct numerical method, we have inve
gated scaling behaviors near the bicritical points for seve
cases of unidirectional couplings and found a new kind
non-Feigenbaum scaling behavior in the response subsys
Note also that this bicritical scaling behavior is the same
that in the unidirectionally coupled 1D maps. We thus su
pose that the bicriticality may occur generally in a large cla
of unidirectionally coupled systems consisting of perio
doubling subsystems.
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@17# O.E. Rössler, Phys. Lett.71A, 155 ~1979!; K. Kaneko, Prog.

Theor. Phys.69, 1427~1983!; T. Kapitaniak and W.-H. Steeb
Phys. Lett. A152, 33 ~1991!; M. de Sousa Vieira, A.J. Licht-
enberg, and M.A. Lieberman, Phys. Rev. A46, R7359~1992!;
T. Kapitaniak and L.O. Chua, Int. J. Bifurcation Chaos App
Sci. Eng.4, 477 ~1994!; M.A. Harrison and Y.-C. Lai, Phys.
Rev. E59, R3799~1999!.

@18# S.-Y. Kim and B. Hu, Phys. Rev. A44, 934~1991!; S.-Y. Kim
and D.-S. Lee,ibid. 45, 5480~1992!.

@19# S. Lefschetz,Differential Equations: Geometric Theory~Do-
ver, New York, 1977!, Sec. 3.5.

@20# V.I. Arnold, Ordinary Differential Equations~MIT Press,
Cambridge, MA, 1973!, p. 114.

@21# J. Guckenheimer and P. Holmes,Nonlinear Oscillations, Dy-
namical Systems and Bifurcations of Vector Fields~Springer-
Verlag, New York, 1983!, Sec. 3.5.

@22# A.J. Lichtenberg and M.A. Lieberman,Regular and Stochastic
Motion ~Springer-Verlag, New York, 1983!, Sec. 5.3.

@23# J.M. Greene, J. Math. Phys.20, 1183 ~1979!; R.S. MacKay,
Physica D7, 283 ~1983!.

@24# R. S. MacKay, Ph.D. thesis, Princeton University, 1982. S
Eqs. 3.1.2.12 and 3.1.2.13.
3-10


