PHYSICAL REVIEW E, VOLUME 65, 026210
Characterization of the parameter-mismatching effect on the loss of chaos synchronization
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We investigate the effect of the parameter mismatch on the loss of chaos synchronization in coupled
one-dimensional maps. Loss of strong synchronization begins with a first transverse bifurcation of a periodic
saddle embedded in the synchronous chaotic attrd&6®), and then the SCA becomes weakly stable.
Because of local transverse repulsion of the periodic repellers embedded in the weakly stable SCA, a typical
trajectory may have segments of arbitrary length that have positive local transverse Lyapunov exponents.
Consequently, the weakly stable SCA becomes sensitive with respect to the variation of the mismatching
parameter. To quantitatively characterize such parameter sensitivity, we introduce a quantifier, called the
parameter sensitivity expone(RSB. As the local transverse repulsion of the periodic repellers strengthens,
the value of the PSE increases. In terms of these PSEs, we also characterize the parameter-mismatching effect
on the intermittent bursting and basin riddling occurring in the regime of weak synchronization.
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[. INTRODUCTION set of repelling tongues, belonging to the basin of another
attractor(or infinity) [15].

In recent years, synchronization in coupled chaotic sys- However, in a real situation a small mismatch between the
tems has become a field of intensive study. For this case a&fubsystems that destroys the invariant subspace is unavoid-
chaos synchronization, a synchronous chaotic motion occui@ble. Hence, we investigate the effect of the parameter mis-
on an invariant subspace of the whole phase spaed. matching on the loss of synchronization in two coupled one-
Particularly, this chaotic synchronization has attracted mucldimenaional(1D) maps with an invariant diagonal. In the
attention, because of its potential practical application in seregime of weak synchronization, transversely unstable peri-
cure communicatiofis]. odic repellers are embedded in the SCA. Hence, when a typi-

In the ideal case a synchronous chaotic attrat®eA) cal trajectory visits the repelling tongues that open from such
may exist on the invariant subspace. If such a SCA is stabléepellers and their preimages, it experiences local transverse
against a perturbation transverse to the invariant subspace,fgPulsion from the diagonal. As a result, the typical trajectory
may become an attractor in the whole phase space. SufRdy have segments exhibiting positive lodéhite time)
transverse stability of the SCA is intimately associated withransverse Lyapunov exponents, even if the averaged trans-
transverse bifurcations of periodic saddles embedded in theerse Lyapunov e>_<ponent is negative. Because of the exis-
SCA[6-12]. If all periodic saddles are transversely stable,tence of these positive local transvers_e_ Lyap_unov exponents,
the SCA becomes asymptotically stablie., Lyapunov the_wgakly stable.SCA be_comes sensitive \-Nlt.h _respect to the
stable and attracting in a topological sendr this case, we variation of the mismatching parameter. This is in contrast to

p ; R .’ the case of the strong synchronization that has no such pa-
have “strong” synchronization. However, as the coupling pa-

- ameter sensitivity. Here we introduce a quantifier, called the
rameter passes through a threshold value, a periodic sad Srameter sensitivity exponefRSB, that measures the “de-

first becomes transversely unstable through a local bifurcatgree” of the parameter sensitivity in Sec. Il. Hence, the PSE
tion. After this first transverse bifurcation, a dense set ofyecomes a quantitative characteristic of the weakly stable
locally repelling “tongues” opens from the transversely un- sca, as the phase sensitivity exponent quantitatively char-
stable repeller and its preimages, and hence, trajectories falirterizes the degree of the strangeness of the strange noncha-
ing into these tongues are locally repelled from the invarianbtic attractors that appear typically in the quasiperiodically
subspace. Thus, loss of strong synchronization begins witforced systemg16]. As the coupling parameter is varied
such a first transverse bifurcation, and then we have “weak’away from the point of the first transverse bifurcation, suc-
synchronization. For this case, intermittent bursting or basirtessive transverse bifurcations of periodic saddles occur.
riddling may occur depending on the existence of an absorbHlence, the value of the PSE increases because local trans-
ing area, controlling the global dynamics, inside the basin olerse repulsion of the periodic repellers embedded in the
attraction[10—13. In the presence of an absorbing area, act-SCA becomes more and more strong, and it tends to infinity
ing as a bounded trapping vessel, locally repelled trajectorieas ¢ approaches the blow-out bifurcation point where the
from the invariant subspace are restricted to move within theveraged transverse Lyapunov exponent becomes zero. As a
absorbing area, and exhibit transient intermittent burstingesult of this blow-out bifurcation, the weakly stable SCA
from the invariant subspadd 3,14. On the other hand, in becomes transversely unstable].

the absence of such an absorbing area, the locally repelled In terms of these PSEs, the effect of the parameter mis-
trajectories will go to another attractdor infinity), and  matching on the intermittent bursting and basin riddling is
hence the basin of attraction becomes riddled with a denseharacterzied in Sec. Ill. For the case of bursting, any small
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mismatching results in a continual sequence of intermittenpy, , , ,9Xn+1‘ i1
bursts, called the attractor bubbling, where the long period of 96 = e | .
nearly synchronous statéaminar phasgis randomly inter- e=0 e=0 e=0
rupted by the short-time burgburst phasg On the other IF (Xq.Y0)| 9G(Xy,Yn) X,
hand, for the case of riddling, the SCA on the diagonal is = X ‘ - % Fe
transformed into a chaotic transient. In both cases, the quan- n e=0 n £=0 £=0
tity of interest is the average time that a trajectory spends
near the diagondi.e., the average interburst interval and the + w — w }%
average lifetime of the chaotic transigfi4]. As the PSE 9Yn e=0 9Yn S K
increases, local transverse repulsion of the periodic repellers JG
embedded in the SCA becomes strong, and hence the aver- _ 96 ¥n E) ] (4)
age timer that a typical trajectory spends near the diagonal de =0
becomes short. Note thatmay be quantitatively character-
ized in terms of the PSEs. Finally, we give a summary inUsing Eq.(1), we may obtain a recurrence relation
Sec. IV.
Mot =[f(x3 ,a)—(2—a)ch(><§)]%
Il. CHARACTERIZATION OF THE PARAMETER Je =0 Je =0
SENSITIVITY OF THE SCA + fa(X: a), (5)

We investigate the parameter-mismatching effect on the o )
weak synchronization in two coupled 1D mdfg] wheref, andf, are the derivatives dfwith respect tox and
a, {(xx,y})} is the synchronous orbit witl} =yy for
e=0, andh(x) is a reduced coupling function defined by

[Xrea =P O Yn) =106, 2)F (1= @)C80n Vo). g

. Yn+1=G(Xn,Yn) =f(yn,b)+Ca(Yn . Xn),

ag(x,y)
J

h(x)= (6)

wherex,, andy,, are state variables of the subsystems at a
discrete timen, local dynamics in each subsystem with a

control parametep(p=a,b) is governed by the 1D map Hence, starting from an initial orbit poinix} ,y%) on the

f(x,p)=1-px?, cis a coupling parameter between the giagonal, we may obtain derivatives at all points of the orbit
two subsystems, and(x,y) is a coupling function of the

form, duy

_§ * * 5 7o
To | ROy @ RO

g(x,y)=y?—x2. (2 . @)

y=x

For =0, the coupling becomes symmetric, while for non- where
zero ¢ (0<a=<1) it becomes asymmetric. The extreme

case of asymmetric coupling with=1 corresponds to the
unidirectional coupling. In such a way, tunes the degree of Ru(xm) = _HO [Fx(Xsi @) — (2= a@)c h(xg,. )] (8)
asymmetry in the coupling. "

For the case of identical 1D mafi.,a=b), there existS - 5ne ¢an easily show that the factBy,(x*) is associated
an invariant sync_hromzatlon lingj=x, in the Xy phase with a local (M-time) transverse Lyapunov exponent
space. However, in the presence of a mismatching betwee(;n (x*) of the SCA that is averaged ovéd synchronous
the two 1D maps, the diagonal is no longer invariant. To take M} : % )
into consideration such a mismatching effect, we introduce grblt points starting fromxy, as follows:

small mismatching parameterin the coupled 1D maps of 1
Eq. (1) such that () = 37 IR OG- 9

M-1

b=a-e, ®) Thus,Ry(X5,) becomes a localstability) multiplier that de-

termines local sensitivity of the motion during a finite time
and consjder an -orb{t(xn ,Yn)} starting from an initial point  \p. Ag M — oo, ULI approaches the usual transverse
on the diagonali.e., Xxo=Yo). As the strength of the local |yanunov exponenir; that denotes the average exponential
transverse repulsion from the diagonal increases, the SCfye of divergence of an infinitesimal perturbation transverse
pecomes more and more sensitive with respect to the varigg the SCA. Sinceluy/de|, =0, Eq.(7) reduces to
tion of £. Such parameter sensitivity of the SCA for0

may be characterized by calculating the derivative of the N
transverse variablai,(=x,—Yy,), denoting the deviation N =SN(x3)EE Ry k(X)) fa(xk_q1,a). (10
from synchronization, with respect tgq % |,—o k=1
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In the case of weak synchronization, there are transversel — T 0.01 - T
unstable periodic repellers embedded in the SCA. When ¢ ' [ @ 7 (k)
typical trajectory visits neighborhoods of such repellers and L . I
their preimages, it has segments experiencing local repulsiol, 5 | 57000
from the diagonal. Thus, the distribution of local transverse
Lyapunov exponente{,I for a large ensemble of trajectories - .
and largeM may have a positive tail. For the segments of a R R 0,01 . ! .
trajectory exhibiting a positive local Lyapunov exponent -1 0 1 0 1500 3000
(01,>0), the local multipliersRy, [= = exp(yM)] can be X
arbitrarily large, and hence the partial s8y may be arbi-
trarily large. This implies unbounded growth of the deriva- 1
tivesduy/de| .o asN tends to infinity, and consequently the
weakly stable SCA may have a parameter sensitivity.

As an example, we consider the SCA that exists in the™ 0
interval of cy[=—2.963<c<cy,[=-0.677 for a
=1.82 in the unidirectionally coupled case @& 1. When

the coupling parametec passes througle,, or cy,,, the s 3 : " o o
SCA becomes transversely unstable through a blow-out bi- X n

furcation, and then a complete desynchronization occurs. Ir 5

the regime of synchronization, a strongly stable SCA exists (e)

for ¢ [=—2.789<c<c,[=—-0.850. For this case of

strong synchronization, there is no parameter sensitivity, be:

cause all periodic saddles embedded in the SCA are trans > 0.0
versely stable. Hence, in the presence of a small paramete e i
mismatchinge the strongly stable SCA becomes slightly per- L ' _
turbed, as shown in Figs(d) and Xb). However, when the
coupling parametec passes; , andc;,, bubbling and rid- 25 . L
dling transitions occur through the first transverse bifurca- 1.2 0.0 1.2
tions of periodic saddles, respectively. For this case, the
weakly stable SCA has a parameter sensitivity, because of G, 1. Effect of the parameter mismatch with-0.001 on the

local transverse repulsion of the periodic repellers embeddeghaos synchronization faa=1.82 in the unidirectionally coupled

in the SCA. Thus, however small the parameter mismatchingase ofa=1. (a) A slightly perturbed SCA an¢b) the evolution of

g, a persistent intermittent bursting, called the attractor bubthe transverse variable,(x,—y,) vs the discrete time for the

bling, occurs in the regime of bubbling(,<c<cy,), as  case of strong synchronization witt+ — 1.5.(c) A bubbling attrac-
shown in Figs. {c) and 1d). On the other hand, in the re- tor and(d) the evolution ofu,, vs n for the bubbling case of=

gime of riddling (€, ;<c<c,), the weakly SCA with a —0.7. For the riddling case of=—2.91 the SCA with a basin
riddled basin fore =0 is transformed into a chaotic transient (gray region riddled with a dense set of tongues leading to diver-
with a finite lifetime in presence of a parameter mismatchgent orbits(white regior) for e=0 is transformed into a chaotic
[see Fig. 1e)]. As c is varied away front,, or ¢, , trans- transient(black dotg for ¢ =0.001 as shown iie).

versely unstable periodic repellers appear successively in the o
SCA through transverse bifurcations. Then the degree of thBence the strongly stable SCA has no parameter sensitivity.
parameter sensitivity of the SCA increases, because of theh the other hand, for the case of weak synchronization with
increase in the strength of local transverse repulsion of th6=—0.7, ¥y grows unboundedly and exhibits no satura-
periodic repellers. To quantitatively characterize the paramtion. Consequently, the weakly stable SCA has a parameter
eter sensitivity of the SCA, we iterate Eq4) and(5) start- ~ Sensitivity. _ e

ing from an initial orbit point k% ,y%) on the diagonal and ~ The growth rate of the functiop(xp) with time N rep-
duglde|,_o=0, and then we obtain the partial SUBR(x?) resents a d_egr_ee of the parameter sensitivity, and can be used
of Eq. (10). The quantitySy becomes very intermittent, as &5 @ quantitative characteristic of the weakly stable SCA.

shown in Fig. 2a). However, looking only at the maximum However, yn(X3) depends on a particular trajectory. To ob-
tain a representative quantity, we consider an ensemble of

yn(Xg)= max [Sy(x5)], (11)  randomly chosen initial points<t ,y%) on the diagonal, and
0=n=N take the minimum value ofy with respect to the initial orbit
points
one can easily see the boundednesS\af Figure 2Zb) shows
the functionsyy for both cases of strong and weak synchro- Cy=minyn(X§). (12
nization. For the case of strong synchronization with X%

—1.5, +yn grows up to the largest possible value of the
derivative|du/de| along the SCA and remains constant for Figure 3 shows a parameter sensitivity functiby for c
all subsequent iterations. Thug, saturates for largl and  =-—0.7. Note thaf", grows unboundedly with some power
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FIG. 3. Parameter sensitivity functidny for a=1, a=1.82,
andc=—0.7 that takes the minimum value ¢f; in the ensemble
containing 100 randomly chosen initial orbit points on the diagonal.

sitivity of the weakly stable SCA. As an example, we con-
sider the case oi=1.82 andc= —0.7 and obtain the prob-
ability distribution Py, (o) of local (M-time) transverse
Lyapunov exponents, wheR,(o)do is the probability that
a{,l has a value betweea and o+do, by taking a long
log, N trajectory dividing it into segments of lengh and calculat-
ing oy, in each segment. Figuréd shows the distributions
FIG. 2. (8 Intermittent behavior of the partial sufSy| for « Py(o) for M=100, 500, and 900. In the IlimitM
=1,a=1.82, andc=—-0.7.(b) Two functionsyy looking only at o Py (o) approaches the delta distributidifo— o),

the maximum forc=— 1.5 (strong synchronizatiorandc=-0.7  yhere ot is the usual averaged transverse Lyapunov expo-
(weak synchronization These results are obtained for the trajectory nent. However, for finiteM there is a varlance((aM

starting from the initial orbit pointxX} ,y3)=(0.5,0.5) in the case (o >)2> [=[~ PM(O')(O'—<O'T >)2d0] from the aver-
Im =J - M

of a=1 anda=1.82. T - N
age valug o)) [=[Z.Pu(o)odo]. As shown in Fig. )
' =N?. (13 this variance approaches zero inversely withas follows:

Here the values=2.58 is a quantitative characteristic of the T Ty 2D

o ) ((oy—(ou)))=—. (14
parameter sensitivity of the SCA, and we call it the PSE. In M
each regime of bubbling or riddling, we vary the coupling
parameter from the bubbling or riddling transition point to Here the value oD (=0.054) is the same, independently of
the blow-out bifurcation point and obtain the PSEs. For ob-the values ofc for a=1.82 in the regime of weak synchro-
taining satisfactory statistics, we consider 100 ensembles fatization. One remarkable feature of the distribution is the
eachc, each of which contains 100 randomly chosen initialslow decay of the positive tail of the distribution. In order to
orbit points and choose the average value of the 100 PSEwantify this, we define the fraction of positive local
obtained in the 100 ensembles. Figufa)4shows the plot of Lyapunov exponents as
such PSEs versus Note that the PSB monotonically in-
creases ag is varied away from the bubbling or riddling +_ |7
transition point, and tends to infinity as approaches the FM_J Pu(o)do. (19
blow-out bifurcation point. This increase in the parameter
sensitivity of the SCA is caused by the increase in theThese fractions-,,’s are plotted forc=—0.7, —0.695, and
strength of local transverse repulsion of the periodic repellers-0.69 in Fig. 5c). Note that for each value af the fraction
embedded in the SCA. After the blow-out bifurcation, the|:,\+/I exhibits a power-law decay,
weakly stable SCA is transformed into a transversely un-

stable chaotic saddle exhibiting an exponential parameter Fu~M~7. (16)
sensitivity as shown in Fig.(#). Thus, a complete desyn-
chronization occurs. Here the values of the exponentdecreases asincreases.

We also discuss the distribution of positive lock {time) Consequently, for any case of weak synchronization a trajec-
transverse Lyapunov exponents, causing the parameter seiry has segments of arbitrarily lond that have positive
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FIG. 4. (8 The plot of the PSES$ vs c in the regime of weak - o
synchronization for=1 anda=1.82.(b) The exponential param- FIG. 5. (@ Three probability distributions?y of the local
eter sensitivity for the trajectory starting from the initial point M-time Lyapunov exponents favl =100, 500, and 900 whew
(0.5,0.5) fora=1, a=1.82, andc=—0.66. =1, a=1.82, andc=—0.7. (b) The plot of (o — (o)) )M?/2

vs M whena=1, a=1.82, andc=—0.7. Note that the variance

, ) decreases inversely withl. (c) Plots of loggF;(Fy;: fraction of
local Lyapunov exponents, and then the partial S EQ.  the positive local transverse Lyapunov — expohents
(10) may be arbitrarily large. Thus, the weakly stable SCA_|og, M. Note that the three plots far=—0.7 (circles, —0.695
may have a parameter sensitivity. As shown in Fig),5asc  (squares and —0.69 (triangles are well fitted with the straight
increases the value &,, becomes larger. Hence, the degreelines with the slopes;=1.33, 0.99, and 0.66, respectively. Hence,
of the parameter sensitivity of the weakly stable SCAF}, decays with some powey.
increases.

So far, we have characterized the parameter mismatchingifurcation. For all other asymmetric cases with nonzero
effect in terms of the PSEs in the unidirectionally coupledthe transtion to the weak synchronization occurs through the
case with the asymmetry parameter 1. Through Eq(5), first transverse transcritical bifurcation. Depending on
one can easily see that the PSE for a givasc) in the case  whether or not such a transcritical bifurcation induces a con-
of =1 is the same as that for the value[afc/(2—a)] in tact between the saddle fixed-point embedded in the SCA
other coupled 1D maps with<9a<1 in Eq.(1). Thus, the and the repelling fixed point on the basin boundary, a rid-
results of the PSEs given in Fig(al may be converted into dling or bubbling transtion occurs. Thus, a bubbling transi-
those for the case of generalonly by a scale change in the tion occurs through a transcritical noncontact bifurcation for
coupling parameter such that-c/(2— «). For this case, the small «, while a riddling transition takes place through a
bubbling regime for the case af=1 is always transformed transcritical contact bifurcation for the values close do
into a bubbling regime for any other value @f because the =1. For more details, refer to Rdfl2].
bubbling transition occurs through the first transverse super-

crlltlcal fpenod—doublmgr;] blf(ljjgl:_atmn, !nde;)en(:]ently of ]Ehe Il CHARACTERIZATION OF THE BUBBLING

value of . However: the riddling regime for the case @ ATTRACTOR AND THE CHAOTIC TRANSIENT

=1 is transformed into a bubbling or riddling regime de-

pending on the value ok. For example, for the symmetri- We characterize the parameter-mismatching effect on the

cally coupled case o =0, the riddling regime fow=1 is  bubbling and riddling in terms of the PSEs o+ 1.82 in the
transformed into a bubbling regime, because a bubbling trardnidirectionally coupled case af=1. The quantity of inter-
sition occurs through a first trasnverse supercritical pitchforlest in both cases is the average timthat a typical trajectory
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3.8 - . - As cincreases, the value @f decreases, because the average
= laminar length shortens. Note that this LREis associated
with the PSESG as follows. For a givers, consider a trajec-
tory starting from a randomly chosen initial orbit point on
the diagonal. Then, From E@l3) the “average” timer at

1ol % ] which the magnitude of the deviation from the diagonal be-
= ® comes the threshold valug can be obtained
i i . | r~g 1, (18
2
= Thus, the two exponents have a reciprocal relation
(a) ]
0.0 : : : = =1/6. 1
-0.79 -0.73 -0.67 p=1 (19
¢ The reciprocal values of are also plotted in Fig. (@), and
they agree well with the values of. This reciprocal relation
6 ©) ' ' ' is valid also in the riddling regime. For eachwe consider
* an ensemble of trajectories starting from 1000 randomly cho-
| | sen initial points on the diagonal, and obtain the average
= lifetime of the chaotic transients. A trajectory may be re-
garded as having escaped once the magnitude of devigtion
- 3L ® _ from the diagonal becomes larger than a threshold vafue
u such that an orbit point withu|>u? lies sufficiently outside
= the basin of the SCA. Thus, the average lifetimés found
- . . to scale withe as[19]
4
. Te~e ", (20
0 = \ ! \
-2.960 -2.895 -2.830 where v will be referred to the chaotic transient exponent

(CTE). The plot of the CTEv versusc is given in Fig. &b).
Like the bubbling case, the PSE and CTE also have a recip-
FIG. 6. (& The plot of the laminar phase expone$ES »  rocal relation(i.e., v=1/5), as shown in Fig. ().
(open circlegvs c for a=1 anda=1.82. They agree well with the
reciprocals of the PSE&rosses (b) The plot of the chaotic tran-
sient exponent$CTES (open circlep vs ¢ for a=1 anda=1.82.
They agree well with the reciprocals of the PSEmsses We have introduced a quantifier, called the PSE, to quan-
titatively characterize the sensitivity of the SCA with respect
spends near the diagonal. Ass varied from the bubbling or  to the variation of the mismatching parameter in coupled 1D
riddling transition point, such average time becomes shoriaps. Due to the existence of positive local Lyapunov expo-
because the strength of local transverse repulsion of the péents, the weakly stable SCA exhibits a parameter sensitivity,
riodic repellers embedded in the SCA increases. For the case contrast to the case of strongly stable SCA without such
of bubbling, the bubbling attractor is in the laminar phaseparameter sensitivity. In terms of these PSEs, we have also
when the magnitude of the deviation from the diagonal ischaracterized the average laminar length and the average
less than a threshold valug (i.e.,|u,|<u}). Otherwise, it lifetime of the chaotic transient. Finally, we expect that the
is in the bursting phase. Herg is very small compared to method of characterizing the parameter sensitivity of the
the maximum bursting amplitude and it is the maximum de-SCA in terms of the PSEs may be generalized to the coupled
viation from the diagonal that may be acceptable in the consystems consisting of the high-dimensional maps such as the
text of synchronization. For eaah we follow the trajectory Henon map or the oscillators.
starting from the initial conditior{0,0) until 50 000 laminar

IV. SUMMARY

phases are obtained, and then we get the average laminar ACKNOWLEDGMENTS
length 7 (i.e., the average interburst interyéhat scales with . . . . )
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