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Characterization of the parameter-mismatching effect on the loss of chaos synchronization
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We investigate the effect of the parameter mismatch on the loss of chaos synchronization in coupled
one-dimensional maps. Loss of strong synchronization begins with a first transverse bifurcation of a periodic
saddle embedded in the synchronous chaotic attractor~SCA!, and then the SCA becomes weakly stable.
Because of local transverse repulsion of the periodic repellers embedded in the weakly stable SCA, a typical
trajectory may have segments of arbitrary length that have positive local transverse Lyapunov exponents.
Consequently, the weakly stable SCA becomes sensitive with respect to the variation of the mismatching
parameter. To quantitatively characterize such parameter sensitivity, we introduce a quantifier, called the
parameter sensitivity exponent~PSE!. As the local transverse repulsion of the periodic repellers strengthens,
the value of the PSE increases. In terms of these PSEs, we also characterize the parameter-mismatching effect
on the intermittent bursting and basin riddling occurring in the regime of weak synchronization.
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I. INTRODUCTION

In recent years, synchronization in coupled chaotic s
tems has become a field of intensive study. For this cas
chaos synchronization, a synchronous chaotic motion oc
on an invariant subspace of the whole phase space@1–4#.
Particularly, this chaotic synchronization has attracted m
attention, because of its potential practical application in
cure communication@5#.

In the ideal case a synchronous chaotic attracter~SCA!
may exist on the invariant subspace. If such a SCA is sta
against a perturbation transverse to the invariant subspa
may become an attractor in the whole phase space. S
transverse stability of the SCA is intimately associated w
transverse bifurcations of periodic saddles embedded in
SCA @6–12#. If all periodic saddles are transversely stab
the SCA becomes asymptotically stable~i.e., Lyapunov
stable and attracting in a topological sense!. For this case, we
have ‘‘strong’’ synchronization. However, as the coupling p
rameter passes through a threshold value, a periodic sa
first becomes transversely unstable through a local bifu
tion. After this first transverse bifurcation, a dense set
locally repelling ‘‘tongues’’ opens from the transversely u
stable repeller and its preimages, and hence, trajectories
ing into these tongues are locally repelled from the invari
subspace. Thus, loss of strong synchronization begins
such a first transverse bifurcation, and then we have ‘‘we
synchronization. For this case, intermittent bursting or ba
riddling may occur depending on the existence of an abs
ing area, controlling the global dynamics, inside the basin
attraction@10–12#. In the presence of an absorbing area, a
ing as a bounded trapping vessel, locally repelled trajecto
from the invariant subspace are restricted to move within
absorbing area, and exhibit transient intermittent burst
from the invariant subspace@13,14#. On the other hand, in
the absence of such an absorbing area, the locally repe
trajectories will go to another attractor~or infinity!, and
hence the basin of attraction becomes riddled with a de
1063-651X/2002/65~2!/026210~7!/$20.00 65 0262
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set of repelling tongues, belonging to the basin of anot
attractor~or infinity! @15#.

However, in a real situation a small mismatch between
subsystems that destroys the invariant subspace is una
able. Hence, we investigate the effect of the parameter m
matching on the loss of synchronization in two coupled o
dimenaional~1D! maps with an invariant diagonal. In th
regime of weak synchronization, transversely unstable p
odic repellers are embedded in the SCA. Hence, when a t
cal trajectory visits the repelling tongues that open from su
repellers and their preimages, it experiences local transv
repulsion from the diagonal. As a result, the typical trajecto
may have segments exhibiting positive local~finite time!
transverse Lyapunov exponents, even if the averaged tr
verse Lyapunov exponent is negative. Because of the e
tence of these positive local transverse Lyapunov expone
the weakly stable SCA becomes sensitive with respect to
variation of the mismatching parameter. This is in contras
the case of the strong synchronization that has no such
rameter sensitivity. Here we introduce a quantifier, called
parameter sensitivity exponent~PSE!, that measures the ‘‘de
gree’’ of the parameter sensitivity in Sec. II. Hence, the P
becomes a quantitative characteristic of the weakly sta
SCA, as the phase sensitivity exponent quantitatively ch
acterizes the degree of the strangeness of the strange no
otic attractors that appear typically in the quasiperiodica
forced systems@16#. As the coupling parameter is varie
away from the point of the first transverse bifurcation, su
cessive transverse bifurcations of periodic saddles oc
Hence, the value of the PSE increases because local tr
verse repulsion of the periodic repellers embedded in
SCA becomes more and more strong, and it tends to infi
as c approaches the blow-out bifurcation point where t
averaged transverse Lyapunov exponent becomes zero.
result of this blow-out bifurcation, the weakly stable SC
becomes transversely unstable@17#.

In terms of these PSEs, the effect of the parameter m
matching on the intermittent bursting and basin riddling
characterzied in Sec. III. For the case of bursting, any sm
©2002 The American Physical Society10-1
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ALEXEY JALNINE AND SANG-YOON KIM PHYSICAL REVIEW E 65 026210
mismatching results in a continual sequence of intermitt
bursts, called the attractor bubbling, where the long period
nearly synchronous state~laminar phase! is randomly inter-
rupted by the short-time burst~burst phase!. On the other
hand, for the case of riddling, the SCA on the diagona
transformed into a chaotic transient. In both cases, the q
tity of interest is the average time that a trajectory spe
near the diagonal~i.e., the average interburst interval and t
average lifetime of the chaotic transient! @14#. As the PSE
increases, local transverse repulsion of the periodic repe
embedded in the SCA becomes strong, and hence the
age timet that a typical trajectory spends near the diago
becomes short. Note thatt may be quantitatively characte
ized in terms of the PSEs. Finally, we give a summary
Sec. IV.

II. CHARACTERIZATION OF THE PARAMETER
SENSITIVITY OF THE SCA

We investigate the parameter-mismatching effect on
weak synchronization in two coupled 1D maps@12#

T:H xn115F~xn ,yn!5 f ~xn ,a!1~12a!cg~xn ,yn!,

yn115G~xn ,yn!5 f ~yn ,b!1c g~yn ,xn!,
~1!

wherexn and yn are state variables of the subsystems a
discrete timen, local dynamics in each subsystem with
control parameterp(p5a,b) is governed by the 1D map
f (x,p)512px2, c is a coupling parameter between th
two subsystems, andg(x,y) is a coupling function of the
form,

g~x,y!5y22x2. ~2!

For a50, the coupling becomes symmetric, while for no
zero a (0,a<1) it becomes asymmetric. The extrem
case of asymmetric coupling witha51 corresponds to the
unidirectional coupling. In such a way,a tunes the degree o
asymmetry in the coupling.

For the case of identical 1D maps~i.e.,a5b), there exists
an invariant synchronization line,y5x, in the x-y phase
space. However, in the presence of a mismatching betw
the two 1D maps, the diagonal is no longer invariant. To ta
into consideration such a mismatching effect, we introduc
small mismatching parameter« in the coupled 1D maps o
Eq. ~1! such that

b5a2«, ~3!

and consider an orbit$(xn ,yn)% starting from an initial point
on the diagonal~i.e., x05y0). As the strength of the loca
transverse repulsion from the diagonal increases, the S
becomes more and more sensitive with respect to the va
tion of «. Such parameter sensitivity of the SCA for«50
may be characterized by calculating the derivative of
transverse variableun(5xn2yn), denoting the deviation
from synchronization, with respect to«,
02621
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]un11

]« U
«50

5
]xn11

]« U
«50

2
]yn11

]« U
«50

5F ]F~xn ,yn!

]xn
U

«50

2
]G~xn ,yn!

]xn
U

«50
G]xn

]« U
«50

1F ]F~xn ,yn!

]yn
U

«50

2
]G~xn ,yn!

]yn
U

«50
G]yn

]« U
«50

2
]G~xn ,yn ,«!

]« U
«50

. ~4!

Using Eq.~1!, we may obtain a recurrence relation

]un11

]« U
«50

5@ f x~xn* ,a!2~22a!ch~xn* !#
]un

]« U
«50

1 f a~xn* ,a!, ~5!

wheref x and f a are the derivatives off with respect tox and
a, $(xn* ,yn* )% is the synchronous orbit withxn* 5yn* for
«50, andh(x) is a reduced coupling function defined b
@18#

h~x![
]g~x,y!

]y U
y5x

. ~6!

Hence, starting from an initial orbit point (x0* ,y0* ) on the
diagonal, we may obtain derivatives at all points of the or

]uN

]« U
«50

5 (
k51

N

RN2k~xk* ! f a~xk21* ,a!1RN~x0* !
]u0

]« U
«50

,

~7!

where

RM~xm* !5 )
i 50

M21

@ f x~xm1 i* ,a!2~22a!c h~xm1 i* !#. ~8!

One can easily show that the factorRM(xm* ) is associated
with a local (M -time! transverse Lyapunov exponen
sM

T (xm* ) of the SCA that is averaged overM synchronous
orbit points starting fromxm* as follows:

sM
T ~xm* !5

1

M
lnuRM~xm* !u. ~9!

Thus,RM(xm* ) becomes a local~stability! multiplier that de-
termines local sensitivity of the motion during a finite tim
M. As M→`, sM

T approaches the usual transver
Lyapunov exponentsT that denotes the average exponent
rate of divergence of an infinitesimal perturbation transve
to the SCA. Since]u0 /]«u«5050, Eq. ~7! reduces to

]uN

]« U
«50

5SN~x0* ![(
k51

N

RN2k~xk* ! f a~xk21* ,a!. ~10!
0-2
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In the case of weak synchronization, there are transver
unstable periodic repellers embedded in the SCA. Whe
typical trajectory visits neighborhoods of such repellers a
their preimages, it has segments experiencing local repul
from the diagonal. Thus, the distribution of local transve
Lyapunov exponentssM

T for a large ensemble of trajectorie
and largeM may have a positive tail. For the segments o
trajectory exhibiting a positive local Lyapunov expone
(sM

T .0), the local multipliersRM @56exp(sM
T M)# can be

arbitrarily large, and hence the partial sumSN may be arbi-
trarily large. This implies unbounded growth of the deriv
tives]uN /]«u«50 asN tends to infinity, and consequently th
weakly stable SCA may have a parameter sensitivity.

As an example, we consider the SCA that exists in
interval of cb,l@.22.963#,c,cb,r@.20.677# for a
51.82 in the unidirectionally coupled case ofa51. When
the coupling parameterc passes throughcb,l or cb,r , the
SCA becomes transversely unstable through a blow-out
furcation, and then a complete desynchronization occurs
the regime of synchronization, a strongly stable SCA ex
for ct,l@.22.789#,c,ct,r@.20.850#. For this case of
strong synchronization, there is no parameter sensitivity,
cause all periodic saddles embedded in the SCA are tr
versely stable. Hence, in the presence of a small param
mismatching« the strongly stable SCA becomes slightly pe
turbed, as shown in Figs. 1~a! and 1~b!. However, when the
coupling parameterc passesct,r andct,l , bubbling and rid-
dling transitions occur through the first transverse bifur
tions of periodic saddles, respectively. For this case,
weakly stable SCA has a parameter sensitivity, becaus
local transverse repulsion of the periodic repellers embed
in the SCA. Thus, however small the parameter mismatch
«, a persistent intermittent bursting, called the attractor b
bling, occurs in the regime of bubbling (ct,r,c,cb,r), as
shown in Figs. 1~c! and 1~d!. On the other hand, in the re
gime of riddling (cb,l,c,ct,l), the weakly SCA with a
riddled basin for«50 is transformed into a chaotic transie
with a finite lifetime in presence of a parameter misma
@see Fig. 1~e!#. As c is varied away fromct,l or ct,r , trans-
versely unstable periodic repellers appear successively in
SCA through transverse bifurcations. Then the degree of
parameter sensitivity of the SCA increases, because of
increase in the strength of local transverse repulsion of
periodic repellers. To quantitatively characterize the para
eter sensitivity of the SCA, we iterate Eqs.~1! and~5! start-
ing from an initial orbit point (x0* ,y0* ) on the diagonal and
]u0 /]«u«5050, and then we obtain the partial sumSN(x0* )
of Eq. ~10!. The quantitySN becomes very intermittent, a
shown in Fig. 2~a!. However, looking only at the maximum

gN~x0* !5 max
0<n<N

uSn~x0* !u, ~11!

one can easily see the boundedness ofSN . Figure 2~b! shows
the functionsgN for both cases of strong and weak synch
nization. For the case of strong synchronization withc5
21.5, gN grows up to the largest possible value of t
derivative u]u/]«u along the SCA and remains constant f
all subsequent iterations. Thus,gN saturates for largeN and
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hence the strongly stable SCA has no parameter sensiti
On the other hand, for the case of weak synchronization w
c520.7, gN grows unboundedly and exhibits no satur
tion. Consequently, the weakly stable SCA has a param
sensitivity.

The growth rate of the functiongN(x0* ) with time N rep-
resents a degree of the parameter sensitivity, and can be
as a quantitative characteristic of the weakly stable SC
However,gN(x0* ) depends on a particular trajectory. To o
tain a representative quantity, we consider an ensembl
randomly chosen initial points (x0* ,y0* ) on the diagonal, and
take the minimum value ofgN with respect to the initial orbit
points

GN5min
x0*

gN~x0* !. ~12!

Figure 3 shows a parameter sensitivity functionGN for c
520.7. Note thatGN grows unboundedly with some powe

FIG. 1. Effect of the parameter mismatch with«50.001 on the
chaos synchronization fora51.82 in the unidirectionally coupled
case ofa51. ~a! A slightly perturbed SCA and~b! the evolution of
the transverse variableun(xn2yn) vs the discrete timen for the
case of strong synchronization withc521.5. ~c! A bubbling attrac-
tor and ~d! the evolution ofun vs n for the bubbling case ofc5
20.7. For the riddling case ofc522.91 the SCA with a basin
~gray region! riddled with a dense set of tongues leading to div
gent orbits~white region! for «50 is transformed into a chaotic
transient~black dots! for «50.001 as shown in~e!.
0-3
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ALEXEY JALNINE AND SANG-YOON KIM PHYSICAL REVIEW E 65 026210
GN.Nd. ~13!

Here the valued.2.58 is a quantitative characteristic of th
parameter sensitivity of the SCA, and we call it the PSE.
each regime of bubbling or riddling, we vary the couplin
parameter from the bubbling or riddling transition point
the blow-out bifurcation point and obtain the PSEs. For o
taining satisfactory statistics, we consider 100 ensembles
eachc, each of which contains 100 randomly chosen init
orbit points and choose the average value of the 100 P
obtained in the 100 ensembles. Figure 4~a! shows the plot of
such PSEs versusc. Note that the PSEd monotonically in-
creases asc is varied away from the bubbling or riddlin
transition point, and tends to infinity asc approaches the
blow-out bifurcation point. This increase in the parame
sensitivity of the SCA is caused by the increase in
strength of local transverse repulsion of the periodic repel
embedded in the SCA. After the blow-out bifurcation, t
weakly stable SCA is transformed into a transversely
stable chaotic saddle exhibiting an exponential param
sensitivity as shown in Fig. 4~b!. Thus, a complete desyn
chronization occurs.

We also discuss the distribution of positive local (M -time!
transverse Lyapunov exponents, causing the parameter

FIG. 2. ~a! Intermittent behavior of the partial sumuSNu for a
51, a51.82, andc520.7. ~b! Two functionsgN looking only at
the maximum forc521.5 ~strong synchronization! and c520.7
~weak synchronization!. These results are obtained for the trajecto
starting from the initial orbit point (x0* ,y0* )5(0.5,0.5) in the case
of a51 anda51.82.
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sitivity of the weakly stable SCA. As an example, we co
sider the case ofa51.82 andc520.7 and obtain the prob
ability distribution PM(s) of local (M -time! transverse
Lyapunov exponents, wherePM(s)ds is the probability that
sM

T has a value betweens and s1ds, by taking a long
trajectory dividing it into segments of lengthM and calculat-
ing sM

T in each segment. Figure 5~a! shows the distributions
PM(s) for M5100, 500, and 900. In the limitM
→`, PM(s) approaches the delta distributiond(s2sT),
wheresT is the usual averaged transverse Lyapunov ex
nent. However, for finiteM there is a variancê (sM

T

2^sM
T &)2& @[*2`

` PM(s)(s2^sM
T &)2ds# from the aver-

age valuê sM
T & @[*2`

` PM(s)sds#. As shown in Fig. 5~b!
this variance approaches zero inversely withM as follows:

^~sM
T 2^sM

T &!2&5
2D

M
. ~14!

Here the value ofD(.0.054) is the same, independently
the values ofc for a51.82 in the regime of weak synchro
nization. One remarkable feature of the distribution is t
slow decay of the positive tail of the distribution. In order
quantify this, we define the fraction of positive loc
Lyapunov exponents as

FM
15E

0

`

PM~s!ds. ~15!

These fractionsFM
1 ’s are plotted forc520.7, 20.695, and

20.69 in Fig. 5~c!. Note that for each value ofc, the fraction
FM

1 exhibits a power-law decay,

FM
1;M 2h. ~16!

Here the values of the exponenth decreases asc increases.
Consequently, for any case of weak synchronization a tra
tory has segments of arbitrarily longM that have positive

FIG. 3. Parameter sensitivity functionGN for a51, a51.82,
andc520.7 that takes the minimum value ofgN in the ensemble
containing 100 randomly chosen initial orbit points on the diagon
0-4
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CHARACTERIZATION OF THE PARAMETER- . . . PHYSICAL REVIEW E 65 026210
local Lyapunov exponents, and then the partial sumSN in Eq.
~10! may be arbitrarily large. Thus, the weakly stable SC
may have a parameter sensitivity. As shown in Fig. 5~c!, asc
increases the value ofFM

1 becomes larger. Hence, the degr
of the parameter sensitivity of the weakly stable SC
increases.

So far, we have characterized the parameter mismatc
effect in terms of the PSEs in the unidirectionally coupl
case with the asymmetry parametera51. Through Eq.~5!,
one can easily see that the PSE for a given (a,c) in the case
of a51 is the same as that for the value of@a,c/(22a)# in
other coupled 1D maps with 0<a,1 in Eq. ~1!. Thus, the
results of the PSEs given in Fig. 4~a! may be converted into
those for the case of generala only by a scale change in th
coupling parameter such thatc→c/(22a). For this case, the
bubbling regime for the case ofa51 is always transformed
into a bubbling regime for any other value ofa, because the
bubbling transition occurs through the first transverse su
critical period-doubling bifurcation, independently of th
value ofa. However, the riddling regime for the case ofa
51 is transformed into a bubbling or riddling regime d
pending on the value ofa. For example, for the symmetri
cally coupled case ofa50, the riddling regime fora51 is
transformed into a bubbling regime, because a bubbling t
sition occurs through a first trasnverse supercritical pitchf

FIG. 4. ~a! The plot of the PSEsd vs c in the regime of weak
synchronization fora51 anda51.82.~b! The exponential param
eter sensitivity for the trajectory starting from the initial poi
(0.5,0.5) fora51, a51.82, andc520.66.
02621
ng
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k

bifurcation. For all other asymmetric cases with nonzeroa,
the transtion to the weak synchronization occurs through
first transverse transcritical bifurcation. Depending
whether or not such a transcritical bifurcation induces a c
tact between the saddle fixed-point embedded in the S
and the repelling fixed point on the basin boundary, a r
dling or bubbling transtion occurs. Thus, a bubbling tran
tion occurs through a transcritical noncontact bifurcation
small a, while a riddling transition takes place through
transcritical contact bifurcation for the values close toa
51. For more details, refer to Ref.@12#.

III. CHARACTERIZATION OF THE BUBBLING
ATTRACTOR AND THE CHAOTIC TRANSIENT

We characterize the parameter-mismatching effect on
bubbling and riddling in terms of the PSEs fora51.82 in the
unidirectionally coupled case ofa51. The quantity of inter-
est in both cases is the average timet that a typical trajectory

FIG. 5. ~a! Three probability distributionsPM of the local
M-time Lyapunov exponents forM5100, 500, and 900 whena
51, a51.82, andc520.7. ~b! The plot of ^(sM

T 2^sM
T &)2&M2/2

vs M when a51, a51.82, andc520.7. Note that the variance
decreases inversely withM. ~c! Plots of log10FM

1(FM
1 : fraction of

the positive local transverse Lyapunov exponent! vs
2 log10M . Note that the three plots forc520.7 ~circles!, 20.695
~squares!, and 20.69 ~triangles! are well fitted with the straight
lines with the slopesh51.33, 0.99, and 0.66, respectively. Henc
FM

1 decays with some powerh.
0-5
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ALEXEY JALNINE AND SANG-YOON KIM PHYSICAL REVIEW E 65 026210
spends near the diagonal. Asc is varied from the bubbling or
riddling transition point, such average time becomes sh
because the strength of local transverse repulsion of the
riodic repellers embedded in the SCA increases. For the
of bubbling, the bubbling attractor is in the laminar pha
when the magnitude of the deviation from the diagona
less than a threshold valueub* ~i.e., uunu,ub* ). Otherwise, it
is in the bursting phase. Hereub* is very small compared to
the maximum bursting amplitude and it is the maximum d
viation from the diagonal that may be acceptable in the c
text of synchronization. For eachc, we follow the trajectory
starting from the initial condition~0,0! until 50 000 laminar
phases are obtained, and then we get the average lam
lengtht ~i.e., the average interburst interval! that scales with
« as @19#

t;«2m, ~17!

where m will be referred to the laminar phase expone
~LPE!. The plot of the LPEm versusc is shown in Fig. 6~a!.

FIG. 6. ~a! The plot of the laminar phase exponents~LPEs! m
~open circles! vs c for a51 anda51.82. They agree well with the
reciprocals of the PSEs~crosses!. ~b! The plot of the chaotic tran-
sient exponents~CTEs! ~open circles! vs c for a51 anda51.82.
They agree well with the reciprocals of the PSEs~crosses!.
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As c increases, the value ofm decreases, because the avera
laminar length shortens. Note that this LPEm is associated
with the PSEd as follows. For a given«, consider a trajec-
tory starting from a randomly chosen initial orbit point o
the diagonal. Then, From Eq.~13! the ‘‘average’’ timet at
which the magnitude of the deviation from the diagonal b
comes the threshold valueub* can be obtained

t;«21/d. ~18!

Thus, the two exponents have a reciprocal relation

m51/d. ~19!

The reciprocal values ofd are also plotted in Fig. 6~a!, and
they agree well with the values ofm. This reciprocal relation
is valid also in the riddling regime. For eachc we consider
an ensemble of trajectories starting from 1000 randomly c
sen initial points on the diagonal, and obtain the avera
lifetime of the chaotic transients. A trajectory may be r
garded as having escaped once the magnitude of deviatioun

from the diagonal becomes larger than a threshold valueuc*
such that an orbit point withuuu.uc* lies sufficiently outside
the basin of the SCA. Thus, the average lifetimetc is found
to scale with« as @19#

tc;«2n, ~20!

where n will be referred to the chaotic transient expone
~CTE!. The plot of the CTEn versusc is given in Fig. 6~b!.
Like the bubbling case, the PSE and CTE also have a re
rocal relation~i.e., n51/d), as shown in Fig. 6~b!.

IV. SUMMARY

We have introduced a quantifier, called the PSE, to qu
titatively characterize the sensitivity of the SCA with respe
to the variation of the mismatching parameter in coupled
maps. Due to the existence of positive local Lyapunov ex
nents, the weakly stable SCA exhibits a parameter sensiti
in contrast to the case of strongly stable SCA without su
parameter sensitivity. In terms of these PSEs, we have
characterized the average laminar length and the ave
lifetime of the chaotic transient. Finally, we expect that t
method of characterizing the parameter sensitivity of
SCA in terms of the PSEs may be generalized to the coup
systems consisting of the high-dimensional maps such as
Hénon map or the oscillators.

ACKNOWLEDGMENTS

S.Y.K. thanks W. Lim for his assistance in the numeric
computations and A. J. thanks Professor S. P. Kuznetsov
fruitful discussions. This work was supported by the Int
disciplinary Research Program of the Korea Science and
gineering Foundation under Grant No. R01-1999-00021
by the CRDF Grant No. REC-006.
0-6



-

.

ni

o

.

J.

.

v.
.

r-

ev.
e
.

CHARACTERIZATION OF THE PARAMETER- . . . PHYSICAL REVIEW E 65 026210
@1# H. Fujisaka and T. Yamada, Prog. Theor. Phys.69, 32 ~1983!.
@2# A. S. Pikovsky, Z. Phys. B: Condens. Matter50, 149 ~1984!.
@3# V. S. Afraimovich, N. N. Verichev, and M. I. Rabinovich, Ra

diophys. Quantum Electron.29, 795 ~1986!.
@4# L. M. Pecora and T. L. Carroll, Phys. Rev. Lett.64, 821

~1990!.
@5# K. M. Cuomo and A. V. Oppenheim, Phys. Rev. Lett.71, 65

~1993!; L. Kocarev, K. S. Halle, K. Eckert, L. O. Chua, and U
Parlitz, Int. J. Bifurcation Chaos Appl. Sci. Eng.2, 973~1992!;
L. Kocarev and U. Parlitz, Phys. Rev. Lett.74, 5028~1995!; N.
F. Rulkov, Chaos6, 262 ~1996!.

@6# P. Ashwin, J. Buescu, and I. Stewart, Nonlinearity9, 703
~1996!.

@7# Y.-C. Lai, C. Grebogi, J. A. Yorke, and S. C. Venkatarama
Phys. Rev. Lett.77, 55 ~1996!.

@8# V. Astakhov, A. Shabunin, T. Kapitaniak, and V. Anishchenk
Phys. Rev. Lett.79, 1014~1997!.

@9# Yu. L. Maistrenko, V. L. Maistrenko, A. Popovich, and E
Mosekilde, Phys. Rev. E57, 2713~1998!; 60, 2817~1999!; O.
Popovych, Yu. L. Maistrenko, E. Moskilde, A. Pikovsky, and
Kurths, Phys. Lett. A275, 401 ~2000!; Phys. Rev. E63, 036
201 ~2001!.

@10# Yu. L. Maistrenko, V. L. Maistrenko, A. Popovich, and E
Mosekilde, Phys. Rev. Lett.80, 1638~1998!; G.-I. Bischi and
L. Gardini, Phys. Rev. E58, 5710~1998!.
02621
,

,

@11# S.-Y. Kim and W. Lim, Phys. Rev. E63, 026 217~2001!; S.-Y.
Kim, W. Lim, and Y. Kim, Prog. Theor. Phys.105, 187~2001!.

@12# S.-Y. Kim and W. Lim, Phys. Rev. E64, 016 211~2001!.
@13# P. Ashwin, J. Buescu, and I. Stewart, Phys. Lett. A193, 126

~1994!; J. F. Heagy, T. L. Carroll, and L. M. Pecora, Phys. Re
E 52, 1253~1995!; S. C. Venkataramani, B. R. Hunt, E. Ott, D
J. Gauthier, and J. C. Bienfang, Phys. Rev. Lett.77, 5361
~1996!.

@14# S. C. Venkataramani, B. R. Hunt, and E. Ott, Phys. Rev. E54,
1346 ~1996!.

@15# J. C. Alexander, J. A. Yorke, Z. You, and I. Kan, Int. J. Bifu
cation Chaos Appl. Sci. Eng.2, 795~1992!; E. Ott, J. C. Som-
merer, J. C. Alexander, I. Kan, and J. A. Yorke, Phys. R
Lett. 71, 4134 ~1993!; J. C. Sommerer and E. Ott, Natur
~London! 365, 136~1993!; E. Ott, J. C. Alexander, I. Kan, J. C
Sommerer, and J. A. Yorke, Physica D76, 384 ~1994!; J. F.
Heagy, T. L. Carroll, and L. M. Pecora, Phys. Rev. Lett.73,
3528 ~1994!.

@16# A. Pikovsky and U. Feudel, Chaos5, 253 ~1995!.
@17# E. Ott and J. C. Sommerer, Phys. Lett. A188, 39 ~1994!; Y.

Nagai and Y.-C. Lai, Phys. Rev. E56, 4031~1997!.
@18# S.-Y. Kim and H. Kook, Phys. Rev. A46, R4467~1992!.
@19# S.-Y. Kim, W. Lim, and Y. Kim, Prog. Theor. Phys.~to be

published!.
0-7


