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Effect of asymmetry on the loss of chaos synchronization
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We investigate the effect of asymmetry of coupling on the bifurcation mechanism for the loss of synchro-
nous chaos in coupled systems. It is found that only when the symmetry-breaking pitchfork bifurcations take
part in the process of the synchronization loss for the case of symmetric coupling, the asymmetry changes the
bifurcation scenarios of the desynchronization. For the case of weak coupling, pitchfork bifurcations of asyn-
chronous periodic saddles are replaced by saddle-node bifurcations, while for the case of strong coupling,
pitchfork bifurcations of synchronous periodic saddles transform to transcritical bifurcations. The effects of the
saddle-node and transcritical bifurcations for the weak asymmetry are similar to those of the pitchfork bifur-
cations for the symmetric-coupling case. However, with increasing the “degree” of the asymmetry, their
effects change qualitatively, and eventually become similar to those for the extreme case of unidirectional
asymmetric coupling.
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[. INTRODUCTION exhibit intermittent bursting from the invariant subspace. For
this case, the transverse Lyapunov exponent of the SCA is
In recent years, the phenomenon of chaos synchronizatiomegative, and hence, the burst will tend to stop. However, in
has become a field of intensive research. When coupled cha-real situation, noise of small intensity results in a continual
otic systems attain a state of synchronization, a synchronousequence of intermittent bursts, called the attractor bubbling
chaotic motion occurs on an invariant subspace of the wholgl1]. Thus, in the presence of an absorbing area, a bubbling
phase spackl—3]. In particular, this chaotic synchronization transition occurs through the first transverse bifurcation.
has attracted much attention, because of its potential practHowever, if such an absorbing area, enclosing the SCA, does
cal application in secure communicatip. not exist, the locally repelled trajectories will go to another
An important question in this field concerns stability of attractor(or infinity). Consequently, the basin of attraction
chaos synchronization with respect to a perturbation transsecomes riddled with a dense set of repelling tongues, be-
verse to the invariant subspacd. If it is transversely stable longing to the basin of another attractor infinity) [12], and
(i.e., its transverse Lyapunov exponent is negafitteen the  hence, the SCA is no longer a topological attractor, because
synchronous chaotic state on the invariant subspace becomies basin does not contain any of its open neighborhood.
an attractor in the whole phase space. Such transverse stalilowever, it becomes a Milnor attractor in a measure-
ity of the synchronous chaotic attract@®CA) is intimately  theoretical sense, because it attracts a set of initial conditions
associated with transverse bifurcations of periodic saddlewith positive Lebesgue measufd3]. Note that for this
embedded in the SCP6—10]. If all periodic saddles embed- riddled case, a substantial improvement in the accuracy of
ded in the SCA are transversely stable, the SCA becomese initial conditions yields only a small decrease in the un-
asymptotically stabléi.e., Lyapunov stable and attracting in certainty of the final state. Thus, in the absence of an absorb-
the usual topological sensé-or this case, we have “strong” ing area, a riddling transition takes place via the first trans-
synchronization. However, as the coupling parameter passegrse bifurcation.
through a threshold value, a periodic saddle embedded in the With further variation of the coupling parameter, trans-
SCA first becomes transversely unstable through a local biversely stable periodic saddles embedded in the SCA are
furcation. After this first transverse bifurcation, a dense set ofransformed into transversely unstable repellers due to suc-
locally repelling “tongues” opens from the transversely un- cessive transverse bifurcations, which intensify the bubbling
stable repeller and its preimages, and hence, trajectories fakind riddling effects. Eventually, the “weights” of the peri-
ing in these tongues are repelled from the invariant subspacedic saddles and repellers become balanced, and then a
Thus, loss of strong synchronization begins with the firstblow-out bifurcation occurgl4]. As a result of this blow-out
transverse bifurcation, and then we have “weak’” synchroni-transition, the SCA becomes transversely unstébde, its
zation. transverse Lyapunov exponent becomes pogitisad then
However, the global effect of the first transverse bifurca-complete desynchronization occurs. The global effect of this
tion (i.e., the fate of locally repelled trajectories through theblow-out bifurcation also depends on the existence of an
first transverse bifurcationdepends on the existence of an absorbing area. In the presence of the absorbing area, the
absorbing area, controlling the global dynamics, inside thélow-out bifurcation becomes gradual. Hence, a new asyn-
basin of attractio8—10|. If there exists an absorbing area, chronous chaotic attractor, bounded to the absorbing area,
acting as a bounded trapping vessel, locally repelled trajecappears through a supercriti¢dabnhysteri¢ blow-out bifur-
tories are restricted to move within the absorbing area, andation, and then it exhibits an intermittent bursting, called the
on-off intermittency[15], where the long period of nearly
synchronous statéoff state is occasionally interruppted by
*Electronic address: sykim@cc.kangwon.ac.kr the short-time large-order bur&in state¢. However, without
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the absorbing area, an abrupt collapse of the synchronizedcreased, diverse bifurcation effects, that are different from
state occurs through a subcritidddysterio blow-out bifur-  those fora=0, occur.

cation, and then typical trajectories starting near the invariant Let us consider two asymmetrically coupled identical 1D
subspace are attracted to another distant attrdotoinfin-  mapsT,

ity). — _ _
For the study of chaos synchronization, two coupled iden- .[X”l_ f(x)+ (1= a)e[f(y) = T(x)],
Yi+1= F(y) +c[f(x) =y ],

tical one-dimensional1D) maps, exhibiting period dou- '
blings, are usually used as a model. In this paper, we inve vherex; andy, are state variables of the subsystems at a
discrete timet, local dynamics in each subsystem is gov-

tigate the effect of the asymmetry of coupling on the loss o
chaos synchronization in a system of two asymmetrlcallyerned by the 1D map(x)=1—ax?, a is the control param-
eter of the 1D mapc is a coupling parameter, and (0

coupled 1D maps that contain a parameiduning the “de-
gree” of asymmetry from the symmetric-coupling case ( _ , _ 1y s 4 parameter tuning the degree of asymmetry. The
ases ofx=0 and 1 correspond to the symmetric and unidi-

=0) [7] to the unidirectional-coupling case:& 1) [10]. For
many—c?upled If:ase, dtk:|sn2<|rc11dlof as;fllm\:vnetnc;alrla/ (\j\?ituhpler ectional couplings, respectively. Note that this asymmetri-
fe?rgsél ad?reucstilf)?l yogspiopggagoglg]pi/vm(l)e iig?e(;siig thep e(SaIIy coupled mapT has an invariant synchronization line
asymmetry parameter from O to 1 .we investigate how the y=x irre_s pe_ctive_ly of the symmetry. If an orbit lies on this_

. . ; synchronization line, then it is called a synchronous orbit;
asymmetry affects the bifurcation mechanisms for the SYNStherwise it is called an asynchronous orbit
chronization Iqss. It_ is thus found that the asymmetry We also note that the coupled mdpis noninvertible
changes the bifurcation scenarios for the desynchronlzatloBecause its Jacobian determinant BaY (DT is the Jaco'-
pnly whe_n the symmetry-breaking pitchfork blfurcatlon_s a"€hian matrix of T) becomes zero along the critical curves
involved in the process of the loss of chaos synchronlza'uorll_ —{(x.y) e R2x=0 or y=0}. A finite number of seg- '
for the symmetric-coupling case. In Sec. Il, the bifurcationr,noentS c'>¥imat é$_ (k= 1)/2 ' ) of thecritical curves gf
scenarios are investigated with the decreasing of the co 9es-k RO

pling parameter. For this weak-coupling case, pitchfork biELO can be used to define the boundary of an absorbing area

furcations of asynchronous periodic saddles are found to b§ with the properties thali) A is trapping(i.e., trajectories
i

(1)

replaced with saddle-node bifurcations. As the asymmetr at enterA cannotffleavel it ?ga)nandh(iii)supderattraﬁjzvtilrg
o ) i.e., every point sufficiently close to the boundary.4fwi
parametew is increased from 0, the type of the saddle nOdeH;mp into A after a finite number of iteration§17]. Further-

bifurcations changes, and diverse effects occur. On the othé i . .
ore, boundaries of an absorbing area can be also obtained

hand, for the strong-coupling case, pitchfork bifurcations of "

synchronous periodic saddles are found to be transformelay the union of segments of critical curves and portions of

into the transcritical bifurcations in Sec. lll. If such a tran- UnStable manifolds of unstable periodic orbits. For this case,

scritical bifurcation induces a contact of the SCA with its ** 'iv.({‘ﬁn.ed a m_|xectlhabsortt)|nlg area. th led
basin boundary, then a riddling transition occurs; otherwise Ith Increasing the control parametgrthe coupled map

only a bubbling transition takes place. In such a way, theT exhibits an infinite sequence of period-doubling bifurca-

H i H n
effect of the transcritical bifurcations also depends on theiﬁogs1 of synchr(zjqous attrai;[ors with Fl’eF'Od &
types. As a rule, the effects of the saddle-node and transcriti- 012 - - ), _ending —at the accumulation  point

cal bifurcations for smalk are similar to those of the pitch- gw E)I: 1.401 152' 'I' ),din some r_egior} (;]fc. ;-gi periﬁd-
fork bifurcations in the symmetric-coupling case=0) [7], oubling cascade leads to creation of the on the syn-

although the underlying bifurcation mechanisms are differ-clronization line. With further increase affrom a.., a se-

ent. However, with the further increasing of a significant duence of band-merging bifurcations of the SCA take place.

change in the bifurcation effects occurs, and eventually th he set ofa values. yleldlng .SCA’S in the rangeat '2.]
effects become similar to those in the unidirectionally orms a fat fractal with a positive Lebesgue measure, riddled

_ - o .~ with a dense set of windows of synchronous periodic attrac-
g;%?lle\?. caseq=1) [10]. Finally, a summary is given in tors [18]. Hereafter, without loss of generality, we fix the
value ofa asa= 1.6, where a single-band SCA exists on the
synchronization line. Its transverse stability is determined by
Il. BIFURCATION SCENARIOS FOR THE CASE a transverse Lyapunov exponent,
OF WEAK COUPLING

1 N
In this section, with the decreasing of the coupling param- o, =In[1-(2—a)c|+ lim N >, In[2ax]. 2
eter, we investigate the effect of the asymmetry of coupling No—e =1
on the bifurcation scenarios of the loss of chaos synchronigor the symmetric-coupling case =0, the following pro-
zation. For this weak-coupling case, it is found that due tocess of desynchronization was foufi]l. As the coupling
the asymmetry, subcritical pitchfork bifurcations of asyn-parameterc is decreased througt—=0.209 . . ., thesaddle
chronous periodic saddles are replaced by the saddle-nogied point embedded in the SCA first becomes transversely

bifurcations, while other bifurcations, such as period-ynstable through a supercritical period-doubling bifurcation
doubling bifurcations, are preserved. When the asymmetryynen its transverse Floquéttability) multiplier,

parameter is small, the bifurcation effect is similar to that
for the symmetric-coupling casex&0). However, asy is N =[1-(2—a)c]f'(x*) 3
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- from a=0, we investigate the bifurcation scenarios of the
e loss of chaos synchronization. It is thus found that the asym-
s metry affects the bifurcation mechanism only for the case of
/ the pitchfork bifurcation of an asynchronous periodic saddle,
v while other bifurcations such as period-doubling bifurcations
N are preserved. For the symmetric coupling case Q), an
S asynchronous periodic saddlelenoted by the horizontal
S~ dashed lingis transformed into an attract¢denoted by the
@) solid line) by emitting a pair of asynchronous saddlee-
noted by the dashed linesvith the same period through a
Pt (reverse subcritical pitchfork bifurcation, as shown in Fig.
- 1(a). However, asa is increased froma=0, the upper-
- dashed branch for the case @0 becomes split from the
T middle solid and lower-dashed branches. As a result, the
T K/—, asynchronous periodic saddle varies smoothly along the split
N upper branch without any bifurcation, and a pair of asyn-
~. chronous saddle and stable ndd#ractoy appears along the
~~-— former middle and lower branches via a saddle-node bifur-
cation, as shown in Fig.(). In such a way, for smalk the
(®) subcritical pitchfork bifurcation of an asynchronous periodic
FIG. 1. Schematic bifurcation diagrams fa& a=0 and (b) saddle is replaced with a saddle-node bifurcation, giving rise

>0 in the weak-coupling case. Here, the solid and dashed line® the birth of a pair of new asynchronous saddle and stable

represent the periodic attractor and saddle, respectively. When tHeode. However, as is further increased, the type of the
asymmetry is introducedi.e., «#0), the (revers¢ subcritical ~Saddle-node bifurcation may be changed into another one,

pitchfork bifurcation of an asynchronous periodic saddleder0  leading to the birth of a pair of new asynchronous saddle and
is transformed into a smooth shift of the asynchronous periodiginstable nodérepelley, and then its effect becomes qualita-
saddle(without any bifurcation and a saddle-node bifurcation, cre- tively different from that fora=0, as will be seen below.
ating a new pair of asynchronous saddle and stable (atttactoy. Figure 2 shows the phase diagram in the-c plane.
For other details, see the text. When passing the supercritical period-doubling bifurcation
line D4, the synchronous saddle fixed point first becomes
passes through-1, wherex* [=(—1++1+4a)/2a] is transversely unstable, and an asynchronous period-2 saddle
the fixed point of the 1D maf(x). After this first transverse is born. After this first transverse bifurcation, the SCA is
bifurcation, the synchronous saddle fixed point is transsurrounded by a mixed absorbing area, acting as a bounded
formed into a repeller, and an asynchronous period-2 saddigapping vessel, and hence, locally repelled trajectories near
appears in its vicinity. For this case, along with segments othe SCA exhibit transient intermittent bursting from the syn-
the critical curved_; andL,, portions of the unstable mani- chronization line. Thus, a bubbling transition occurs through
folds of the asynchronous period-2 saddle form a boundaryhe first transverseperiod-doubling bifurcation. Note that
of a mixed absorbing area, surrounding the SCA. Hencethis period-doubling bifurcation mechanism for the bubbling
locally repelled trajectories near the SCA cannot leave théransition and its effect are the same as thosenfel0, in-
mixed absorbing area, and they exhibit transient intermittendependently of the value at. With further decrease d,
bursting from the synchronization line. Thus, this first trans-the SCA becomes transversely unstable through a blow-out
verse(period-doubling bifurcation induces a bubbling tran- bifurcation at the lineB. However, the type of this blow-out
sition. However, ag is further decreased, the asynchronousbifurcation depends on the value @f As mentioned above,
period-2 saddle becomes stabilized fa=0.157 ..., with increasinge from 0, the subcritical pitchfork bifurction
through a(reverse subcritical pitchfork bifurcation when its of the asynchronous period-2 saddle &o+ 0 is replaced by
maximal Floquetstability) multiplier decreases throughl  the saddle-node bifurcation, which occurs on the heavy solid
[see the schematic bifurcation diagram in Figa)l Then, line S,. As shown in the inset of Fig. 2, for Qa<a;
the basin of the SCA becomes riddled with a dense set of=0.0078), a pair of asynchronous saddle and stable node
repelling tongues leading to the asynchronous period-2 atwith period 2 appears through the saddle-node bifurcation
tractor. Note that this kind of stabilization of an asynchro-before the blow-out bifurcation. Consequently, the basin
nous periodic saddle is the only mechanism of the riddlinglshown in gray of the SCA becomes riddled with a dense set
transition for the case af=0. With further decrease of the of tongues, belonging to the basishown in dark gray of
coupling parametec, the SCA loses its transverse stability the newly born asynchronous period-2 attradttenoted by
for c=0.155 through a blow-out bifurcation. After this sub- the solid circle, which is shown in Fig. 3 forxr=0.005 and
critical blow-out bifurcation, the SCA transforms to a chaotic c=0.1555. Note that the stable manifolds of the asynchro-
saddle with a positive transverse Lyapunov exponent, andous period-2 saddlesdenoted by the open circle and
the system is asymptotically attracted to the asynchronousguare bound the main tongue, emanating from the synchro-
period-2 attractor. nous repelling fixed pointdenoted by the triangleHere, an
From now on, with increasing the asymmetry parameteasynchronous period-2 saddeguare is born from the syn-
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FIG. 3. Riddled basin of the SCA faz=0.005 andc=0.1555
after the appearance of a new asynchronous period-2 attractor via a
saddle-node bifurcation. Here, the square denotes an asynchronous
period-2 saddle, born from the synchronous fixed p@isnoted by

FIG. 2. Phase diagram in the—c plane for the case of weak the triangle, through the first transverse period-doubling bifurca-
coupling. A bubbling transition occurs on the lily through the tion. A pair of asynchronous sadd{edenoted by the open cirgle
supercritical period-doubling bifurcation of the saddle fixed pointand attractor(denoted by the solid circlewith period 2 appears
embedded in the SCA. With further decreasecpthe SCA be-  through a saddle-node bifurcation. As a result, the basin of the SCA
comes transversely unstable through a blow-out bifurcation on théshown in gray becomes riddled with a dense set of tongues, be-
line B. However, dynamical behaviors after the blow-out bifurca- longing to the basinlshown in dark gray of the asynchronous
tion vary depending on the value ef particularly because of the period-2 attractor.
diverse effect of the saddle-node bifurcation on the cuBye(q
=2", n=1.2,...). Thetype of the saddle-node bifurcation &
changes at the point where the period-doubling bifurcationDige
of an asynchronous periaglorbit touches thes, line. Thus, a pair

0.0

node (attractoj with period 2 appears inside the asynchro-
nous chaotic attractor via the saddle-node bifurcation. After

of asynchronous saddle and stablmstablg node with periodg this break up, the asymptotic state changes from the asyn-
appears when crossing the solidbtted part of S, . Note also that chronous chaotic state to an asynchronous period-2 (stete

an interior crisis occurs when the line, denoted by the triangles, i§10ted by the solid circle as sh.own in Fig. @) for «=0.2
crossed. For other details, see the text. andc=0.14, where an open circle denotes an asynchronous

period-2 saddle born via the saddle-node bifurcation. Note

chronous saddle fixed poifiriangle through the first trans- that this destruction effect of the saddle-node bifurcation is
verse(period-doubling bifurcation, while another asynchro- in contrast with the riddling effect fow<<«;. This kind of
nous period-2 saddléopen circle appears along with the destruction through the appearance of an asynchrnous
asynchronous period-2 attract@olid circle via the saddle- period-2 attractor occurs only when passing the heavy solid
node bifurcation. All the other tongues are preimages of thigart of theS, curve fora; <a<a, (=0.3924)(see Fig. 2
main tongue. Thus, the effect of the saddle-node bifurcatiofNote that fora= a5, a period-doubling bifurcation lin®,
becomes the same as that of the subcritical pitchfork bifurof an asynchronous period-2 orbit touches the saddle-node
cation fora=0 (i.e., a riddling transition occurs through the bifurcation line S,, and then the type of the saddle-node
appearance of an asynchronous periodic attrackmr this  bifurcation changes from the unstable-stable pair bifurcation
case, when crossing the lif& the SCA loses its transverse to the unstable-unstable pair bifurcation. That is, when pass-
stability via a subcritical blow-out bifurcation, and then the ing the heavy dotted part of tH# curve fora> «,, a pair of
system is asymptotically attracted to the asynchronougsynchronous saddle and unstable ndpelley with period
period-2 attractor. 2 appears. We also note that a saddle-node bifurcation line

For a> a,, the saddle-node bifurcation @& occurs after S, giving rise to the birth of a pair of asynchronous saddle
the blow-out bifurcation(see the inset of Fig.)2 Hence, and stable node with period 4, emanates from the contact
when passing the linB, an asynchronous chaotic attractor, point of the S, line with the D, line. In such a way, with
bounded to the absorbing area, appears through a supercriticreasinga higher-order saddle-node and period-doubling
cal blow-out bifurcation and exhibits a typical intermittent bifurcations of periody (q=2", n=2,3,4 . ..) orbit occur
bursting, called the on-off intermittency. However, the sub-on theS, andD curves, respectively. Thus, the destruction
sequent fate of the asynchronous chaotic attractor depend$ the asynchronous chaotic attractor continues to take place
on the value ofw. Figure 4a) shows the asynchronous cha- through the appearance of an asynchronous periattrac-
otic attractor fora=0.2 andc=0.15, born via the super- tor when passing the solid part of ti& curve until @
critical blow-out bifurcation. However, when passing 8¢ =a* (=0.6673) (see Fig. 2 For a>a*, the type of all
line, the asynchronous chaotic attractor becomes broken ugaddle-node bifurcations on thg§, curves becomes the
suddenly, because a pair of asynchronous saddle and stahlastable-unstable pair bifurcations, giving rise to the birth of
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FIG. 4. Destruction of an asynchronous chaotic attractor through FIG. 5. Appearance of a small asynchronous chaotic attractor
the appearance of an asynchronous period-2 attractor inside tBrough a(reversg interior crisis fora=0.85. (a) Large asynchro-
asynchronous chaotic attractor via a saddle-node bifurcation for nous chaotic attractor bounded by the segments of the critical
=0.2. (a) The asynchronous chaotic attractor bounded by segmentgurvesL; and L, for c=0.18, born via a supercritical blow-out
of the critical curved.; andL, for c=0.15, born via a supercritical bifurcation. (b) Small asynchronous chaotic attractor for0.14
blow-out bifurcation.(b) Asynchronous period-2 attract@denoted ~ born through areverse interior crisis, mediated by a saddle-node
by the solid circle and its counterpart sadd{denoted by the open bifurcation onS,. Note that the dotted and dashed lines bound the
circle) for c=0.14 after the destruction of the asynchronous chaotioegion, where unstable asynchronous periodic orbits lie inside the
attractor. absorbing area bounded by segments of the critical curyesnd

L,. Here, unstable asynchronous orbit points are plotted up to pe-

asynchronous saddle-repeller pairs, and hence, destructiggd 18- The asynchronous period-2 sadglenoted by the solid
circle) is embedded in the asynchronous chaotic attractor and the
phenomena no longer occur. i e
* . asynchronous period-2 repell@enoted by the open cirglées on
For a>a™, a large asynchronous chaotic attractor, bornh i is furth hi h I
ia the blow-out bifurcation, is transformed into a small cha—t e dotted line. A is further dec.reased’ this asynchronous sma

Vlz.i h h ' interi - diated b chaotic attractor is transformed into a large one through another
otic attractor t r°“9 a rgverse. INterior crisiS, mediated by rjor crisis occurring when crossing the dashed line, where the
the saddle-node bifurcation. Figurgab shows the large

asynchronous period-2 orhidenoted by the squareborn through

asynchronous chaotic attractor, bounded by the segments @f first transverse period-doubling bifurcation of the synchronous

the critical curved.; andL, for «=0.85 andc=0.18. When  fixed point (represented by the triangléies. For other details, see
passing the dotte8, curve forc=0.1476, along with a pair the text.

of asynchronous saddle and repeller with period 2, born

through the saddle-node bifurcation, a small two-piece asyndashed line. Note that these two lines are bounding a region,
chronous chaotic attractor appears, as shown in Fig.f6r ~ where asynchronous unstable periodic origiienoted by
c=0.14. Note that the asynchronous period-2 saddke  dotg lie, inside the absorbing area. As we increase the cou-
noted by the solid circleis embedded in the small asynchro- pling parametec from 0.14 in a reverse way, the asynchro-
nous chaotic attractor, and the asynchronous period-2 repatous period-2 saddlesolid circle on the asynchronous cha-
ler (denoted by the open cirdldies on the dotted line. In otic attractor approaches the asynchronous period-2 repeller
fact, all higher-order asynchronous perigdaddles and re- (open circle on the dotted boundary line, and they coalesce
pellers, born via the saddle-node bifurcationsyn also lie  at their saddle-node bifurcation point£0.1476) onsS,.

on the asynchronous chaotic attractor and the dotted linéfter that, a sudden increase in the size of the asynchronous
respectively. On the other hand, the asynchronous period-€haotic attractor occurs through the interior crisis mediated
orbit (denoted by the squareborn via the first transverse by the saddle-node bifurcation. A similar expansion of the
period-doubling bifurcation of the synchronous fixed pointasynchronous chaotic attractor also takes place through an-
(denoted by the triangleand its descendant orbits lie on the other interior crisis when decreasing the coupling parameter
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¢ from 0.14. With the decrease of the asynchronous cha- -
otic attractor becomes larger in a horizontal direction, and it e
collides with the dashed boundary line when passing the cri- s

sis line, denoted by the triangles in Fig. 2. After that, the ’

small asynchronous chaotic attractor transforms to a large
asynchronous chaotic attractor, covering the whole absorbing N
area. Note that this interior-crisis curve touches$heurve So

for = a3 (=0.8965) (see Fig. 2 Hence, fora>az, no S~
interior crises occur when passing ti8 curve. Conse- @)

guently, the large asynchronous chaotic attractor, born via

the blow-out bifurcation, is preserved without any qualitatve o —-=—"77777
change when passing ti$ curve, as in the unidirectionally I
coupled caseq=1) [10]. N

Ill. BIFURCATION SCENARIOS FOR THE CASE “““‘____:"‘\'; """"""""""""""""""

OF STRONG COUPLING \\\\\
In this section, we investigate the effect of the asymmetry s
of coupling on the bifurcation scenarios of desynchronization ®)

with i_ncreasing.the coupling parameter. For this strong- £ 6. schematic bifurcation diagrams f@@ «=0 and (b)
coupling case, it is found that the asymmetry changes thg - g in the strong-coupling case. Here, the dashed and dotted lines

supercritical pitchfork bifurcation of a synchronous periodicepresent the periodic saddle and repeller, respectively. When the
saddle into a transcritical bifurcation. However, the effect ofasymmetry is introducedi.e., a#0), the supercritical pitchfork

the transcritical bifurcation varies depending on whether Obhifurcation of a Synchronous periodic saddle fer=0 is trans-
not it induces a contact between the SCA and its basiformed into a transcritical bifurcation of the synchronous periodic
boundary. If such a contact does not occur, a bubbling transaddle and a saddle-node bifurcation, creating a new pair of asyn-
sition occurs, while when a contact is induced, a riddlingchronous saddle and unstable n¢opelley. For other details, see
transition takes place. For small, the transcritical bifurca- the text.
tion does not induce any contact, and hence, its effect be-
comes similar to that in the symmetrically coupled case ( the SCA becomes transversely unstable through a subcritical
=0). However, asa is further increased, the type of the blow-out bifurcation forc=0.845, and then the system is
transcritical bifurcation is changed into another one inducingasymptotically attracted to one of the asynchronous period-1
a contact, and then the effect of the transcritical bifurcatiomattractors.
becomes qualitatively different from that far=0. We now investigate the bifurcation scenarios of the syn-
For the case of the symmetric coupling0), the fol-  chronization loss with increasing the asymmetry parameter
lowing desynchronization process was foud. The syn- from «=0. It is thus found that the bifurcation mechanism
chronous saddle fixed point embedded in the SCA first befor the case of the pitchfork bifurcation of a synchronous
comes transversely unstable via a supercritical pitchforkperiodic saddle is affected by the asymmetry, while other
bifurcation when its minimal Floquet multiplier increases bifurcations such as period-doubling bifurcations are con-
through+1 forc=0.79Q . ... As aresult of this first trans- served. For the symmetric coupling case<0), a synchro-
verse bifurcation, the synchronous saddle fixed point is transaous periodic saddl&enoted by the horizontal dashed )ine
formed into a repelling fixed point, and a conjugate pair ofis transformed into a repellédenoted by the dotted lindy
asynchronous period-1 saddle appears in its neighborhoaahmitting a conjugate pair of asynchronous saddteEshoted
[see the schematic bifurcation diagram in Figa)g For this by the dashed lingswith the same period through a super-
case, the SCA is surrounded by a mixed absorbing arearitical pitchfork bifurcation, as shown in Fig.(®. How-
bounded by union of segments of the unstable manifolds oéver, with increasing the asymmetry parameter fr@m0,
the asynchronous period-1 saddle and portions of the criticahe upper branch for the case a0 is smoothly shifted
curvesL, andL,. Hence, locally repelled trajectories near backward from the bifurcation point, and then two new
the SCA cannot leave the mixed absorbing area, and thelgranches, corresponding to the asynchronous periodic saddle
exhibit transient intermittent bursting. Thus, the first trans-(dashed ling and repeller(dotted ling, appear through a
verse (pitchfork) bifurcation induces a bubbling transition. saddle-node bifurcation, as shown in Figh)6 Note that
With further increase of, the asynchronous period-1 saddleswith increasing the coupling parameter, the asynchronous
are stabilized through subcritical period-doubling bifurca-periodic repeller(dotted ling approaches the synchronous
tions forc=0.842 . .. . Consequently, the basin of the SCA periodic saddlg¢horizontal dashed lineand eventually they
becomes riddled with a dense set of tongues, belonging tooalesce at a bifurcation point. After that, they exchange
the basins of the stabilized asynchronous period-1 attractorsnly their stability[i.e., the saddlérepelle) transforms to a
This riddling transition is similar to the weak-coupling caserepeller(saddl¢]. Through this transcritical bifurcation, oc-
for «=0, although the underlying bifurcation mechanismscurring in asymmetric dynamical systems with some con-
for the stabilization are different. As is further increased, straint[19], the synchronous periodic saddle loses its trans-
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1.75 - T - chronous period-1 repeller on a basin boundary, the tran-
scritical bifurcation may induce a contact between the SCA
and its basin boundary, and then an absorbing area, sur-
rounding the SCA, disappears. Consequently, when crossing
the heavy dotted part of th€; curve, a direct transition to
riddling occurs, while when its heavy solid part is passed, a
bubbling transition takes place because an absorbing area,
surrounding the SCA, is preserved. Thus, fhecurve is
divided into four partgtwo heavy solid parts and two heavy
dotted parts The values ofw at their boundary points are
a, (=0.3846), a5 (=0.6187), andyg (=0.6667).

For O<a<a,, When crossing thes; curve, a pair of
asynchronous period-1 saddldenoted by the solid down
triangle and unstable nodéepeller, denoted by the open
down triangle appears, as shown in Fig& for «=0.3 and
c=0.923. Together, with segments of the critical curlgs
andL,, portions of the unstable manifolds of the asynchro-

” nous saddle fixed poir(solid down trianglé form a bound-
ary of a mixed absorbing area, surrounding the SCA. Note

FIG. 7. Phase diagram before the blow-out bifurcation in thethat the asynchronous period-1 repellepen down triangle
a—c plane for the strong-coupling case. The synchronous saddlkes strictly inside the absorbing aréiee., it does not lie on
fixed point first becomes transversely unstable through a transcritany basin boundajy As c is increased, the asynchronous
cal bifurcation on the liné;. The effect of the transcritical bifur- period-1 repellefopen down triangleapproaches the syn-
cation varies depending on whether or not it induces a contact bezhronous period-1 saddlelenoted by the open up triangle
tween the SCA and its basin boundary. An asynchronous period-dmbedded in the SCA. Eventually, they coalesce and a tran-
repeller, which is a counterpart of the synchronous period-1 saddigcritical bifurcation occurs foc=0.93Q . . . . Whenpassing
for the transcritical bifurcation, lies on a basin boundary of the SCAthe transcritical bifurcation point, the asynchronous period-1
in the regions hatched with vertical and horizontal lines. Hencerepeller(open down trianglemoves down off the synchro-

when crossing the dotted part @f, a riddling transition through .- 2401 line. and exchanges stability with the synchronous
the transcritical contact bifurcation occurs, while when its solid part_ _ . ’ ; PR
is crossed, a bubbling transition takes place, because an absorbiFl)erIOd 1 saddi¢open up trianglk as shown in Fig. &) for

area surrounding the SCA is preserved. Thus, Theurve is di- Cg; 0.943. Since the mixed ab_sorbil_’lg area is still surroundin_g
vided into four partgtwo heavy solid parts and two heavy dotted the S_CA,_IocaIIy repelled ftrajectorles near the SCA exhlb't
party. Other diverse dynamical phenomena also occur on th ransient intermittent burstlng.f.rom t_he syr)chronlzatlon “.ne.'
saddle-node bifurcation cun®, period-doubling bifurcation curve hus, the effect of the transcritical bifurcation becomes simi-

D,, Hopf bifurcation curveH,, boundary-crisis curveigenoted by lar to that of the supercritical pitchfork bifurcation far

o 125

0.75

the open triangles and circlesand blow-out bifurcation curve. =0 (i-e., @ bubbling transition occurswith further increase

For further details, see the text. of ¢, the asynchronous saddle fixed point becomes stabilized
through a subcritical period-doubling bifurcation when

verse stability, when its minimal Floquet multiplier increasescrossing theD, line for c=0.945 . ... Consequently, the

through+ 1. However, the effect of this transcritical bifur- basin(shown in gray of the SCA becomes riddled with a
cation depends on whether or not it induces a contact bedense set of tongues, belonging to the bashown in dark
tween the SCA and its basin boundary, as will be seen begray) of the stabilized asynchronous period-1 attra¢salid
low. down trianglg, which is shown in Fig. &) for c=0.992.
Figure 7 shows the phase diagram before the blow-oulote that this stabilization mechanism is the same as that for
bifurcation in thea—c plane. As mentioned above, far  a=0.
>0 the synchronous saddle fixed point first becomes trans- When « increases throughy,, the D, curve crosses the
versely unstable through a transcritical bifurcation, occurringl'y curve (see Fig. 7. Consequently, fo> a, the stabili-
on the lineT;, where the synchronous saddle fixed pointzation of the asynchronous period-1 sad@elid down tri-
exchanges stability with an asynchronous repelling fixecangle through a subcritical period-doubling bifurcation oc-
point, born through a saddle-node bifurcation occurring orcurs before the first transversgtanscritical bifurcation on
the lineS;. Note that these transcritical and saddle-node bithe T, curve. As a result of this stabilization, the asynchro-
furcation linesT; andS, emanate from the pitchfork bifur- nous period-1 repellgiopen down trianglelies on the basin
cation point fora=0. The type of the transcritical bifurca- (shown in dark grayboundary of the stabilized asynchro-
tion of the synchronous saddle fixed point depends omous period-1 attractofsolid down trianglg as shown in
whether or not its “counterpart’(asynchronous repelling Fig. (@ for «=0.48 andc=1.03. For this case, a mixed
fixed poin} lies on a basin boundary. Note that the asynchro-absorbing area, formed by the union of segments of the un-
nous period-1 repeller is lying on a basin boundary in thestable manifolds of the asynchronous period-1 repeller and
regions hatched with vertical and horizontal lines. Onlyportions of the critical curvek; andL,, is surrounding the
when the synchronous period-1 saddle collides with an asyrSCA. Asc is increased, the asynchronous period-1 repeller

016211-7



SANG-YOON KIM AND WOOCHANG LIM PHYSICAL REVIEW E 64 016211

2 () T T T 2 T T T
a a
L 4 - L1\. -
> 0 — -~ 0| -
' L. !
i - LV -
\-.'__ _.:-/‘.
-2 1 | L =D 1 | 1
-1.5 0.0 1.5 -1.5 0.0 1.5
X X
2 T I T
(b)
> 0 -
-2 1 | L
-1.5 0.0 1.5

-1.5 0.0 1.5

FIG. 8. Bubbling transition through the transcritical bifurcation 1 9. Riddling transition through the transcritical contact bi-
that does not Tduce any contact between the SCA and its basifycation fore=0.48. Before the transcritical bifurcation, the asyn-
boundary fora=0.3. Here, the asynchronous period-1 saddle and,,nqus period-1 saddlelenoted by the solid down trianglee-
repeller, born through the saddle-node bifurcationSn are de- o mes stabilized through a subcritical period-doubling bifurcation,

noted by the soI!d and open _down triangles, respectively, an_d the g hence, the asynchronous period-1 repéflenoted by the open
synchronous period-1 saddle is represented by the open up trianglg.,,n triangle, which is the counterpart of the synchronous
The situations before and just after the transcritical bifurcation of

i ° ; = period-1 saddldrepresented by the open up triangles on the
the synchronous period-1 saddle are depictedajnfor c=0.923  oqin houndary. The situations before and just at the transcritical
and in(b) for c=0.943, respectively(c) Basin(shown in gray of

. ] bifurcation of the synchronous period-1 saddle are depicte@)in
the SCA forc=0.992, riddled with a dense set of tongues, belong-t,. -—1 03 and in(b) for c=1.040 . . . ,, respectively.(c) Basin

ing_to the basir(shown_in dark gra)_/of the stabilized asynchrc_nr_mus (shown in gray of the SCA forc=1.1, riddled with a dense set of
per!od-l attractor_(solld_ down ftrianglg through a subcritical tongues, belonging to the basishown in dark grayof the asyn-
period-doubling bifurcation. chronous chaotic attractor, developed from the asynchronous

period-1 attractofsolid down triangle
(open down-triangle approaches the synchronous period-1

saddle(open up-trianglg embedded in the SCA, and hence, moves down off the basin boundary, and exchanges stability
the absorbing area shrinks. Eventually, fo£1.04Q ..., a  with the synchronous period-1 saddlepen up triangle
transcritical contact bifurcation between the synchronousiowever, the SCA continues to contact its basin boundary at
period-1 saddle and the asynchronous period-1 repeller oa new synchronous repelling fixed poif@pen up triangle

the basin boundary occurs, and then the absorbing area dids a result of this transcritical bifurcation, the basin of the
appear, as shown in Fig.(t9. Note that this transcritical SCA becomes riddled with a dense set of tongues, belonging
bifurcation induces a contact between the SCA and its basito the basin of the asynchronous period-1 attra¢smlid
boundary. When passing the transcritical bifurcation pointdown trianglg. Thus, this transcritical bifurcation induces a
the asynchronous period-1 repellepen down triangle riddling transition. However, near the riddling transition
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~~_ > 0} .
(a)
&
AN
\\_ -2 . L -
- 1.5 0.0 15
————————————'—‘\-;—----------'-'------------------ X
\\\\\ FIG. 11. SCA surrounded by a large absorbing area dor
T~ =0.68 andc=1.17. Note that the asynchronous period-1 repeller
(b) (denoted by the open down trianglevhich acts as the counterpart

FIG. 10. Types of the saddle-node bifurcation, associated WithOf the synchronous period-1 saddigenoted by the open up tri-

the transcritical bifurcation, for large (>0.666). Solid, dashed, angle for the transcritical bifurcation, lies strictly inside the absorb-

. ing area.
and dotted lines denote the attractor, saddle, and repeller, respec-g

tively. The saddle-node bifurcation gives rise to the birth of a pairhorn through a saddle-node bifurcation, is transformed into a
of asynchronous saddle afa} stable or(b) unstable node. For both repeller via a supercritical period-doubling bifurcation,
cases, the asynchronous saddle is transformed into a repeller, actipghich then becomes a counterpart of the synchronous
as the counterpart of the synchronous saddle for the transcritic%eriod_l saddle for the transcritical bifurcation. This is in
bifurcation, through a period-doubling bifurcation. contrast to the case af<0.666(belowP,), where the asyn-
chronous period-1 repeller, born through a saddle-node bi-
point, the tongues are too narrow to be seen. With furthefyrcation, is involved in the transcritical bifurcation as a
increase ofc, the asynchronous period-1 attract@olid  counterpart of the synchronous period-1 saddle.
down triangle is transformed into a quasiperiodic attractor  The asynchronous period-1 repellers, associated with the
through a Hopf bifurcation when crossing thig curve, and  transcritical bifurcations, lie on the basin boundary of an
then an asynchronous chaotic attractor is developed from thgsynchronous period-1 attractésr an attractor developed
quasiperiodic attractor. During this process, the repellingrom it) in the region hatched with vertical lines in Fig. 7.
tongues become large to be seen, as shown in k@y.f&r  Here, the asynchronous period-1 attractor appears through
c=1.1. Note that this kind of a direct transition to riddling stabilization of the asynchronous period-1 saddle born
takes place when passing the heavy dotted part ofTthe through the saddle-node bifurcation fer0.666, while for
curve fora,<a<as, in contrast to the case ef<a, where  ¢>0.666, it is just the attractor born through the saddle-
only a bubbling transition occurs through the transcriticalnode bifurcation on the dotted part 8f. For this case, the
bifurcation onT;. SCA is surrounded by a small mixed absorbing drea.,

As «a is increased fromws, the Dy curve touches th&,  see Fig. 8a)]. For a> as, the asynchronous chaotic attractor
curve at the pointP; [=(0.6660,1.0999), and then the developed from the asynchronous period-1 attractor disap-
type of the saddle-node bifurcation changese Fig. 7. On  pears with its basin through a boundary crisis when crossing
the solid part ofS, (below P,), the saddle-node bifurcation the line denoted by the open triangles in Fig. 7. Note that this
gives rise to the birth of a pair of asynchronous period-lhoundary-crisis curve ends at the poy. Thus, when en-
saddle and unstable nodepelley, while on the dotted part tering the shaded region through the boundary-crisis curve,
of S, (aboveP,), it leads to the birth of a pair of asynchro- the whole basin becomes occupied only by the SCA, sur-
nous period-1 saddle and stable no@etractoj [see the rounded by a large absorbing area, which is shown in Fig. 11
schematic bifurcation diagram in Fig. (B))]. Note also thata for «=0.68 and c=1.17. Note that the asynchronous
supercritical period-doubling bifurcatiodotted line D;  period-1 repellerfopen down triangle: counterpart of the
emanates fron;, in contrast with the subcritical solid part synchronous period-1 saddlepen up trianglgfor the tran-
of D; below P;. At the right end point P, scritical bifurcation lies strictly inside the absorbing area
[=(0.9635,1.1161) of the dotted part ofS;, where the (i.e., it no longer lies on any basin boundariience, when
curve H,; touches the curv&,, the type of the saddle-node passing the solid part &f; for as<a< ag (left boundary of
bifurcation changes again, i.e., on the solid parBpfibove the shaded regignthe transcritical bifurcation does not in-
P,, a pair of asynchronous period-1 saddle and unstablduce any contact between the SCA and its basin boundary.
node (repelley is born[see also the schematic bifurcation After this transcritical bifurcation, locally repelled trajecto-
diagram in Fig. 1()]. As shown in Figs. 1@&) and(b), for ries near the SCA exhibit transient intermittent bursting from
a>0.666 (above P;) the asynchronous period-1 saddle, the synchronization lingi.e., a bubbling transition occurs
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i i FIG. 13. Phase diagram after the transcritical bifurcation in the
| a—c plane for the case of strong coupling. As a result of the
-2 transcritical bifurcation at the lin€,, a riddling transition occurs in
1.5 0)'(0 1.5 the horizontally-hatched region, while a bubbling transition takes

place in the vertically hatched region. Hence, when crossing the
dotted and solid parts of the cur& subcritical and supercritical

2 © T T ¥ blow-out bifurcations occur, respectively. Note also that the period-
doubling bifurcation curve®,, the Hopf bifurcation curve$,

r 1 and the boundary-crisis curvédenoted by the open and solid tri-
angles come in pairs from the period-doubling bifurcation, Hopf
> 0| - bifurcation, and the crisis points far=0, respectively. For further
details, see the text.

boundary of the SCA, surrounded by a small mixed absorb-
-2 ! . ! ing area. This kind of situation occurs in the whole region
-1.5 0.0 1.5 hatched with horizontal lines in Fig. 7. With the increasing
X of the coupling parametes, the asynchronous period-1 re-
FIG. 12. Riddling transition through the transcritical contact bi- Peller (open down  triangle approaches the synchronous
furcation for «=0.8. (a) SCA surrounded by a mixed absorbing period-1 saddl€open up trianglg the mixed absorbing area
area forc=1.27. Note that the asynchronous period-1 repétler ~ shrinks, and eventually a transcritical contact bifurcation oc-
noted by the open down trianglewhich is the counterpart of the curs when crossing the upper dotted part ©f for c
synchronous period-1 saddleepresented by the open up triangle =1.317 ..., asshown in Fig. 120). As a result of this
lies on the basin boundargh) At the transcritical bifurcation point  transcritical bifurcation, the basin of the SCA becomes
(c=1.317...), thesaddle(open up triangle and the repeller riddled with a dense set of repelling tongues, leading to the
(open down trianglecoalesce, and thus, the absorbing area disapdivergent trajectories, because the mixed absorbing area, sur-
pears.(c) Basin (shown in gray of the SCA forc=1.4, riddled  rounding the SCA, disappears, which is shown in Figcl2
with a dense set of tongues, belonging to the bestiown in whit¢  for c=1 4. Note that this mechanism for the riddling transi-
of the attractor at infinity. tion through the transcritical contact bifurcation on the upper
dotted part ofT, is similar to that in the unidirectionally-
because the large absorbing area, surrounding the SCA, e®upled cased¢=1) [10].
preserved. From now on, we study the dynamical behaviors after the
However, when crossing the upper boundary of the théubbling and riddling transitions. Figure 13 shows the phase
shaded region, denoted by the open circles in Fig. 7, theiagram after the transcritical bifurcation in tlhec plane.
large absorbing area disappears suddenly through a contaks explained above, a direct transition to riddling occurs
with the basin boundary of the SCA. As a result of this crisisthrough a transcritical contact bifurcation when crossing the
of the absorbing area, the bagghown in whit¢ of the at- dotted part ofT,, because the absorbing area, surrounding
tractor at infinity penetrates the bagshown in gray of the  the SCA, disappears. On the other hand, when the solid part
SCA, as shown in Fig. ¥3) for «=0.8 andc=1.27. Note  of T is crossed, a bubbling transition takes place, because an
that the asynchronous period-1 repeflepen down triangle: absorbing area is surrounding the SCA. However, with fur-
counterpart of the synchronous period-1 saddfgen up tri-  ther increase o€, a riddling transition also occurs through
angle for the transcritical bifurcatiohlies on the basin stabilization of an asynchronous period-1 saddle, born by the
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2 : T : repeller through the transcritical bifurcation in Figb§ also
becomes stabilized. These asynchronous period-1 attractors,
stabilized at the upper and lower branchesDgf become
unstable when passing the upper and lower branchés, of
respectively, and then generally quasiperiodic attractors ap-
pear. With further increase af asynchronous chaotic attrac-
tors, developed from the asynchronous quasiperiodic attrac-
tors, born at the upper and lower branchedHef disappear
through boundary crises at the uppeolid triangle and
lower (open triangl¢ crisis curves, respectively. As an ex-
ample, consider the case of=0.75. When crossing the
curveB for c=1.352, an abrupt collapse of the synchronous
5 , , , state occurs through a subcritical blow-out bifurcation, and
-15 0.0 1.5 then typical trajectories, starting near the synchronization
X line, are divergent to infinity. However, as the upper branch

of D is passed foc=1.647 . . ., astabilized asynchronous

FIG. 14. Large asynchronous chaotic attractor, born via a super- _ .~ S . . .
critical blow-out bifurcation fore=0.5 andc=1.14, which covers period-1 attractor appears with its basin. With further in

the whole absorbing area, bounded by the segments of the critic%lrease (_)fc, this asynchronous perlgd-; at.traCtor IS trans-
ormed into an asynchronous quasiperiodic attractor when
curves,L,, L,, andLs.

the upper branch dfl; is crossed at=1.784 . . .. Finally,
saddle-node bifurcation or§,, via a subcritical period- the asynchrono_us qhaptic attractor, Qeveloped from the asyn-
doubling bifurcation on the lower branch ;. Thus, the Cchronous quasiperiodic attractor, disappears suddenly with
basin of the SCA becomes riddled in the region hatched witiS Pasin through a boundary crisis, occurring ¢er 1.869 at
horizontal lines, while an absorbing area is surrounding thdhe curve(denoted by the solid triangles

SCA in the region hatched with vertical lines. Eventually, IV. SUMMARY

when crossing the blow-out bifurcation cur& the SCA

becomes transversely unstable, and then it is transformefd \:Veihha\t/)_ef mvet;ngated EOV‘.’ thefas;t/rr:wnlwetw Off couphllng af-
into a chaotic saddlé.e., a complete loss of chaos synchro- ects the briurcation mechanism for the 10Ss of synchronous
chaos with varying the asymmetry parameter in two coupled

nization occurs However, the type of the blow-out bifurca- D it has b hus found that th lead
tion also depends on the existence of an absorbing ared. maps. It has been thus found that the asymmetry leads to

When crossing the lower- and upper-dotted part8othe the change in the bifurcation scenarios of the synchroniza-
state of the system is asymptotically attracted to an asynchr%On loss only for the case of symmetry-breaking pitchfork

nous period-1 attractgior an asynchronous attractor devel- .|furcat]lons. Fohr the Weak'(_:o(l;.p“ng dcdf:}se, p|tchfor:< b'fé”c"’?'h
oped from it and the attractor at infinity, respectively, 1ONS of asynchronous periodic saddles are replaced wit

through a subcritical blow-out bifurcation, because there i ?‘dd'e'“o‘?'e bifu'rcations, while for the st.ron'g—coupling case,
no absorbing area. Note also that the blow-out bifurcation itchfork bifurcations of synchronous periodic saddles trans-

nearae=0 and 1 are similar to those in the cases of symmet-orm to thg '_[ranscritical bifurcations. As the asymmetry pa-
ric coupling (@=0) [7] and unidirectional couplinge=1) rametere is increased from O to 1, the effects of the saddle-

[10], respectively. However, when crossing the solid part 01n°de and transcritical bifurcations vary depgnding on their
B a{n asynchronous chaoti,c attractor spreads to the who pes. For example, the effect of the transcritical bifurcation
absorbing area through a supercritical blow-out bifurcation epends on whe'gher or not it induces a contact betvv_een the
as shown in Fig. 14 for=0.5 andc=1.14. This asynchro- SCA and its basin boundary. Generally, the bifurcation ef-

nous chaotic attractor makes a contact with its basin bouncf—ectsl_fOr smalla_ gre 7s|m|:ar: to r:h%se n dthle_ syrE_rPetrlc—
ary on the curve, denoted by the open circles in Fig. 13, an§oupP'ng case ¢=0) [7], although the underlying bifurca-

then it disappears with its basin through a boundary crisis. fuon mechanisms are d|ffer§nt.. However, asis further
Finally, we discuss the bifurcation behaviors after theincréased, they change qualitatively, and eventually become

blow-out bifurcation. As shown in Fig. 13, asis increased similar_ to those in the unidirectionally coupled ca$e=(;) :
from 0, the period-doubling bifurcation curve, the Hopf [10]. Fmal!y, we conjecture that the above resuIFs obtained in
bifurcation curvesH;, and the boundary-crisis curvéde- asymmetrically coupled_ 1D maps may be applied to_a_large
noted by the open and solid triangie®sme in pairs from the clags of real_asymmetrlcally coupled systems, con5|st|ng_of
period-doubling bifurcation, Hopf bifurcation, and the crisis per!od-doubl!ng SUbSyStemS'. pgcausg the 1D map Isa typical
points for «=0, respectively. For the case of subcritical period-doubling system, exhibiting universal behavior. How-
period-doubling bifurcations oB 5, the lower branch ob, ever, to explicity examine our conjecture is beyond _the
is associated with stabilization of the asynchronous period—fcoPe. of the'present paper, and hence, such a work will be
saddle [corresponding to the upper-dashed curve in Fig_mvestlgated in future.

6(b)], born through the saddle-node bifurcation. On the other ACKNOWLEDGMENT
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