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Effect of asymmetry on the loss of chaos synchronization

Sang-Yoon Kim* and Woochang Lim
Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea

~Received 26 October 2000; published 15 June 2001!

We investigate the effect of asymmetry of coupling on the bifurcation mechanism for the loss of synchro-
nous chaos in coupled systems. It is found that only when the symmetry-breaking pitchfork bifurcations take
part in the process of the synchronization loss for the case of symmetric coupling, the asymmetry changes the
bifurcation scenarios of the desynchronization. For the case of weak coupling, pitchfork bifurcations of asyn-
chronous periodic saddles are replaced by saddle-node bifurcations, while for the case of strong coupling,
pitchfork bifurcations of synchronous periodic saddles transform to transcritical bifurcations. The effects of the
saddle-node and transcritical bifurcations for the weak asymmetry are similar to those of the pitchfork bifur-
cations for the symmetric-coupling case. However, with increasing the ‘‘degree’’ of the asymmetry, their
effects change qualitatively, and eventually become similar to those for the extreme case of unidirectional
asymmetric coupling.
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I. INTRODUCTION

In recent years, the phenomenon of chaos synchroniza
has become a field of intensive research. When coupled
otic systems attain a state of synchronization, a synchron
chaotic motion occurs on an invariant subspace of the wh
phase space@1–3#. In particular, this chaotic synchronizatio
has attracted much attention, because of its potential pr
cal application in secure communication@4#.

An important question in this field concerns stability
chaos synchronization with respect to a perturbation tra
verse to the invariant subspace@5#. If it is transversely stable
~i.e., its transverse Lyapunov exponent is negative!, then the
synchronous chaotic state on the invariant subspace bec
an attractor in the whole phase space. Such transverse s
ity of the synchronous chaotic attractor~SCA! is intimately
associated with transverse bifurcations of periodic sad
embedded in the SCA@6–10#. If all periodic saddles embed
ded in the SCA are transversely stable, the SCA beco
asymptotically stable~i.e., Lyapunov stable and attracting
the usual topological sense!. For this case, we have ‘‘strong’
synchronization. However, as the coupling parameter pa
through a threshold value, a periodic saddle embedded in
SCA first becomes transversely unstable through a loca
furcation. After this first transverse bifurcation, a dense se
locally repelling ‘‘tongues’’ opens from the transversely u
stable repeller and its preimages, and hence, trajectories
ing in these tongues are repelled from the invariant subsp
Thus, loss of strong synchronization begins with the fi
transverse bifurcation, and then we have ‘‘weak’’ synchro
zation.

However, the global effect of the first transverse bifurc
tion ~i.e., the fate of locally repelled trajectories through t
first transverse bifurcation! depends on the existence of a
absorbing area, controlling the global dynamics, inside
basin of attraction@8–10#. If there exists an absorbing are
acting as a bounded trapping vessel, locally repelled tra
tories are restricted to move within the absorbing area,
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exhibit intermittent bursting from the invariant subspace. F
this case, the transverse Lyapunov exponent of the SC
negative, and hence, the burst will tend to stop. However
a real situation, noise of small intensity results in a contin
sequence of intermittent bursts, called the attractor bubb
@11#. Thus, in the presence of an absorbing area, a bubb
transition occurs through the first transverse bifurcati
However, if such an absorbing area, enclosing the SCA, d
not exist, the locally repelled trajectories will go to anoth
attractor~or infinity!. Consequently, the basin of attractio
becomes riddled with a dense set of repelling tongues,
longing to the basin of another attractor~or infinity! @12#, and
hence, the SCA is no longer a topological attractor, beca
its basin does not contain any of its open neighborho
However, it becomes a Milnor attractor in a measu
theoretical sense, because it attracts a set of initial condit
with positive Lebesgue measure@13#. Note that for this
riddled case, a substantial improvement in the accuracy
the initial conditions yields only a small decrease in the u
certainty of the final state. Thus, in the absence of an abs
ing area, a riddling transition takes place via the first tra
verse bifurcation.

With further variation of the coupling parameter, tran
versely stable periodic saddles embedded in the SCA
transformed into transversely unstable repellers due to
cessive transverse bifurcations, which intensify the bubbl
and riddling effects. Eventually, the ‘‘weights’’ of the per
odic saddles and repellers become balanced, and the
blow-out bifurcation occurs@14#. As a result of this blow-out
transition, the SCA becomes transversely unstable~i.e., its
transverse Lyapunov exponent becomes positive!, and then
complete desynchronization occurs. The global effect of t
blow-out bifurcation also depends on the existence of
absorbing area. In the presence of the absorbing area
blow-out bifurcation becomes gradual. Hence, a new as
chronous chaotic attractor, bounded to the absorbing a
appears through a supercritical~nonhysteric! blow-out bifur-
cation, and then it exhibits an intermittent bursting, called
on-off intermittency@15#, where the long period of nearly
synchronous state~off state! is occasionally interruppted by
the short-time large-order burst~on state!. However, without
©2001 The American Physical Society11-1
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the absorbing area, an abrupt collapse of the synchron
state occurs through a subcritical~hysteric! blow-out bifur-
cation, and then typical trajectories starting near the invar
subspace are attracted to another distant attractor~or infin-
ity!.

For the study of chaos synchronization, two coupled id
tical one-dimensional~1D! maps, exhibiting period dou
blings, are usually used as a model. In this paper, we inv
tigate the effect of the asymmetry of coupling on the loss
chaos synchronization in a system of two asymmetrica
coupled 1D maps that contain a parametera tuning the ‘‘de-
gree’’ of asymmetry from the symmetric-coupling casea
50) @7# to the unidirectional-coupling case (a51) @10#. For
many-coupled case, this kind of asymmetrically coup
maps are usually used to model open flow systems with
ferred direction of propagation@16#. While increasing the
asymmetry parametera from 0 to 1, we investigate how th
asymmetry affects the bifurcation mechanisms for the s
chronization loss. It is thus found that the asymme
changes the bifurcation scenarios for the desynchroniza
only when the symmetry-breaking pitchfork bifurcations a
involved in the process of the loss of chaos synchroniza
for the symmetric-coupling case. In Sec. II, the bifurcati
scenarios are investigated with the decreasing of the c
pling parameter. For this weak-coupling case, pitchfork
furcations of asynchronous periodic saddles are found to
replaced with saddle-node bifurcations. As the asymme
parametera is increased from 0, the type of the saddle-no
bifurcations changes, and diverse effects occur. On the o
hand, for the strong-coupling case, pitchfork bifurcations
synchronous periodic saddles are found to be transfor
into the transcritical bifurcations in Sec. III. If such a tra
scritical bifurcation induces a contact of the SCA with
basin boundary, then a riddling transition occurs; otherw
only a bubbling transition takes place. In such a way,
effect of the transcritical bifurcations also depends on th
types. As a rule, the effects of the saddle-node and transc
cal bifurcations for smalla are similar to those of the pitch
fork bifurcations in the symmetric-coupling case (a50) @7#,
although the underlying bifurcation mechanisms are diff
ent. However, with the further increasing ofa, a significant
change in the bifurcation effects occurs, and eventually
effects become similar to those in the unidirectiona
coupled case (a51) @10#. Finally, a summary is given in
Sec. IV.

II. BIFURCATION SCENARIOS FOR THE CASE
OF WEAK COUPLING

In this section, with the decreasing of the coupling para
eter, we investigate the effect of the asymmetry of coupl
on the bifurcation scenarios of the loss of chaos synchr
zation. For this weak-coupling case, it is found that due
the asymmetry, subcritical pitchfork bifurcations of asy
chronous periodic saddles are replaced by the saddle-
bifurcations, while other bifurcations, such as perio
doubling bifurcations, are preserved. When the asymm
parametera is small, the bifurcation effect is similar to tha
for the symmetric-coupling case (a50). However, asa is
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increased, diverse bifurcation effects, that are different fr
those fora50, occur.

Let us consider two asymmetrically coupled identical 1
mapsT,

T:H xt115 f ~xt!1~12a!c@ f ~yt!2 f ~xt!#,

yt115 f ~yt!1c@ f ~xt!2 f ~yt!#,
~1!

where xt and yt are state variables of the subsystems a
discrete timet, local dynamics in each subsystem is go
erned by the 1D mapf (x)512ax2, a is the control param-
eter of the 1D map,c is a coupling parameter, anda (0
<a<1) is a parameter tuning the degree of asymmetry. T
cases ofa50 and 1 correspond to the symmetric and uni
rectional couplings, respectively. Note that this asymme
cally coupled mapT has an invariant synchronization lin
y5x, irrespectively of the symmetry. If an orbit lies on th
synchronization line, then it is called a synchronous orb
otherwise it is called an asynchronous orbit.

We also note that the coupled mapT is noninvertible,
because its Jacobian determinant det(DT) (DT is the Jaco-
bian matrix of T) becomes zero along the critical curve
L05$(x,y)PR2:x50 or y50%. A finite number of seg-
ments of imagesLk (k51,2, . . . ) of thecritical curves of
L0 can be used to define the boundary of an absorbing
A with the properties that~i! A is trapping~i.e., trajectories
that enterA cannot leave it again! and ~ii ! superattracting
~i.e., every point sufficiently close to the boundary ofA will
jump intoA after a finite number of iterations! @17#. Further-
more, boundaries of an absorbing area can be also obta
by the union of segments of critical curves and portions
unstable manifolds of unstable periodic orbits. For this ca
A is called a mixed absorbing area.

With increasing the control parametera, the coupled map
T exhibits an infinite sequence of period-doubling bifurc
tions of synchronous attractors with period 2n (n
50,1,2, . . . ), ending at the accumulation poin
a` (51.401 155, . . . ), in some region ofc. This period-
doubling cascade leads to creation of the SCA on the s
chronization line. With further increase ofa from a` , a se-
quence of band-merging bifurcations of the SCA take pla
The set ofa values yielding SCA’s in the range (a` ,2#
forms a fat fractal with a positive Lebesgue measure, ridd
with a dense set of windows of synchronous periodic attr
tors @18#. Hereafter, without loss of generality, we fix th
value ofa asa51.6, where a single-band SCA exists on t
synchronization line. Its transverse stability is determined
a transverse Lyapunov exponent,

s'5 lnu12~22a!cu1 lim
N→`

1

N (
t51

N

lnu2axtu. ~2!

For the symmetric-coupling case ofa50, the following pro-
cess of desynchronization was found@7#. As the coupling
parameterc is decreased throughc50.209, . . . , thesaddle
fixed point embedded in the SCA first becomes transvers
unstable through a supercritical period-doubling bifurcat
when its transverse Floquet~stability! multiplier,

l'5@12~22a!c# f 8~x* ! ~3!
1-2
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EFFECT OF ASYMMETRY ON THE LOSS OF CHAOS . . . PHYSICAL REVIEW E 64 016211
passes through21, where x* @5(211A114a)/2a# is
the fixed point of the 1D mapf (x). After this first transverse
bifurcation, the synchronous saddle fixed point is tra
formed into a repeller, and an asynchronous period-2 sa
appears in its vicinity. For this case, along with segments
the critical curvesL1 andL2, portions of the unstable man
folds of the asynchronous period-2 saddle form a bound
of a mixed absorbing area, surrounding the SCA. Hen
locally repelled trajectories near the SCA cannot leave
mixed absorbing area, and they exhibit transient intermitt
bursting from the synchronization line. Thus, this first tran
verse~period-doubling! bifurcation induces a bubbling tran
sition. However, asc is further decreased, the asynchrono
period-2 saddle becomes stabilized forc50.157, . . . ,
through a~reverse! subcritical pitchfork bifurcation when its
maximal Floquet~stability! multiplier decreases through11
@see the schematic bifurcation diagram in Fig. 1~a!#. Then,
the basin of the SCA becomes riddled with a dense se
repelling tongues leading to the asynchronous period-2
tractor. Note that this kind of stabilization of an asynchr
nous periodic saddle is the only mechanism of the riddl
transition for the case ofa50. With further decrease of th
coupling parameterc, the SCA loses its transverse stabili
for c.0.155 through a blow-out bifurcation. After this su
critical blow-out bifurcation, the SCA transforms to a chao
saddle with a positive transverse Lyapunov exponent,
the system is asymptotically attracted to the asynchron
period-2 attractor.

From now on, with increasing the asymmetry parame

FIG. 1. Schematic bifurcation diagrams for~a! a50 and ~b!
a.0 in the weak-coupling case. Here, the solid and dashed l
represent the periodic attractor and saddle, respectively. When
asymmetry is introduced~i.e., aÞ0), the ~reverse! subcritical
pitchfork bifurcation of an asynchronous periodic saddle fora50
is transformed into a smooth shift of the asynchronous perio
saddle~without any bifurcation! and a saddle-node bifurcation, cre
ating a new pair of asynchronous saddle and stable node~attractor!.
For other details, see the text.
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from a50, we investigate the bifurcation scenarios of t
loss of chaos synchronization. It is thus found that the asy
metry affects the bifurcation mechanism only for the case
the pitchfork bifurcation of an asynchronous periodic sadd
while other bifurcations such as period-doubling bifurcatio
are preserved. For the symmetric coupling case (a50), an
asynchronous periodic saddle~denoted by the horizonta
dashed line! is transformed into an attractor~denoted by the
solid line! by emitting a pair of asynchronous saddles~de-
noted by the dashed lines! with the same period through
~reverse! subcritical pitchfork bifurcation, as shown in Fig
1~a!. However, asa is increased froma50, the upper-
dashed branch for the case ofa50 becomes split from the
middle solid and lower-dashed branches. As a result,
asynchronous periodic saddle varies smoothly along the
upper branch without any bifurcation, and a pair of asy
chronous saddle and stable node~attractor! appears along the
former middle and lower branches via a saddle-node bi
cation, as shown in Fig. 1~b!. In such a way, for smalla the
subcritical pitchfork bifurcation of an asynchronous period
saddle is replaced with a saddle-node bifurcation, giving r
to the birth of a pair of new asynchronous saddle and sta
node. However, asa is further increased, the type of th
saddle-node bifurcation may be changed into another o
leading to the birth of a pair of new asynchronous saddle
unstable node~repeller!, and then its effect becomes qualit
tively different from that fora50, as will be seen below.

Figure 2 shows the phase diagram in thea2c plane.
When passing the supercritical period-doubling bifurcat
line D1, the synchronous saddle fixed point first becom
transversely unstable, and an asynchronous period-2 sa
is born. After this first transverse bifurcation, the SCA
surrounded by a mixed absorbing area, acting as a boun
trapping vessel, and hence, locally repelled trajectories n
the SCA exhibit transient intermittent bursting from the sy
chronization line. Thus, a bubbling transition occurs throu
the first transverse~period-doubling! bifurcation. Note that
this period-doubling bifurcation mechanism for the bubbli
transition and its effect are the same as those fora50, in-
dependently of the value ofa. With further decrease ofc,
the SCA becomes transversely unstable through a blow
bifurcation at the lineB. However, the type of this blow-ou
bifurcation depends on the value ofa. As mentioned above
with increasinga from 0, the subcritical pitchfork bifurction
of the asynchronous period-2 saddle fora50 is replaced by
the saddle-node bifurcation, which occurs on the heavy s
line S2. As shown in the inset of Fig. 2, for 0,a,a1
(.0.0078), a pair of asynchronous saddle and stable n
with period 2 appears through the saddle-node bifurca
before the blow-out bifurcation. Consequently, the ba
~shown in gray! of the SCA becomes riddled with a dense s
of tongues, belonging to the basin~shown in dark gray! of
the newly born asynchronous period-2 attractor~denoted by
the solid circle!, which is shown in Fig. 3 fora50.005 and
c50.1555. Note that the stable manifolds of the asynch
nous period-2 saddles~denoted by the open circle an
square! bound the main tongue, emanating from the synch
nous repelling fixed point~denoted by the triangle!. Here, an
asynchronous period-2 saddle~square! is born from the syn-
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SANG-YOON KIM AND WOOCHANG LIM PHYSICAL REVIEW E 64 016211
chronous saddle fixed point~triangle! through the first trans-
verse~period-doubling! bifurcation, while another asynchro
nous period-2 saddle~open circle! appears along with the
asynchronous period-2 attractor~solid circle! via the saddle-
node bifurcation. All the other tongues are preimages of
main tongue. Thus, the effect of the saddle-node bifurca
becomes the same as that of the subcritical pitchfork bi
cation fora50 ~i.e., a riddling transition occurs through th
appearance of an asynchronous periodic attractor!. For this
case, when crossing the lineB, the SCA loses its transvers
stability via a subcritical blow-out bifurcation, and then th
system is asymptotically attracted to the asynchron
period-2 attractor.

For a.a1, the saddle-node bifurcation onS2 occurs after
the blow-out bifurcation~see the inset of Fig. 2!. Hence,
when passing the lineB, an asynchronous chaotic attracto
bounded to the absorbing area, appears through a super
cal blow-out bifurcation and exhibits a typical intermitte
bursting, called the on-off intermittency. However, the su
sequent fate of the asynchronous chaotic attractor dep
on the value ofa. Figure 4~a! shows the asynchronous ch
otic attractor fora50.2 andc50.15, born via the super
critical blow-out bifurcation. However, when passing theS2
line, the asynchronous chaotic attractor becomes broke
suddenly, because a pair of asynchronous saddle and s

FIG. 2. Phase diagram in thea2c plane for the case of wea
coupling. A bubbling transition occurs on the lineD1 through the
supercritical period-doubling bifurcation of the saddle fixed po
embedded in the SCA. With further decrease ofc, the SCA be-
comes transversely unstable through a blow-out bifurcation on
line B. However, dynamical behaviors after the blow-out bifurc
tion vary depending on the value ofa, particularly because of the
diverse effect of the saddle-node bifurcation on the curveSq (q
52n, n51,2, . . . ). Thetype of the saddle-node bifurcation onSq

changes at the point where the period-doubling bifurcation lineDq

of an asynchronous period-q orbit touches theSq line. Thus, a pair
of asynchronous saddle and stable~unstable! node with periodq
appears when crossing the solid~dotted! part of Sq . Note also that
an interior crisis occurs when the line, denoted by the triangles
crossed. For other details, see the text.
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node ~attractor! with period 2 appears inside the asynchr
nous chaotic attractor via the saddle-node bifurcation. A
this break up, the asymptotic state changes from the a
chronous chaotic state to an asynchronous period-2 state~de-
noted by the solid circle!, as shown in Fig. 4~b! for a50.2
andc50.14, where an open circle denotes an asynchron
period-2 saddle born via the saddle-node bifurcation. N
that this destruction effect of the saddle-node bifurcation
in contrast with the riddling effect fora,a1. This kind of
destruction through the appearance of an asynchrn
period-2 attractor occurs only when passing the heavy s
part of theS2 curve fora1,a,a2 (.0.3924)~see Fig. 2!.
Note that fora5a2, a period-doubling bifurcation lineD2
of an asynchronous period-2 orbit touches the saddle-n
bifurcation line S2, and then the type of the saddle-nod
bifurcation changes from the unstable-stable pair bifurcat
to the unstable-unstable pair bifurcation. That is, when pa
ing the heavy dotted part of theS2 curve fora.a2, a pair of
asynchronous saddle and unstable node~repeller! with period
2 appears. We also note that a saddle-node bifurcation
S4, giving rise to the birth of a pair of asynchronous sadd
and stable node with period 4, emanates from the con
point of theS2 line with the D2 line. In such a way, with
increasinga higher-order saddle-node and period-doubli
bifurcations of period-q (q52n, n52,3,4, . . . ) orbit occur
on theSq andDq curves, respectively. Thus, the destructi
of the asynchronous chaotic attractor continues to take p
through the appearance of an asynchronous period-q attrac-
tor when passing the solid part of theSq curve until a
5a* (.0.6673) ~see Fig. 2!. For a.a* , the type of all
saddle-node bifurcations on theSq curves becomes the
unstable-unstable pair bifurcations, giving rise to the birth

t

e
-

is

FIG. 3. Riddled basin of the SCA fora50.005 andc50.1555
after the appearance of a new asynchronous period-2 attractor
saddle-node bifurcation. Here, the square denotes an asynchro
period-2 saddle, born from the synchronous fixed point~denoted by
the triangle!, through the first transverse period-doubling bifurc
tion. A pair of asynchronous saddle~denoted by the open circle!
and attractor~denoted by the solid circle! with period 2 appears
through a saddle-node bifurcation. As a result, the basin of the S
~shown in gray! becomes riddled with a dense set of tongues,
longing to the basin~shown in dark gray! of the asynchronous
period-2 attractor.
1-4
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EFFECT OF ASYMMETRY ON THE LOSS OF CHAOS . . . PHYSICAL REVIEW E 64 016211
asynchronous saddle-repeller pairs, and hence, destru
phenomena no longer occur.

For a.a* , a large asynchronous chaotic attractor, bo
via the blow-out bifurcation, is transformed into a small ch
otic attractor through a reverse interior crisis, mediated
the saddle-node bifurcation. Figure 5~a! shows the large
asynchronous chaotic attractor, bounded by the segmen
the critical curvesL1 andL2 for a50.85 andc50.18. When
passing the dottedS2 curve forc.0.1476, along with a pair
of asynchronous saddle and repeller with period 2, b
through the saddle-node bifurcation, a small two-piece as
chronous chaotic attractor appears, as shown in Fig. 5~b! for
c50.14. Note that the asynchronous period-2 saddle~de-
noted by the solid circle! is embedded in the small asynchr
nous chaotic attractor, and the asynchronous period-2 re
ler ~denoted by the open circle! lies on the dotted line. In
fact, all higher-order asynchronous period-q saddles and re
pellers, born via the saddle-node bifurcations onSq , also lie
on the asynchronous chaotic attractor and the dotted
respectively. On the other hand, the asynchronous perio
orbit ~denoted by the square!, born via the first transvers
period-doubling bifurcation of the synchronous fixed po
~denoted by the triangle!, and its descendant orbits lie on th

FIG. 4. Destruction of an asynchronous chaotic attractor thro
the appearance of an asynchronous period-2 attractor inside
asynchronous chaotic attractor via a saddle-node bifurcation foa
50.2. ~a! The asynchronous chaotic attractor bounded by segm
of the critical curvesL1 andL2 for c50.15, born via a supercritica
blow-out bifurcation.~b! Asynchronous period-2 attractor~denoted
by the solid circle! and its counterpart saddle~denoted by the open
circle! for c50.14 after the destruction of the asynchronous cha
attractor.
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dashed line. Note that these two lines are bounding a reg
where asynchronous unstable periodic orbits~denoted by
dots! lie, inside the absorbing area. As we increase the c
pling parameterc from 0.14 in a reverse way, the asynchr
nous period-2 saddle~solid circle! on the asynchronous cha
otic attractor approaches the asynchronous period-2 rep
~open circle! on the dotted boundary line, and they coales
at their saddle-node bifurcation point (c.0.1476) onS2.
After that, a sudden increase in the size of the asynchron
chaotic attractor occurs through the interior crisis media
by the saddle-node bifurcation. A similar expansion of t
asynchronous chaotic attractor also takes place through
other interior crisis when decreasing the coupling param

h
the

ts

c

FIG. 5. Appearance of a small asynchronous chaotic attra
through a~reverse! interior crisis fora50.85. ~a! Large asynchro-
nous chaotic attractor bounded by the segments of the cri
curvesL1 and L2 for c50.18, born via a supercritical blow-ou
bifurcation. ~b! Small asynchronous chaotic attractor forc50.14
born through a~reverse! interior crisis, mediated by a saddle-nod
bifurcation onS2. Note that the dotted and dashed lines bound
region, where unstable asynchronous periodic orbits lie inside
absorbing area bounded by segments of the critical curvesL1 and
L2. Here, unstable asynchronous orbit points are plotted up to
riod 16. The asynchronous period-2 saddle~denoted by the solid
circle! is embedded in the asynchronous chaotic attractor and
asynchronous period-2 repeller~denoted by the open circle! lies on
the dotted line. Asc is further decreased, this asynchronous sm
chaotic attractor is transformed into a large one through ano
interior crisis occurring when crossing the dashed line, where
asynchronous period-2 orbit~denoted by the square!, born through
the first transverse period-doubling bifurcation of the synchron
fixed point ~represented by the triangle! lies. For other details, see
the text.
1-5
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SANG-YOON KIM AND WOOCHANG LIM PHYSICAL REVIEW E 64 016211
c from 0.14. With the decrease ofc, the asynchronous cha
otic attractor becomes larger in a horizontal direction, an
collides with the dashed boundary line when passing the
sis line, denoted by the triangles in Fig. 2. After that, t
small asynchronous chaotic attractor transforms to a la
asynchronous chaotic attractor, covering the whole absor
area. Note that this interior-crisis curve touches theS2 curve
for a5a3 (.0.8965) ~see Fig. 2!. Hence, fora.a3, no
interior crises occur when passing theS2 curve. Conse-
quently, the large asynchronous chaotic attractor, born
the blow-out bifurcation, is preserved without any qualitati
change when passing theS2 curve, as in the unidirectionally
coupled case (a51) @10#.

III. BIFURCATION SCENARIOS FOR THE CASE
OF STRONG COUPLING

In this section, we investigate the effect of the asymme
of coupling on the bifurcation scenarios of desynchronizat
with increasing the coupling parameter. For this stron
coupling case, it is found that the asymmetry changes
supercritical pitchfork bifurcation of a synchronous period
saddle into a transcritical bifurcation. However, the effect
the transcritical bifurcation varies depending on whether
not it induces a contact between the SCA and its ba
boundary. If such a contact does not occur, a bubbling tr
sition occurs, while when a contact is induced, a riddli
transition takes place. For smalla, the transcritical bifurca-
tion does not induce any contact, and hence, its effect
comes similar to that in the symmetrically coupled casea
50). However, asa is further increased, the type of th
transcritical bifurcation is changed into another one induc
a contact, and then the effect of the transcritical bifurcat
becomes qualitatively different from that fora50.

For the case of the symmetric coupling (a50), the fol-
lowing desynchronization process was found@7#. The syn-
chronous saddle fixed point embedded in the SCA first
comes transversely unstable via a supercritical pitchf
bifurcation when its minimal Floquet multiplier increas
through11 for c50.790, . . . . As aresult of this first trans-
verse bifurcation, the synchronous saddle fixed point is tra
formed into a repelling fixed point, and a conjugate pair
asynchronous period-1 saddle appears in its neighborh
@see the schematic bifurcation diagram in Fig. 6~a!#. For this
case, the SCA is surrounded by a mixed absorbing a
bounded by union of segments of the unstable manifold
the asynchronous period-1 saddle and portions of the cri
curvesL1 and L2. Hence, locally repelled trajectories ne
the SCA cannot leave the mixed absorbing area, and
exhibit transient intermittent bursting. Thus, the first tran
verse ~pitchfork! bifurcation induces a bubbling transition
With further increase ofc, the asynchronous period-1 saddl
are stabilized through subcritical period-doubling bifurc
tions forc50.842, . . . . Consequently, the basin of the SC
becomes riddled with a dense set of tongues, belongin
the basins of the stabilized asynchronous period-1 attrac
This riddling transition is similar to the weak-coupling ca
for a50, although the underlying bifurcation mechanism
for the stabilization are different. Asc is further increased
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the SCA becomes transversely unstable through a subcri
blow-out bifurcation forc.0.845, and then the system
asymptotically attracted to one of the asynchronous perio
attractors.

We now investigate the bifurcation scenarios of the s
chronization loss with increasing the asymmetry parame
from a50. It is thus found that the bifurcation mechanis
for the case of the pitchfork bifurcation of a synchrono
periodic saddle is affected by the asymmetry, while oth
bifurcations such as period-doubling bifurcations are c
served. For the symmetric coupling case (a50), a synchro-
nous periodic saddle~denoted by the horizontal dashed lin!
is transformed into a repeller~denoted by the dotted line! by
emitting a conjugate pair of asynchronous saddles~denoted
by the dashed lines! with the same period through a supe
critical pitchfork bifurcation, as shown in Fig. 6~a!. How-
ever, with increasing the asymmetry parameter froma50,
the upper branch for the case ofa50 is smoothly shifted
backward from the bifurcation point, and then two ne
branches, corresponding to the asynchronous periodic sa
~dashed line! and repeller~dotted line!, appear through a
saddle-node bifurcation, as shown in Fig. 6~b!. Note that
with increasing the coupling parameter, the asynchron
periodic repeller~dotted line! approaches the synchronou
periodic saddle~horizontal dashed line!, and eventually they
coalesce at a bifurcation point. After that, they exchan
only their stability@i.e., the saddle~repeller! transforms to a
repeller~saddle!#. Through this transcritical bifurcation, oc
curring in asymmetric dynamical systems with some co
straint @19#, the synchronous periodic saddle loses its tra

FIG. 6. Schematic bifurcation diagrams for~a! a50 and ~b!
a.0 in the strong-coupling case. Here, the dashed and dotted
represent the periodic saddle and repeller, respectively. When
asymmetry is introduced~i.e., aÞ0), the supercritical pitchfork
bifurcation of a synchronous periodic saddle fora50 is trans-
formed into a transcritical bifurcation of the synchronous perio
saddle and a saddle-node bifurcation, creating a new pair of a
chronous saddle and unstable node~repeller!. For other details, see
the text.
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EFFECT OF ASYMMETRY ON THE LOSS OF CHAOS . . . PHYSICAL REVIEW E 64 016211
verse stability, when its minimal Floquet multiplier increas
through11. However, the effect of this transcritical bifu
cation depends on whether or not it induces a contact
tween the SCA and its basin boundary, as will be seen
low.

Figure 7 shows the phase diagram before the blow-
bifurcation in thea2c plane. As mentioned above, fora
.0 the synchronous saddle fixed point first becomes tra
versely unstable through a transcritical bifurcation, occurr
on the lineT1, where the synchronous saddle fixed po
exchanges stability with an asynchronous repelling fix
point, born through a saddle-node bifurcation occurring
the lineS1. Note that these transcritical and saddle-node
furcation linesT1 andS1 emanate from the pitchfork bifur
cation point fora50. The type of the transcritical bifurca
tion of the synchronous saddle fixed point depends
whether or not its ‘‘counterpart’’~asynchronous repelling
fixed point! lies on a basin boundary. Note that the asynch
nous period-1 repeller is lying on a basin boundary in
regions hatched with vertical and horizontal lines. On
when the synchronous period-1 saddle collides with an as

FIG. 7. Phase diagram before the blow-out bifurcation in
a2c plane for the strong-coupling case. The synchronous sa
fixed point first becomes transversely unstable through a trans
cal bifurcation on the lineT1. The effect of the transcritical bifur-
cation varies depending on whether or not it induces a contact
tween the SCA and its basin boundary. An asynchronous perio
repeller, which is a counterpart of the synchronous period-1 sa
for the transcritical bifurcation, lies on a basin boundary of the S
in the regions hatched with vertical and horizontal lines. Hen
when crossing the dotted part ofT1, a riddling transition through
the transcritical contact bifurcation occurs, while when its solid p
is crossed, a bubbling transition takes place, because an abso
area surrounding the SCA is preserved. Thus, theT1 curve is di-
vided into four parts~two heavy solid parts and two heavy dotte
parts!. Other diverse dynamical phenomena also occur on
saddle-node bifurcation curveS1, period-doubling bifurcation curve
D1, Hopf bifurcation curveH1, boundary-crisis curves~denoted by
the open triangles and circles!, and blow-out bifurcation curveB.
For further details, see the text.
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chronous period-1 repeller on a basin boundary, the tr
scritical bifurcation may induce a contact between the S
and its basin boundary, and then an absorbing area,
rounding the SCA, disappears. Consequently, when cros
the heavy dotted part of theT1 curve, a direct transition to
riddling occurs, while when its heavy solid part is passed
bubbling transition takes place because an absorbing a
surrounding the SCA, is preserved. Thus, theT1 curve is
divided into four parts~two heavy solid parts and two heav
dotted parts!. The values ofa at their boundary points are
a4 (.0.3846), a5 (.0.6187), anda6 (.0.6667).

For 0,a,a4, when crossing theS1 curve, a pair of
asynchronous period-1 saddle~denoted by the solid down
triangle! and unstable node~repeller, denoted by the ope
down triangle! appears, as shown in Fig. 8~a! for a50.3 and
c50.923. Together, with segments of the critical curvesL1
andL2, portions of the unstable manifolds of the asynch
nous saddle fixed point~solid down triangle! form a bound-
ary of a mixed absorbing area, surrounding the SCA. N
that the asynchronous period-1 repeller~open down triangle!
lies strictly inside the absorbing area~i.e., it does not lie on
any basin boundary!. As c is increased, the asynchronou
period-1 repeller~open down triangle! approaches the syn
chronous period-1 saddle~denoted by the open up triangle!,
embedded in the SCA. Eventually, they coalesce and a t
scritical bifurcation occurs forc50.930, . . . . Whenpassing
the transcritical bifurcation point, the asynchronous perio
repeller~open down triangle! moves down off the synchro
nization line, and exchanges stability with the synchrono
period-1 saddle~open up triangle!, as shown in Fig. 8~b! for
c50.943. Since the mixed absorbing area is still surround
the SCA, locally repelled trajectories near the SCA exhi
transient intermittent bursting from the synchronization lin
Thus, the effect of the transcritical bifurcation becomes sim
lar to that of the supercritical pitchfork bifurcation fora
50 ~i.e., a bubbling transition occurs!. With further increase
of c, the asynchronous saddle fixed point becomes stabil
through a subcritical period-doubling bifurcation whe
crossing theD1 line for c50.945, . . . . Consequently, the
basin ~shown in gray! of the SCA becomes riddled with
dense set of tongues, belonging to the basin~shown in dark
gray! of the stabilized asynchronous period-1 attractor~solid
down triangle!, which is shown in Fig. 8~c! for c50.992.
Note that this stabilization mechanism is the same as tha
a50.

When a increases througha4, the D1 curve crosses the
T1 curve ~see Fig. 7!. Consequently, fora.a4 the stabili-
zation of the asynchronous period-1 saddle~solid down tri-
angle! through a subcritical period-doubling bifurcation o
curs before the first transverse~transcritical! bifurcation on
the T1 curve. As a result of this stabilization, the asynchr
nous period-1 repeller~open down triangle! lies on the basin
~shown in dark gray! boundary of the stabilized asynchro
nous period-1 attractor~solid down triangle!, as shown in
Fig. 9~a! for a50.48 andc51.03. For this case, a mixe
absorbing area, formed by the union of segments of the
stable manifolds of the asynchronous period-1 repeller
portions of the critical curvesL1 andL2, is surrounding the
SCA. As c is increased, the asynchronous period-1 repe
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SANG-YOON KIM AND WOOCHANG LIM PHYSICAL REVIEW E 64 016211
~open down-triangle! approaches the synchronous period
saddle~open up-triangle!, embedded in the SCA, and henc
the absorbing area shrinks. Eventually, forc51.040, . . . , a
transcritical contact bifurcation between the synchron
period-1 saddle and the asynchronous period-1 repelle
the basin boundary occurs, and then the absorbing area
appear, as shown in Fig. 9~b!. Note that this transcritica
bifurcation induces a contact between the SCA and its b
boundary. When passing the transcritical bifurcation po
the asynchronous period-1 repeller~open down triangle!

FIG. 8. Bubbling transition through the transcritical bifurcatio
that does not induce any contact between the SCA and its b
boundary fora50.3. Here, the asynchronous period-1 saddle a
repeller, born through the saddle-node bifurcation onS1, are de-
noted by the solid and open down triangles, respectively, and
synchronous period-1 saddle is represented by the open up tria
The situations before and just after the transcritical bifurcation
the synchronous period-1 saddle are depicted in~a! for c50.923
and in ~b! for c50.943, respectively.~c! Basin ~shown in gray! of
the SCA forc50.992, riddled with a dense set of tongues, belon
ing to the basin~shown in dark gray! of the stabilized asynchronou
period-1 attractor~solid down triangle!, through a subcritical
period-doubling bifurcation.
01621
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moves down off the basin boundary, and exchanges stab
with the synchronous period-1 saddle~open up triangle!.
However, the SCA continues to contact its basin boundar
a new synchronous repelling fixed point~open up triangle!.
As a result of this transcritical bifurcation, the basin of t
SCA becomes riddled with a dense set of tongues, belong
to the basin of the asynchronous period-1 attractor~solid
down triangle!. Thus, this transcritical bifurcation induces
riddling transition. However, near the riddling transitio
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FIG. 9. Riddling transition through the transcritical contact b
furcation fora50.48. Before the transcritical bifurcation, the asy
chronous period-1 saddle~denoted by the solid down triangle! be-
comes stabilized through a subcritical period-doubling bifurcati
and hence, the asynchronous period-1 repeller~denoted by the open
down triangle!, which is the counterpart of the synchronou
period-1 saddle~represented by the open up triangle! lies on the
basin boundary. The situations before and just at the transcri
bifurcation of the synchronous period-1 saddle are depicted in~a!
for c51.03 and in~b! for c51.040 . . . ,, respectively.~c! Basin
~shown in gray! of the SCA forc51.1, riddled with a dense set o
tongues, belonging to the basin~shown in dark gray! of the asyn-
chronous chaotic attractor, developed from the asynchron
period-1 attractor~solid down triangle!.
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EFFECT OF ASYMMETRY ON THE LOSS OF CHAOS . . . PHYSICAL REVIEW E 64 016211
point, the tongues are too narrow to be seen. With furt
increase ofc, the asynchronous period-1 attractor~solid
down triangle! is transformed into a quasiperiodic attract
through a Hopf bifurcation when crossing theH1 curve, and
then an asynchronous chaotic attractor is developed from
quasiperiodic attractor. During this process, the repell
tongues become large to be seen, as shown in Fig. 9~c! for
c51.1. Note that this kind of a direct transition to riddlin
takes place when passing the heavy dotted part of theT1
curve fora4,a,a5, in contrast to the case ofa,a4 where
only a bubbling transition occurs through the transcriti
bifurcation onT1.

As a is increased froma5, the D1 curve touches theS1
curve at the pointP1 @.(0.6660,1.0999)#, and then the
type of the saddle-node bifurcation changes~see Fig. 7!. On
the solid part ofS1 ~below P1), the saddle-node bifurcatio
gives rise to the birth of a pair of asynchronous period
saddle and unstable node~repeller!, while on the dotted par
of S1 ~aboveP1), it leads to the birth of a pair of asynchro
nous period-1 saddle and stable node~attractor! @see the
schematic bifurcation diagram in Fig. 10~a!#. Note also that a
supercritical period-doubling bifurcation~dotted! line D1
emanates fromP1, in contrast with the subcritical solid pa
of D1 below P1. At the right end point P2

@.(0.9635,1.1161)# of the dotted part ofS1, where the
curveH1 touches the curveS1, the type of the saddle-nod
bifurcation changes again, i.e., on the solid part ofS1 above
P2, a pair of asynchronous period-1 saddle and unsta
node ~repeller! is born @see also the schematic bifurcatio
diagram in Fig. 10~b!#. As shown in Figs. 10~a! and ~b!, for
a.0.666 ~above P1) the asynchronous period-1 sadd

FIG. 10. Types of the saddle-node bifurcation, associated w
the transcritical bifurcation, for largea (.0.666). Solid, dashed
and dotted lines denote the attractor, saddle, and repeller, re
tively. The saddle-node bifurcation gives rise to the birth of a p
of asynchronous saddle and~a! stable or~b! unstable node. For both
cases, the asynchronous saddle is transformed into a repeller, a
as the counterpart of the synchronous saddle for the transcr
bifurcation, through a period-doubling bifurcation.
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born through a saddle-node bifurcation, is transformed int
repeller via a supercritical period-doubling bifurcatio
which then becomes a counterpart of the synchron
period-1 saddle for the transcritical bifurcation. This is
contrast to the case ofa,0.666~belowP1), where the asyn-
chronous period-1 repeller, born through a saddle-node
furcation, is involved in the transcritical bifurcation as
counterpart of the synchronous period-1 saddle.

The asynchronous period-1 repellers, associated with
transcritical bifurcations, lie on the basin boundary of
asynchronous period-1 attractor~or an attractor developed
from it! in the region hatched with vertical lines in Fig. 7
Here, the asynchronous period-1 attractor appears thro
stabilization of the asynchronous period-1 saddle b
through the saddle-node bifurcation fora,0.666, while for
a.0.666, it is just the attractor born through the sadd
node bifurcation on the dotted part ofS1. For this case, the
SCA is surrounded by a small mixed absorbing area@e.g.,
see Fig. 9~a!#. Fora.a5, the asynchronous chaotic attract
developed from the asynchronous period-1 attractor dis
pears with its basin through a boundary crisis when cross
the line denoted by the open triangles in Fig. 7. Note that
boundary-crisis curve ends at the pointP2. Thus, when en-
tering the shaded region through the boundary-crisis cu
the whole basin becomes occupied only by the SCA, s
rounded by a large absorbing area, which is shown in Fig
for a50.68 and c51.17. Note that the asynchronou
period-1 repeller@open down triangle: counterpart of th
synchronous period-1 saddle~open up triangle! for the tran-
scritical bifurcation# lies strictly inside the absorbing are
~i.e., it no longer lies on any basin boundary!. Hence, when
passing the solid part ofT1 for a5,a,a6 ~left boundary of
the shaded region!, the transcritical bifurcation does not in
duce any contact between the SCA and its basin bound
After this transcritical bifurcation, locally repelled trajecto
ries near the SCA exhibit transient intermittent bursting fro
the synchronization line~i.e., a bubbling transition occurs!,

h
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r

ting
al

FIG. 11. SCA surrounded by a large absorbing area fora
50.68 andc51.17. Note that the asynchronous period-1 repe
~denoted by the open down triangle!, which acts as the counterpa
of the synchronous period-1 saddle~denoted by the open up tri
angle! for the transcritical bifurcation, lies strictly inside the absor
ing area.
1-9



A,

th
th
nt
si

rb-
on
ng
-
s

a
oc-

es
the
sur-

si-
er

the
ase

rs
the
ing
part
e an
ur-
h
the

bi-
g

ap

the
he

es
the

l
od-

i-
pf

SANG-YOON KIM AND WOOCHANG LIM PHYSICAL REVIEW E 64 016211
because the large absorbing area, surrounding the SC
preserved.

However, when crossing the upper boundary of the
shaded region, denoted by the open circles in Fig. 7,
large absorbing area disappears suddenly through a co
with the basin boundary of the SCA. As a result of this cri
of the absorbing area, the basin~shown in white! of the at-
tractor at infinity penetrates the basin~shown in gray! of the
SCA, as shown in Fig. 12~a! for a50.8 andc51.27. Note
that the asynchronous period-1 repeller@open down triangle:
counterpart of the synchronous period-1 saddle~open up tri-
angle! for the transcritical bifurcation# lies on the basin

FIG. 12. Riddling transition through the transcritical contact
furcation for a50.8. ~a! SCA surrounded by a mixed absorbin
area forc51.27. Note that the asynchronous period-1 repeller~de-
noted by the open down triangle!, which is the counterpart of the
synchronous period-1 saddle~represented by the open up triangle!,
lies on the basin boundary.~b! At the transcritical bifurcation point
(c51.317, . . . ), the saddle ~open up triangle! and the repeller
~open down triangle! coalesce, and thus, the absorbing area dis
pears.~c! Basin ~shown in gray! of the SCA for c51.4, riddled
with a dense set of tongues, belonging to the basin~shown in white!
of the attractor at infinity.
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boundary of the SCA, surrounded by a small mixed abso
ing area. This kind of situation occurs in the whole regi
hatched with horizontal lines in Fig. 7. With the increasi
of the coupling parameterc, the asynchronous period-1 re
peller ~open down triangle! approaches the synchronou
period-1 saddle~open up triangle!, the mixed absorbing are
shrinks, and eventually a transcritical contact bifurcation
curs when crossing the upper dotted part ofT1 for c
51.317, . . . , asshown in Fig. 12~b!. As a result of this
transcritical bifurcation, the basin of the SCA becom
riddled with a dense set of repelling tongues, leading to
divergent trajectories, because the mixed absorbing area,
rounding the SCA, disappears, which is shown in Fig. 12~c!
for c51.4. Note that this mechanism for the riddling tran
tion through the transcritical contact bifurcation on the upp
dotted part ofT1 is similar to that in the unidirectionally-
coupled case (a51) @10#.

From now on, we study the dynamical behaviors after
bubbling and riddling transitions. Figure 13 shows the ph
diagram after the transcritical bifurcation in thea-c plane.
As explained above, a direct transition to riddling occu
through a transcritical contact bifurcation when crossing
dotted part ofT1, because the absorbing area, surround
the SCA, disappears. On the other hand, when the solid
of T1 is crossed, a bubbling transition takes place, becaus
absorbing area is surrounding the SCA. However, with f
ther increase ofc, a riddling transition also occurs throug
stabilization of an asynchronous period-1 saddle, born by

-

FIG. 13. Phase diagram after the transcritical bifurcation in
a2c plane for the case of strong coupling. As a result of t
transcritical bifurcation at the lineT1, a riddling transition occurs in
the horizontally-hatched region, while a bubbling transition tak
place in the vertically hatched region. Hence, when crossing
dotted and solid parts of the curveB, subcritical and supercritica
blow-out bifurcations occur, respectively. Note also that the peri
doubling bifurcation curvesD1, the Hopf bifurcation curvesH1,
and the boundary-crisis curves~denoted by the open and solid tr
angles! come in pairs from the period-doubling bifurcation, Ho
bifurcation, and the crisis points fora50, respectively. For further
details, see the text.
1-10
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EFFECT OF ASYMMETRY ON THE LOSS OF CHAOS . . . PHYSICAL REVIEW E 64 016211
saddle-node bifurcation onS1, via a subcritical period-
doubling bifurcation on the lower branch ofD1. Thus, the
basin of the SCA becomes riddled in the region hatched w
horizontal lines, while an absorbing area is surrounding
SCA in the region hatched with vertical lines. Eventual
when crossing the blow-out bifurcation curveB, the SCA
becomes transversely unstable, and then it is transfor
into a chaotic saddle~i.e., a complete loss of chaos synchr
nization occurs!. However, the type of the blow-out bifurca
tion also depends on the existence of an absorbing a
When crossing the lower- and upper-dotted parts ofB, the
state of the system is asymptotically attracted to an async
nous period-1 attractor~or an asynchronous attractor deve
oped from it! and the attractor at infinity, respectivel
through a subcritical blow-out bifurcation, because there
no absorbing area. Note also that the blow-out bifurcati
neara50 and 1 are similar to those in the cases of symm
ric coupling (a50) @7# and unidirectional coupling (a51)
@10#, respectively. However, when crossing the solid part
B, an asynchronous chaotic attractor spreads to the w
absorbing area through a supercritical blow-out bifurcati
as shown in Fig. 14 fora50.5 andc51.14. This asynchro-
nous chaotic attractor makes a contact with its basin bou
ary on the curve, denoted by the open circles in Fig. 13,
then it disappears with its basin through a boundary cris

Finally, we discuss the bifurcation behaviors after t
blow-out bifurcation. As shown in Fig. 13, asa is increased
from 0, the period-doubling bifurcation curvesD1, the Hopf
bifurcation curvesH1, and the boundary-crisis curves~de-
noted by the open and solid triangles! come in pairs from the
period-doubling bifurcation, Hopf bifurcation, and the cris
points for a50, respectively. For the case of subcritic
period-doubling bifurcations onD1, the lower branch ofD1
is associated with stabilization of the asynchronous perio
saddle @corresponding to the upper-dashed curve in F
6~b!#, born through the saddle-node bifurcation. On the ot
hand, when crossing the upper branch ofD1 another period-1
saddle @corresponding to the lower-dashed curve in F
6~b!#, which is transformed from the asynchronous period

FIG. 14. Large asynchronous chaotic attractor, born via a su
critical blow-out bifurcation fora50.5 andc51.14, which covers
the whole absorbing area, bounded by the segments of the cr
curves,L1 , L2, andL3.
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repeller through the transcritical bifurcation in Fig. 6~b!, also
becomes stabilized. These asynchronous period-1 attrac
stabilized at the upper and lower branches ofD1, become
unstable when passing the upper and lower branches ofH1,
respectively, and then generally quasiperiodic attractors
pear. With further increase ofc, asynchronous chaotic attrac
tors, developed from the asynchronous quasiperiodic att
tors, born at the upper and lower branches ofH1, disappear
through boundary crises at the upper~solid triangle! and
lower ~open triangle! crisis curves, respectively. As an ex
ample, consider the case ofa50.75. When crossing the
curveB for c.1.352, an abrupt collapse of the synchrono
state occurs through a subcritical blow-out bifurcation, a
then typical trajectories, starting near the synchronizat
line, are divergent to infinity. However, as the upper bran
of D1 is passed forc51.647, . . . , astabilized asynchronou
period-1 attractor appears with its basin. With further
crease ofc, this asynchronous period-1 attractor is tran
formed into an asynchronous quasiperiodic attractor w
the upper branch ofH1 is crossed atc51.784, . . . . Finally,
the asynchronous chaotic attractor, developed from the a
chronous quasiperiodic attractor, disappears suddenly
its basin through a boundary crisis, occurring forc.1.869 at
the curve~denoted by the solid triangles!.

IV. SUMMARY

We have investigated how the asymmetry of coupling
fects the bifurcation mechanism for the loss of synchron
chaos with varying the asymmetry parameter in two coup
1D maps. It has been thus found that the asymmetry lead
the change in the bifurcation scenarios of the synchron
tion loss only for the case of symmetry-breaking pitchfo
bifurcations. For the weak-coupling case, pitchfork bifurc
tions of asynchronous periodic saddles are replaced w
saddle-node bifurcations, while for the strong-coupling ca
pitchfork bifurcations of synchronous periodic saddles tra
form to the transcritical bifurcations. As the asymmetry p
rametera is increased from 0 to 1, the effects of the sadd
node and transcritical bifurcations vary depending on th
types. For example, the effect of the transcritical bifurcat
depends on whether or not it induces a contact between
SCA and its basin boundary. Generally, the bifurcation
fects for smalla are similar to those in the symmetric
coupling case (a50) @7#, although the underlying bifurca
tion mechanisms are different. However, asa is further
increased, they change qualitatively, and eventually beco
similar to those in the unidirectionally coupled case (a51)
@10#. Finally, we conjecture that the above results obtained
asymmetrically coupled 1D maps may be applied to a la
class of real asymmetrically coupled systems, consisting
period-doubling subsystems, because the 1D map is a typ
period-doubling system, exhibiting universal behavior. Ho
ever, to explicitly examine our conjecture is beyond t
scope of the present paper, and hence, such a work wil
investigated in future.
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