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We study the critical behavidCB) of all periodp-tuplings p=2,3,4...) inN (N=2,3,4 . ..) symmetri-
cally coupled one-dimensional maps. We first investigate the CB fdith@ case of two-coupled maps, using
a renormalization method. Thrééve) kinds of fixed points of the renormalization transformation and their
relevant “coupling eigenvalues” associated with coupling perturbations are found in the case dbduen
p. We next study the CB for the linear- and nonlinear-coupling césesupling is called linear or nonlinear
according to its leading tenmand confirm the renormalization results. Both the structure of the criticébset
of the critical pointg and the CB vary according to whether the coupling is linear or nonlinear. Finally, the
results of the two-coupled maps are extended to many-coupled maphlwi#) in which the CB depends on
the range of couplind.S1063-651X%96)02310-(

PACS numbgs): 05.45+b, 03.20+i, 05.70.Jk

I. INTRODUCTION interested in the critical behavid€B) of period p-tuplings
(p=2,3,...) in thecoupled 1D maps. The period-doubling
Universal scaling behavior of periodp-tuplings case withp=2 was previously studiedl12,13. Here we
(p=2,3,4...) hasbeen found in a one-parameter family study the critical scaling behavior of all the other higher
fA(X) of one-dimensiona(1D) unimodal maps with a qua- Periodp-tuplings p=3,4,...).
dratic maximum. As the nonlinearity paramefeincreases, ~ Using a renormalization method, we first investigate the
a stable fixed point undergoes the cascade of period—doublir@'Itlcal behavior for theN=2 case of two-coupled maps in
bifurcations accumulating at a finite parameter vahg. ec. Il. In the case of eveiodd) p, we find threg(five) kinds
The period-doubling sequence corresponding to the ms&f fixed points _ofa r_enormahzaﬂgn transfo_rmaﬂon_ and their
(Metropolis, Stein, and SteifL]) sequencdR*" [for details re_levant coupll_ng eigenvalug€E’s) associated with cou-
of the MSS sequences and tifte)-composition rule, see pling perturbations. A short _account of the renor_mallzanon
Refs.[1.2]] exhibits an asymptotic scaling behav(ai, result has already been publisHdd]. We next consider two

. : ._kinds of couplings, linear- and nonlinear-coupling cases; a
What happens bgyond the pengd-dogbhng accumUIatIOIEoupling is called linear or nonlinear according to its leading
point A, is interesting from the viewpoint of chaos. The

: ' ..~ term. As examples of the linear- and nonlinear-coupling
parameter interval betweéeh, and the final boundary-crisis cases, we study the linearly and dissipatively coupled maps,

point A; beyond which no periodic or chaotic attractors caniggpectively, in Sec. Ill, and confirm the renormalization re-
be found within the unimodality interval is called the “cha- g|ts. The structure of the critical séset of the critical
OtiC” I’egime. Within this region, beSideS the period-doubling po|nt§ Varies depending on the nature Of Coupling_ In the
sequence, there are many other sequences of periodic orbitsearly coupled case, an infinite number of critical line seg-
exhibiting their own scaling behavior. In particular, every ments and the zero-coupling critical point, at which kh&D
primary patternP [that cannot be decomposed using the  maps become uncoupled, constitute the critical set, while in
operatio leads to a MSS sequende*". For example, the dissipatively coupled case, the critical set consists of only
P=RL leads to a period-tripling sequencB=RL? to a one critical line segment, one end of which is the zero-
period-quadrupling sequence, and the three differentoupling critical point. The CB also depends on the position
P=RLR’,RL?R, and RL® to three different period- on the critical set. For evefodd p, three(four) kinds of
quintupling sequences. Thus there exist infinitely manyfixed points govern the CB for the linearly coupled case,
higher periodp-tupling (p=3.,4, .. .) sequences inside the whereas only twdthreg fixed points govern the CB for the
chaotic regime. Unlike the period-doubling sequence, stabildissipatively coupled case.
ity regions of periodic orbits in the higher perigdtupling In Sec. IV we extend the results of the two-coupled maps
sequences are not adjacent on the parameter axis, becaugaenany-coupled maps with=3. It is found that the critical
they are created by their own tangent bifurcations. The asscaling behavior depends on the range of coupling. In the
ymptotic scaling behavior of thegdisconnectedhigher pe- extreme long-range case of global coupling, in which each
riod p-tupling sequences characterized by the parameter antD map is coupled to all the other 1D maps with equal
orbital scaling factorsg and «, vary depending on the pri- strength, both the structure of the critical set and the CB are
mary patternP [2,4-10. the same as those for the two-coupled case, independently of
In this paper we consideX (N=2,3,4...) symmetri- N. However, for the cases of nonglobal couplings of shorter
cally coupled 1D maps, which may be used as models ofange, a significant change in the structure of the critical set
coupled nonlinear oscillators such as Josephson-junction amay or may not occur according to whether the coupling is
rays or chemically reacting cells, and so fil]. We are linear or not. For the case of a linear nonglobal coupling,
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only the zero-coupling critical point is left in the parameter respectively. Linearizing the-times iterated mapr9 (ex-
plane, which is in contrast to the global-coupling case. Orpressed in terms of the new coordinatasan orbit point, we
the other hand, for the case of a nonlinear nonglobal couebtain a linearized map,

pling, one critical line segment still remains, as in the glo-
bally coupled case. Finally, a summary is given in Sec. V.

Il. RENORMALIZATION ANALYSIS
OF TWO-COUPLED MAPS

In this section we first discuss stability of periodic orbits
in two-coupled 1D maps, and then study the CB associated

with period p-tuplings (p=2,3,4...) using a renormaliza-
tion method. Threéfive) kinds of fixed points of a renormal-

ization operator and their relevant CE’s with moduli larger

than unity are found in the case of evardd) p.

A. Stability of periodic orbits in two-coupled maps

We consider a maf@ consisting of two symmetrically
coupled 1D maps,

_ Xe+1=F (X, Y) = (X)) +9(X¢,Yr)

: 2.1
Yir1=F (Y. X) =Ty +9(Yi. %), @

wheret denotes a discrete timé&(x) is a 1D unimodal map
with a quadratic maximum at=0, andg(X,y) is a coupling
function. The uncoupled 1D majpsatisfies a normalization
condition

f(0)=1, (2.2
and the coupling functiog obeys a condition
g(x,x)=0 for anyx. (2.3

The two-coupled mag?2.1) is invariant under the ex-
change of coordinates such thaty. The set of all points

8Yyiq =7 oY)’ 28
where the Jacobian matrik (=DTY) of T% is given by the
g product of the Jacobian matr@T of T along the orbit:

g-1
J=I1 DT(x,x)
t=0
(%) 0
_t=O 0 f'(x)—2G(xy) ]

(2.7)

Here the prime denotes a derivative with respeck,t@nd
G(x)=&g(x,y)/ay|yzx; hereafter,G(x) will be referred to
as the “reduced coupling function” of(x,y). Note that
6X and 8Y become decoupled for the case of a synchronous
orbit (i.e., J has a diagonalized form

The eigenvalues af, called the stability multipliers of the
orbit, are then given by

q-1 q-1
xo=t[[0 £/ (%), M{IO [f'(x)—2G(x)]. (2.8

The two stability multipliers\y and )\ ;, determine the sta-
bility of the synchronous orbit against the synchronous-mode
and asynchronous-mode perturbations, respectively. Hereaf-
ter, they will be called the synchronous and asynchronous
stability multipliers, respectively. Note also that the synchro-
nous stability multiplier\ is just the stability multiplier of

the uncoupled 1D map, and the coupling affects only the

which are invariant under the exchange of coordinates formasynchronous stability multipliex .

a symmetry liney=x. An orbit is called &n) (in-phase syn-

A synchronous orbit is stable when it is stable against

chronous orbit if it lies on the symmetry line, i.e., it satisfies both the synchronous-mode and asynchronous-mode pertur-

x;=y; for all t. (2.9

Otherwise, it is called afout-of-phasgasynchronous orbit.

bations, i.e., the moduli of both stability multipliers are less
than unity (\;|<1 fori=0,1). Hence the stable region of a
synchronous orbit in the parameter plane is bounded by the
synchronous and asynchronous bifurcation lines determined

Here we study only the synchronous orbits, which can beyy the equationa;=+1 fori=0,1, as will be seen in Sec.

easily found from the uncoupled 1D max,.;=f(x,), be-
cause of the conditiof2.3).

lll. When thehg=1 (—1) line is crossed, the synchronous
orbit loses its stability via synchronous saddle-n¢pleriod-

Stability analysis of a periodic orbit in the two-coupled doubling bifurcation. On the other hand, when thg=1
mapT can be conveniently carried out in a set of new coor-(—1) line is crossed, it becomes unstable via asynchronous

dinates K,Y), defined by

(X—y)
>

(x+y)
5

(2.9

pitchfork (period-doubling bifurcation. Some brief explana-
tions on the bifurcations are given below.

In the case of a synchronous saddle-node bifurcation, the
synchronous orbit collides with an unstable synchronous or-
bit with the same period, and then they disappear, like the

HereX andY correspond to the synchronous and asynchrotangent bifurcation in the 1D maps. On the other hand, there
nous modes of the orbit, respectively. For example, for are two types of supercritical and subcritical bifurcations for

synchronous orbiX=x andY =0, whereas for an asynchro-

nous orbitY#0.

each case of the pitchfork and period-doubling bifurcations.
In the supercritical case of the synchrongasynchronous

In order to study the stability of a synchronous orbit with pitchfork and period-doubling bifurcations, the synchronous

period q, we consider an infinitesimal
(6X,8Y) to the orbit. HeresX and &Y correspond to the

perturbation orbit loses its stability, and gives rise to the birth of a pair of

new stable synchronoyasynchronousorbits with the same

synchronous-mode and asynchronous-mode perturbationgeriod and a new stable synchrondasynchronousperiod-
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doubled orbit, respectively. However, in the subcritical case Xt11=Fe(Xt,Yo) = Fe(X) + 9e(X¢, Vi)

of the synchronougasynchronoys pitchfork and period- TC:[ . B (2.18
doubling bifurcations, the synchronous orbit becomes un- Yer1= PV X) = Te(y) + Ge(ye . x0)-

stable by absorbing a pair of unstable synchron@syn-
chronou$ orbits with the same period and an unstable
synchronous(asynchronous period-doubled orbit, respec-
tively. (For more details on bifurcations on 2D dissipative [

A critical map is attracted to a fixed mag under iterations
of the renormalization transformatioi:

Xe+1=F* (Xt,yo) = (X) + 9% (X¢,yo)

maps, refer tg15].) T*:
Yir1=F* (Y. X0 =T (y) + 9% (Y. X0)-

(2.19

B. Renormalization analysis . . . .
Y Here (f*,g*) is a fixed point of the renormalization operator

We now consider the periog-tupling renormalization R with a=1/f*(P~1)(1):
transformationV, which is composed of thp-times iterat-

ing (T®®) and rescalingB) operators: f* f*
=Rl - (2.20
MT)=BTPB 1, (2.9 g g9
Here the rescaling operaté is This fixed-point equation can be solved row by row consecu-
tively. Note thatf* (x) is just the fixed function in the 1D
a 0 map case, which varies depending jp115,6,8,9. Only the
B= : (210 equation for the coupling fixed functiayt (x,y) is therefore
0 «

left to be solved. One ftrivial solution i* (x,y) =0. In this
because we consider only synchronous orbits. zero-coupling case, the fixed m&n 19 consists of two un-
Applying the renormalization operatdy’ to the coupled coupled 1D fixed maps, which is associated with the CB at
map(2.1) n times, we obtain the-times renormalized map the zero-coupling critical point.

T, of the form However, it is not easy to directly find coupling fixed
functions other than the zero-coupling fixed function
[ Xi+1=Fn(Xe,Yo) = fa(X0) + 9n(X:, Vo) g*(x,y)=0. We therefore introduce a tractable recurrence
: 1) equation for a reduced  couplin function
" Ve =Fa(Ye, X0 =fn(y0) +gn(Ye, X0 y pind

G(x)=ag(x,y)/ay|y=x. Differentiating the recurrence
equation(2.13 for g(x,y) with respect toy and setting

Here f,, andg, are the uncoupled and coupling parts of the
n On P ping P =X, we obtain a recurrence equation f8(x) [16]:

n-times renormalized functioR,,, respectively. They satisfy y
the following recurrence equations:

X
Gn+1<x>=F${’%(;)

X
fm(x):afgm(—), (212
“ - X|| ¢ [so-1[ X (p-1 X
:Fn,z ; fn fn ; —2G, fn E
X X
gm(x,y):aF(n")(—,X)—afﬁ,m(—), (2.13
@ a @ +f(p1)’(i>G (f(pl)(i)) (2.21)
n n n ! N
o a
where
P ()= HE(P)
£0)(x) = £, (FPD(x)), (2.14 where an’?(x)—a“an (X Y)Yly—x- Thep Egs.(2.12 and
(2.21) define a “reduced renormalization operatoR of
Fg")(x,y)=Fn(ng‘l)(x,y),Fﬁf"l)(y,x)), (2.19 transforming a pair of functionsf(G):
f ~f
and the rescaling factor is chosen to preserve the normaliza- ( ntt ) =R( " ) (2.22
tion conditionf,,;(0)=1, i.e., Gn+1 Gn
1 We look for fixed points {*,G*) of R, which satisfy
fn (1) f* . f*
The recurrence relatior(2.12 and(2.13 define a renormal- (G*) :R( G* ) 2.23
ization operatorR of transforming a pair of functions
(f,9): Heref* is just the 1D fixed function an@* is the reduced
coupling fixed function of g*, e, G*(X)
fre1 fa =89*(X,y)/<9>’|y:x-
Uns1 =R 9/ (2.17) For the general periog-tupling case, we havgl7]

A map T, with the nonlinearity and coupling parameters o X - -
set to their critical values is called a critical map: Fnz a 0 for Gn(x)=0, (2.243
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X 1
—) for Gu(x)= Ef,;(x),
(2.24h

X 1 [ X 1
F&E’z(;)=§[fa‘” (—)—1} for Gn(x)=5[f(x) 1,

o
(2.249
[ X
—[f(m (— —1| forevenp
F(p)(f): “
e L #@'[X) 41| forodd
2| )7 P
1
for G, ( [fn(x +1], (2.240
0 for evenp
,:(p)(f): [ x
N2\ o f(P) (E) for oddp
for Gn(x)=f.(x). (2.24¢6

Differentiating the 1D fixed-function equation fof (x) with
respect tax in the periodp-tupling case, we also have

f*'(x)=f* p>( ) H f* (f*“ ) (2.25

Using Egs.(2.24) and(2.25, we obtain threéfive) solutions
for G*(x) in the case of everfodd p:

G*(x)=0 forallp, (2.263

G*(x)=%f*'(x) for all p, (2.26b
1 ’
G*(x)=§[f* (x)—1] forallp, (2.260

G*(x)= %[f* (x)+1] foroddp,  (2.26d

G*(x)=f*'(x) foroddp. (2.268

Thus we find threefive) kinds of fixed points {*,G*) of
R for the case of evefodd) p.

In the case of a critical maf2.18), the synchronous and
asynchronous stability multipliensy,, and X4, of the syn-
chronous orbits are given Hgee Eq(2.8)]

q-1 g-1
m{[o fo(xy), 7\1,n=tHO [fi(x) —2G(xy)],
(2.2

whereG¢(x) is the reduced coupling function gt(x), i.e.,
Gc(x)=agC/ay|y:X. As n—oo, they converge to their limit
values\§ and\7 , called the critical synchronous and asyn-
chronous stability multipliers, respectively:

Ay =limNgny, AF=lim\y,. (2.29

n—ow n—oo

Here\j is just the critical stability multiplien* for the 1D
case, and the coupling affects onlf . The values of\}
depend on the fixed points, as shown below.

The invariance of a fixed map* under iterations of the
period p-tupling renormalization transformatiaf” implies
that, if T* has a periodic pointx,y) with period p", then
B~ 1(x,y) is a periodic point ofT* with periodp"*?. Since
rescaling leaves the stability multipliers unaffected, all syn-
chronous orbits of periog" (n=0,1,2 ...) have the same
stability multipliers, which are just the critical stability mul-
tipliers. Consequently, they have the values of the stability
multipliers of the fixed point of the fixed map*:

AE=*'(X), A= (0)-2G*(%), (2.29

where X is the fixed point of the 1D fixed functiofi.e.,
x=f*(X)], and A} is just the critical stability multiplier
\* of the uncoupled 1D map. Note the{ depends on the
reduced coupling fixed functio®* (x):

AT =\* for G*(x)=0, (2.30a9

1 !
M =0 for G*(x)=5*"(x), (2.30B
1 .,
AT=1 for G*(x)=§[f* (x)—1], (2.300

ANf=-1 for G*(x)=%[f*'(x)+1], (2.309

ANE=—\*  for G*(x)=f*"(x), (2.308

where the casef2.303 — (2.309 exist for all p, but the
cases(2.30d and(2.30¢ exist only for oddp.

Consider a pair of functionsf{,G). Here G(x) is not
necessarily a reduced coupling fixed functi@ii (x). When
fo(X)=f*(x) and Gn(x) =G(x), the functionF P3(x/a) of
Eq. (2.2 will be denoted byF{(x/a). We now examine
the evolution of a pair of functionsf{ +h G+<I>) close to
(f*, G) under the reduced renormalization operaItber-

earlzng at (f*, G) we obtain a linearized operatdr of
transforming a pair of infinitesimal perturbations, ¢):

D = P B [ A
oyl o 7\Z, E)le,) @

where
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)

hp1(X)= [Zlhn](x) = a5f§1p)(§) =q

Ia'f*'(f*(p l( ))5f(p n| =

®py, 1(X) =[ LoPn] () +[ Lshp](x) = 5F<n‘,’%(§)

[rof -

+ah (f*<pl>

[L2Pp](x)=] f* SFR, V| =~

2

[£3h,](x) =

+’,E<2p1>(§> hé(f*(pl)(i
o o

Here the variationssfP(x/a) and sF(P}(x/a) are intro-
duced as the linear termgdenoted by [fP(x/a)
—1*O)(x/ @) jnear and [FEA(x/ @) =F (/@) Jjnead in
and ® of the deviations off P’ (x/a) and Fﬁf’%(x/a) from
f*®)(x/a) andF(x/a), respectively.

When a(x) is a reduced fixed coupling functio®* (x)
of Eq. (2.26), the opergtoE of Eq. (2.31) becomes a linear-

ized transformation oR at a fixed point {*,G*). A pair of
perturbations lf* ,®*) is then called an eigenperturbation
with eigenvaluey, if it satisfies

h*

o)

h* -
”(@* :‘C(

The reducibility of £ into a semiblock form implies that to

determine the eigenvalues gfit is sufficient to work inde-
pendently in each dfi(x) subspace an®(x) subspace. That

is, one can find eigenvalues 6f and £, separately and then
they give the whole spectrum df. _
We first solve the eigenvalue equation y, i.e.,

(2.39

vh* (X)=[ £L1h*](x). (2.37

Note that this is just the eigenvalue equation for the 1D map

PERIOD p-TUPLINGS IN COUPLED MAPS

linear

X ~ X
F;?z(;)—FgW(;)

’,E(zp—n(f)f*"(fup—l)(i))_2’,E<2p—1><§)§f(f*<p—1>(§
o o o o
)+§(f*<p1> X )5f<p1>’ X

a n al’

3397

(2.32

, (2.33

linear

oozl ) o
)+f*<p—1)’(f)@(p&(p—l)(f)ﬂ 5f51p—1>’(§)

(2.39

rameter, whose values vary dependingpoj®,4—10. How-
ever, note that although the eigenvaldeof £, is also an
eigenvalue of/: (h*,0) is not an eigenperturbation o
unlessL; is a null operator.

We next consider a perturbation of the formd(),having
only the coupling part. In this case (®7) can be an eigen-

perturbation ofZ, only if ®*(x) satisfies
v®* (X)=[ L,P*1(X). (2.39

Eigenvalues associated with coupling perturbations are
called CE’s. _

__ For the case of coupling perturbation €9, to (f*,G),

L, of Eq. (2.34 becomes

(Ea10=7 %)
f (f* (p- 1(
)

~|+

x

sl )

f*(p—n'(f) R
o

a

-1
X SFPY

case. It has been shown that there exists only one relevant

eigenvalues, associated with scaling of the nonlinearity pa-

R SUE] S S R

P X =0 for Bx=21+'(x)
2 la 2 ’

X X
x| — q:(f*<p—1>(—)). (2.39
o o
For the general periog-tupling case, we havgl7]
(2.40a9
(2.40bh
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p—1

-3 q)(f*(i) X
i o

p-1 «
- CID(f*(”(—)) for evenp
i (44

- ) for 6(x)=%[f*'(x)+1], (2.400
) f*“)(—)) for oddp
o

p—1
-3 f*(i)'<§> (f*m( )f*<p 1-i) (f*<l+l>< )) for evenp
: a a

ofref3
f*(i)'<§ (f*(') ) (p—1-D) (f*<l+1>< )) for oddp
o o

for §(x)=%[f*'(x)—1], (2.400

for G(x)=f*'(x). (2.408

For the case of evep, only the first threeG’s in Eqs. Wherea;'s (i =1,2,...) aresome constants. For the other
(2.403 — (2.409 are the reduced coupling fixed functions case®*(0)=0, it is found thatf*'(x) is an eigenfunction
G*’s, while for the case of od@, all G's in Egs.(2.40a — for the CE equation(2.4). When ®*(x)=f* (x), Eq.

(2.40¢ are the reduced coupling fixed functio@s 's. (2.41) becomes
We now find CE’s associated with coupling perturbations.
For the zero-coupling case @&* (x)=0, the CE equation w1y — x| X g
(2.38 becomes T ) =pf a pF00). (2.47

— X We therefore have the second relevant CE,
vd* (x)=[ Lo0*](x) = 5F<2F’)(;>

szp, (24&
_ 2 fr ()’ ( )(D*(f*(')( )) with reduced coupling eigenfunction
®F(x)=1*"(x). (2.49

- ) (2.4)  Note that®3} (x) has no constant term, whi®? (x) has a
constant term Thus we find two relevant CEvsl a and
v,=p, for the zero-coupling case.

The nth image®,, of a general reduced coupling pertur-
bation® under the linear transformatiofy, has the form

Xf*(p—l—i)'(f*(wn(f

Using the fact that*’(0)=0, it can be easily shown that
whenx=0, Eq.(2.41) becomes

p-1 -
y®* (0)= (H f*’(f*(')(O)))fb*(O) (2.42) D n(x)=[L3P](x)
~a V] PF (X)+ a,v5®3%(x) forlarge n,
Letting x—0 in Eq.(2.29, we also have (2.50
Pl o gn() f*'(x) because the irrelevant part @f, becomes negligibly small
H fxr(f (0))—I|mf*,( o)~ (243 for largen. Here a; and a, are relevant components.

A coupling is called linear or nonlinear according to its
leading term. In the case of a linear coupling, in which the
coupling perturbationp(x,y) has a leading linear term, its
reduced coupling functio (x) has a leading constant term,
and henceab (0)+# 0. However, for any other case of nonlin-
ear coupling with a leading nonlinear term, its reduced cou-
pling function has no constant term, and heriz€0)=0.

Then Eq.(2.42 reduces to
v®* (0)=ad*(0). (2.44

There are two cases. For the caB&(0)+0, we have the

first CE, Note that the relevant componeay becomes zero for the
nonlinear-coupling case, while it is nonzero for the linear-
= a (2.49 coupling case. Consequently, the CB associated with cou-
) - ] ] pling perturbations is governed by two relevant CE’s,
The eigenfunctionP? (x) with CE », is of the form vi=a and v,=p, for the linear-coupling case, but by only

. 5 one CE,v,=p, for the nonlinear-coupling case, which will
@7 (X)=1+asx+ax+---, (2.46  pe confirmed in Sec. III.
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We now consider the cases of twfour) other reduced C
coupling fixed functions* (x)’s for even(odd) p [see Eq. 9(x,y)=5(y—x), 3.1
(2.26)]. They are associated with CB at critical points other
than the zero-coupling critical point, as will be seen in Sec.

Il Since 5F(2p)(xla):0 for G*(x)=%f*/(x), Zz becomes wherec is the coupling parameter. The critical scaling be-

a null operator. Hence there exist no CE’s, and the CB ishawor depends on whetheris even or odd.

essentially the same as that for the 1D case. Whe?)eriod—tripling case [f=3) and study its CB. The stability

G*(x)=3[f* (x)—1], the CE equatiori2.38 becomes diagrams of synchronous orbits with period=3"
(n=0,1,2,3) are shown in Figs. 1 and 2. As noted in Sec.
Il A, the stable region of each synchronous orbit of lemel
(period 3") in the parameter plane is bounded by the four
L synchronous and asynchronous bifurcation curves deter-
- el x| X mined by the equations; ,=*1 fori=0,1. Since each syn-
= ;0 o\ f all (250 chronous orbit of leveh is created by its own synchronous
saddle-node bifurcatioiwhich occurs forag,=1), a se-
quence of stability regions with increasing is not con-
nected, unlike the period-doubling cd4e]. We now exam-
ine the treelike structure of stability regions. Figure 1 shows
v=p, (252 the stability regions of synchronous orbits of the lowest two
levels(i.e.,n=0 and 1). The synchronous orbit with period
when ®*(x) is a nonzero constant function, i.e., g=1 is stable in some quadrilateral-shape region containing
®* (x)=b (b is a nonzero constant~or oddp there are two the c=0 line segment. However, the stability region of the
additional reduced coupling fixed functions, next leveln=1 consists of three quadrilateral-shape areas.
G*(x)=i[f*'(x)+1] and G*(x)=f*'(x). The CE equa- ]’hey ca”n be regarded as “daughter”_ ql_JadriIateraIs of the
tion (2.39 for G*(x)=%[f*'(x)+1] is just that of Eq. mother” quadrilateral of level 0. That is, it may be thought

5 herefore it has th - hat for th that they branch off from the mother quadrilateral.
(2.53). Therefore it has the same Cks=p , as that for the We next consider the stability regions of higher levels in

caseG* (x) =3[ f*'(x)—1]. However, the critical asynchro- Fig. 2. The branchings occur from the central one containing
nous stability multipliers\7 for the two cases are different the c=0 line segment and its nearest-neighboring Gree,

[see EQ.(2.30]. When G*(x)=f* '(x), the CE equation the right ong¢ among the three quadrilaterals of leve[see
(2.38 is the same as that for the ca8& (x)=0. Hence it ~Figs. 2a) and 2b)], while there is no branching from the left
also has two relevant CE's;;=a and v,=p. However, One[see Fig. Z0)]. This rule governs the treelike structure of
A% for this case is different from that for the case the stability regions. That is, for each level branchings
G*(x)=0, as can be seen in E€.30. The results of rel- 0ccur only from two quadrilateral-shape areas, the central

evant CE’s, along with those of the critical asynchronouson€ containing thec=0 line segment and its nearest-
stability multipliers, are listed in Table I. neighboring one. However, an infinite number of successive

branchings occur only for the case of the central quadrilateral
including thec=0 line segmentsee Fig. Pa)]. For the case
lll. LINEAR AND NONLINEAR COUPLINGS of the nearest-neighboring quadrilateral, branching occurs
only once, and after that, successive quadrilaterals of higher

consider two kinds of couplings, linear and nonlinear cou-lze\k’)eIS Fplletlrl]p without ?ny ftért_fl‘etf bflélncmnbest.r?., stehe Flg.t |
plings. As examples of the linear- and nonlinear-coupling (b)]. For the cases of quadrilaterals other than the centra

cases, we study the linearly and dissipatively coupled map ,.nd its nearest—.neighbo.ring Ones, succes;ive quadrilat(_arals of
respectively, and confirm the renormalization results. Th igher levels pile up without any branchinfsg., see Fig.
structure of the critical sefset of the critical pointsvaries ©)]- . . _ . L
depending on the kind of coupling. In the linearly coupled A sequence of stability regions with increasing period is

case, an infinite number of critical line segments, togethe?f""edl\,;’,i ‘:IEJherlod-tnpimg I;_Olge,”fllke_tr;et PEI".r'Od'dOtUbI%?
with the zero-coupling critical point, constitute the critical case[13]. There are two kinds of period-tripling route. The

set, whereas in the dissipative case, the critical set consists @fquence of the quadrilateral-shape areas containing

only one critical line segment, one end of which is the zerone =0 line segment conv(e3§ges t_o the zero-couplmg(;g)pomt
coupling critical point. The CB also depends on the position® = on the A=A line,  where A

on the critical set. For evetodd) p, three (four) kinds of ~ (=1.786 440 255 563 639 354 534 %4..) is the ac-
fixed points govern the CB for the linearly coupled Case,cumulat|on point of the period-tripling sequence for the 1D

while only two (three kinds of fixed points govern the CB Case. It will be referred to as th route. On the other hand,
for the dissipative case. a sequence of quadrilaterals which piles up without succes-

sive branchings converges to a critical line. For example, the
_ leftmost one is the line joining two pointsc,
A. Linearly coupled maps (=—3.590 291 636 032 974 400 24..) and ¢,
We numerically study the CB of perigattuplings intwo  (=—3.482 633 674 606 564 177 87..) on the
linearly coupled 1D maps with the coupling function A=A line [see Fig. Zc)]. This kind of route will be called

As an example of odd perio@-tuplings, we take the

v®* (X)=[ Lo ®* ](x)= 5F(2p)(2)

There exists a relevant CE,

We choosef (x)=1—Ax? as the uncoupled 1D map and
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TABLE |. Reduced coupling fixed function&* (x), relevant

T

CE’s v, and the critical asynchronous stability multiplier® in all 4 l I ' ' I I i
the periodp-tupling cases are shown for the case of two-coupled B /- ] q13
maps. In the second colume,(0) denotes the evefodd period- - o1
p tuplings. The first three fo6* (x) exist for all p, while the last 3| _
two exist only for odd p. Note also that the case
G*(x)=3f*'(x) has no relevant CE's, and and\* are the or- -
bital scaling factor and the critical stability multiplier for the 1D :F 2r 7
case, respectively. ‘1’&8

g 1t -
G* (x) p v Ny -
(3 €0 @ p A* ok _
5 £/ €0 nonexistent 0 =1 |
%[f*/(x)_l] 0 P L 1 ] ! ] ] I 1 |l
1 ’ - L L . L L L L L
2 [ () +1] 0 P -1 4 3 2 4 0 1 2 3
f*(x) 0 a, p —\*

. FIG. 1. Stability diagram of the synchronou®-geriodic orbits
an L route. Note that there are infinitely mary routes, of the lowest two levels=0,1 in two linearly coupled maps. Each

Wh_'le the Z, r_OUte_ converging to t_he_ Z_erO'COUpI'ng C”_t'_cal periodic orbit of leveh is born via its own saddle-node bifurcation.

point (A..,0) is unique. Hence an infinite number of critical ;5 staple regions, denoted loy=3", are bounded by four bifurca-

line segments, together with the zero-coupling critical pointjon curves determined by, = =1 for i=0,1. The horizontal and

constitute the critical set. nonhorizontal solid (short-dashed boundary lines [i.e., the
We now study the critical scaling behavior on the critical \ ;= —1 (1) and\;=—1 (1) bifurcation curvelcorrespond to the

set. First, consider the case of tdg route ending at the synchronous and asynchronous period-doublitgynchronous

zero-coupling critical point. The CB for this zero-coupling saddle-node and asynchronous pitchfobifurcation curves, re-

case is governed by the zero-coupling fixed nf2@9 with spectively.

g*(x,y)=0, which has two relevant CE's,y;=«

(=—9.277 341 ..) andv,=3 (see Table) as follows. wheres; = w1+ u, ands,= uquo. Thenu,; and u, are so-
We follow the synchronous orbits of periap=3" up to  lutions of the following quadratic equation:

level Nn=10 in the Z5 route, and obtain a self-similar se- )

quence of parametersAf,c,), at which each orbit of level K =Sut S, =0. 3.9

n has some given stability multipliersAg,\;) (e.g.,

No=—1 and\;=1). Then the sequencfA,,c,)} con-

verges (3?eometrically to the zero-coupling critical

point (A;”,0). In order to see the convergence of each of _ 2_

the two scalar sequencésd,} and{c,}, define 5,=AA,/ sl:AC”AC”+1 ACn-14Cn+2 ACh—ACn+1ACh-y

AA, 1 and u,=Ac,/Ac, 1, WhereAA,=A,—A,_; and

Ac,=c,—c,_1. Then they converge to their limit values

and u, respectively, as shown in Table ”.‘ Hence the WO Note that Eqs(3.39—(3.6) hold only for largen. In fact the

sequen?eﬁAn} and{cn} obey one-term scaling laws asymp- values ofs;’s and u;'s (i=1,2) depend on the leveh.

totically: Therefore we explicitly denots;’s and u;’s by s; ,'s and

Wi.n'S, respectively. Then each of them converges to a con-

stant agn—oo:

To evaluateu; and u,, we first obtains; and s, from
Ac,’'s using Eq.(3.4):

Sy= 2 .
Ach, 1= AChACHs 2

(3.6

2
Ach, 1= AChACH:

AA,~6", Ac,~u~" for large n, (3.2

where §=55.247... andu=—9.277... . Note that the lims; ,=si, limpj, =g, i=12. (3.7
nonlinearity-parameter scaling factdiis just that for the 1D n—o n—o

case, and the value of the coupling-parameter scaling factor

u is close to that of the first CEy; (= a). Three sequenceguin}, {mon}, and {ul,/u,,} are

In order to take into account the effect of the second relshown in Table Ill. The second column shows rapid conver-
evant CE,v, (=3), on the scaling of the sequenf&c,}, gence of u,, to its limit value u; (=-9.277341..),
we extend the simple one-term scaling 148/2) to a two-  Which is close to the renormalization result of the first rel-

term scaling lawf 18]: evant CEv; (=a). (Its convergence ta is faster than that
for the case of the above one-term scaling JalRrom the
AC,~Ciuy"+Cou,™ for large n, (3.3  third and fourth columns, we also find that the second scaling

factor u, is given by a product of two relevant CE's; and

where| u,|>|u4|, andC, andC, are some constants. This is Y2

a kind of multiple-scaling law19]. Equation(3.3) gives )2
1
M2=—""

; (3.8
Acy=5;ACh+ 1~ S2AC4 2, (3.4 V2
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FIG. 2. Stability diagram of the synchronous’-geriodic
(n=1,2,3) orbits of leveln in two linearly coupled maps. Each
periodic orbit of leveln is created via its own saddle-node bifurca-
tion. Its stable regions, denoted ly=3", are bounded by four
bifurcation curves determined by = =1 fori=0,1. The solid and

short-dashed boundary lines represent the same as those in Fig.
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wherev,;=a andv,= 3. It has been known that every scal-
ing factor in the multiple-scaling expansion of a parameter is
expressed by a product of the eigenvalues of a linearized
renormalization operatdi9].

We also study the effect of CE’s on the asynchronous
stability multipliers of synchronous periodic orbits. Consider
the two-coupled map (2.1) with f(x)=f,(x) and
a(x,y)=eo¢(Xx,y). Heref (x) is the 1D critical map with the
nonlinearity parameter set to its critical valde= AP and
€ is an infinitesimal coupling parameter. The map §o6+0
is just the critical magr . at the zero-coupling critical point
consisting of two uncoupled 1D critical mags. It is at-
tracted to the zero-coupling fixed mag2.19 with
F*(x,y)=f*(x) under iterations of the renormalization
transformation\ of Eq. (2.9). Hence the reduced coupling
functionG(x) [ =eP=¢de(x,y)/dy|y—«] corresponds to an
infinitesimal reduced coupling perturbation to the reduced
coupling fixed functionG* (x)=0.

In the periodp-tupling case, the stability multipliens, ,
and\ 1, of the p"-periodic orbit are the same as those of the
fixed point of then times renormalized map/™(T), which
are given by

)\O,n: frq(;(n)a

)\1,n:frq(;(n)_2Gn(§(n):fr,1(§(n)_28q)(§(n)- (3.9
Here (f,,,G) is thenth image of §.,G) under the reduced
renormalization transformatioR, X, is just the fixed point
of f,(x) [i.e., X,=f,(X,)] and converges to the fixed point
x of the 1D fixed mapf*(x) asn—o. The first stability
multiplier Ao, converges to the 1D critical stability multi-
plier A\* =f*'(X) as n—. For the period-tripling case,
A*=-1.87270592.... Since Gu(X)=[LHG](X)
=e®,(x) [D,(X) is given in Eg.(2.50], the asynchronous
stability multiplier has the form

Npn=Agn— 2e®(x)

=\*+e[ev]+e,)] (3.10

for large n,

where e;= —2a;®7 (X) and e,= —2a,f*’'(X). Therefore
the slopeS, of Ny, at the zero-coupling critical point
(e=0)is

IN1n
de

= for large n.

(3.1

~ n n
le—o=e1v]+erh

Here the coefficiente; ande, depend on the initial reduced
function ®(x), becausex,,’s are determined only byp(x).
Note that the coefficierg, is zero for the nonlinear-coupling
case, whereas it is nonzero for the linear-coupling case.
Hence the growth o§, for largen is governed by the two
relevant CE’'s,v;=a and v,=p, for the linear-coupling
case, but only by the second relevant Gk=p, for the
nonlinear-coupling case.

1 Figure 3 shows three plots of; ,(AY) ) versusc for

The stability diagrams starting from the central, right, and left sta1=2, 3, and 4. The slop&, of \,, at the zero-coupling

bility regions of level 1 are shown if®), (b), and(c), respectively.
See the text for other details.

critical point increases witm, and obeys well the two-term
scaling law,
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TABLE II. In the Z3 route, we followed a sequence of param- ~ TABLE IIl. For the case of th&; route, scaling factorg; , and
eters @\, ,c,) at which the pair of stability multipliers\gy, ,\1,) of M2n in the two-term scaling for the coupling parameter are shown
the orbit of period 8 is (—1,1). This sequence converges to the in the second and third columns, respectively. A product of them,
zero-coupling critical pointA®,0) with the scaling factors shown ,uin/,uZn, is shown in the fourth column.
in the second and third columns.

n Bin M2n 15 ol 20
n On Mn
4 —9.277 396 06 24.578 89 3.501 79
3 55.264 789 71 —9.27261 5 —9.27733731 27.768 52 3.099 52
4 55.245 77151 —9.279 20 6 —9.277 341 36 28.502 38 3.019 72
5 55.247 11093 —-9.276 71 7 —9.277 341 10 28.650 77 3.004 08
6 55.247 020 84 —9.277 55 8 —9.277 34112 28.681 53 3.000 85
7 55.247 026 98 —9.277 27
8 55.247 026 56 —9.277 36
9 55.247 026 59 —9.27733 of the coupling parameter at both ends are the same, the

critical asynchronous stability multipliers; of Eq. (2.28 at
both ends have different values. The convergence of the se-
Sy~dyri+d,ry  for large n, (3.12  quence{\y,} toits limit value\? is also shown in Table V.

) At the left (right) end,\T =1 (—1). Comparing the values
whered, and d, are some constants ant;|>|ro|. This  of ;, and\* with those of the CE» andA* listed in Table |,
equation gives we find that the CB near the left end is governed by the fixed

Snio=t1Sh+1— 1S, (3.13  point (f*,G*) of R with G*(x)=i[f*'(x)—1], whereas
that near the right end is governed by the fixed point with
wheret,;=r;+r, and t,=r4r,. As in the scaling for the G*(X):%[f*’(X)Jrl]_
coupling parameter, we first obtaipn andt, of level n from

o Figure 4 shows the behavior of the asynchronous stability
Sn's: multiplier X, ,(A®),c) near the leftmost critical line seg-
S1115— S5 1 Sﬁﬂ—SnSnJrz ment. The slope§, of A, at both ends obey well the one-

ti,= , top=———. term scaling law,
M S-S1S s 2 S~ S1S1
(3.14 S,~v" forlarge n, (3.17

;I'hheerno;t)r;: ;? ?A:‘g ngt%rﬁénea:(;:ig?ﬁT‘tlevrelrtare:%vir;]:y wherev=3. For any fixed value o€ inside the critical line
q 9 ~taalnrlon=5. Ihey segment\, converges to zero as—. That is, all the

are listed in Table IV and converge to constan{S(= v,) interior points are critical points withy =0. Hence the CB

andr, (=»;) asn—, whose accuracies are higher thaninside the critical line segment becomes the same as that of
those of the coupling-parameter scaling factors. 9

We next consider the cases bf routes, each of which the 1D map, which will be discussed in more detail below.
" . ! This kind of 1D-like CB is governed by the fixed point with
converges to a critical line segment. In edchroute, there

are two kinds of self-similar sequences of parameter$*(X)=3zf* (x), which has no relevant CElsee Table)l
(An,Cy), at which each orbit of leveh has some given sta- ~ For the case of a synchronous orbit in two linearly
bility multipliers; the one converges to the left end point of coupled 1D maps, its two Lyapunov exponents are given by
the critical line segment and the other converges to the right

end point. As an example, consider the leftmrogtoute[see AR ! ,

Fig. 2(c)], which converges to the critical line segment with ‘TO(A):nL'anEt; In|f*(xo)l., (3.18

two ends A% ¢,) and A c,). We follow, in the leftmost

L ; route, two self-similar sequences of parameters, one con-  m-1

verging to the left end and the other converging to the right o1(Ac)= lim = In|f'(x)—c|. (3.19

end. In both cases, the sequedég} converges geometri- m—eMi{=0

cally to its accumulation valuA’® as in the case of th&,

route, Hereo, (o) is the synchronou&synchronousLyapunov

exponent characterizing the mean exponential rate of diver-

AA,~5"" for large n, (3.19  gence of nearby orbits alon(across the symmetry line

y=X. Note that the synchronous Lyapunov exponeptis
just that of the uncoupled 1D map and the coupling affects
only the asynchronous Lyapunov exponent In order to
Ac,~u~" for large n, (3.1  See the phase dynamics near the critical line segment in more
detail, we fix the value of the nonlinearity parameter
whereAc,=c,—C,_,. The convergence of the scaling fac- A=A{®) and obtain the asynchronous Lyapunov exponent
tor u, of leveln to its limit valueu (=3) is shown in Table o4 of the synchronous orbit by varying the coupling param-
V. Note that the value of. is different from that f=a) at  eterc, which is shown in Fig. 5(Note that the synchronous
the zero-coupling critical point. Although the scaling factorsLyapunov exponenty of the synchronous quasiperiodic or-

whereAA,=A,—A,_; and §=55.247. .. . The sequences
{c,} for both cases also obey the one-term scaling law,
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TABLE IV. In the period-tripling case, scaling factorg, and
ron in the two-term scaling for the slop®, of the asynchronous
. stability multiplier\  , at the zero-coupling critical point are shown
in the second and third columns, respectively.

N n r1,n r2,n
4 —9.277 335543 4 2.9278
= 5 —9.277 3415010 2.9845
6 —9.277 341089 3 2.996 7
7 —9.277341 1174 2.999 3
7] 8 —9.277 3411168 2.999 5

We now study the CB of period quadruplings<£4), as
an example of even perigaltuplings. The stability diagrams
of synchronous orbits of periodj=4" (n=0,1,2,3) are
c shown in Figs. 8 and 9. The treelike structure of stability
regions is similar to that for the period-tripling case. As
shown in Fig. 8, four “daughter” quadrilaterals of level 1
branch off from its “mother” quadrilateral of level 0. How-
ever, an infinite number of successive branchings occur only
bit becomes zero on the=A® line.) Inside the critical line for the case of the central quadrilateral including twe0
i ' S . line [see Fig. @)]. For the cases of quadrilaterals other than
segment €, <c<c,), the synchronous quasiperiodic orbit on ) . : .
- . the central one, successive quadrilaterals of higher levels pile
the y=x symmetry line becomes a synchronous attractor

) . : up without any branchingssee Figs. &) and 9c)].
with 0-1<<0. Since the dynamics on the synchronous attractor Like the period-tripling case, there are two kinds of

s the same as th"’.‘t for th? .uncoupk.ed 1D case, the Crltlcaderiod-quadrupling route which are a sequence of stability
maps at interior points exhibit essentially 1D-like CB. How- regions with increasing period. The sequence of the quadri-

ever, as the coupling parametemasses through, or ¢;, laterals containing the=0 line segment, called th&,
the asynchronous Lyapunov exponentof the synchronous Joute converges to the zero-coupling critical poiAﬁf@ 0)

quasiperiodic orbit increases from zero, and hence the co ) .
where A" (=1.942 704 354 755 467 972 167 178) is

pling leads to desynchronization of the interacting systems. , , : )
Thus the synchronous quasiperiodic orbit ceases to be gR€ accumulation point of the period-quadrupling sequence

attractor outside the critical line segment, and new asynchrd®" the 1D case. On the other hand, a sequence of quadrilat-
nous attractors appear. This is illustrated in Fig. 6. erals which piles up without branchings, calledlaproute,

We also study the critical scaling behavior of the asyn-COnverges to a critical line. For example, the leftmost one is
chronous Lyapunov exponent, near both ends for the case the line joining two points A ;) and (A%Y,c,) [see Fig.
A=A® . As shown in Fig. 7, the asynchronous Lyapunov®(©)], where c¢,=—3.888 058 931772634488... and

exponento, varies linearly with respect to near both ends, = ~3-877 063178096 222 051... . Note also that there
ie., o,~e, e=c—c* (c*=c, or c,). The critical scaling are infinitely manyL, routes. Hence an infinite number of

behavior ofor; near both ends is obtained from the same Cgcritical line segments, together with the zero-coupling criti-
B ) . ko 1 % _ cal point, constitute the critical set. The results of the critical

V__S’ of the f'X,ed points withs (X)__ 2[1i{3) (x)]. Con scaling behavior on the critical set are given below.

sider a map with nonzere (but with A=A:") near both We first consider the case of ti#&, route ending at the

ends. It is then transformed into a new one of the same fom’zero-coupling critical point. As in the period-tripling case,

but with a renormalized parametef under a renormaliza- the critical scaling behavior for this zero-coupling case is
tion transformation. Here the parameterobeys a scaling gjso governed by the zero-coupling fixed map with two rel-

-0.0006 -0.0003 0.0000 0.0003 0.0006

FIG. 3. Plots of the asynchronous stability multipliers
M 1n(AD) ) versusc near the zero-coupling critical point for the
synchronous orbits of periog=3" (n=2,3,4).

law, evant CE’s,v;=a (=—38.819074..) andv,=4 as fol-
, lows.
e'=ve=3e. (320 We follow, in the Z, route, the synchronous orbits of
Then the asynchronous Lyapunov exponenqtsatisfies the Periodg=4" up to leveln=7, and obtain a self-similar se-
homogeneity relation quence of parameterd\(,c,), at which the pair of stability
multipliers (\on,\1,) Of the 4'-periodic orbit is 1,1).
o(e')=304(e). (3.2)  Then the sequend€A, ,c,)} converges to the zero-coupling
) ] ] critical point (A%),0). Here the sequendg\,} obeys well
This leads to the scaling relation the one-term scaling law,
oi(e)~e”, (3.22
AA,~6" " forlarge n, (3.29

with exponent

n=In3/Inv=1. (3.23 where AA,=A,—A,_; and the scaling factor
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TABLE V. We followed, in the leftmostL; route, two self-

similar sequences of parameters. One sequence of parameters

(An.cp), at whichhg,=—1 and\;,=0.8, converges to the left
end QAS) ,¢;) of the critical line segment with the scaling factor

u, Of the coupling parameter shown in the second column. The

other sequence of parameterd,(c,), at which\q,=—1 and
\1,=—0.8, converges to the right end® ,c,) with the scaling

factor u,, of the coupling parameter shown in the fourth column. In
both cases the scaling factors are the same. The convergence of the

sequenceX; } to its limit values\} at the left(right) end is also
shown in the third(fifth) column. Note that the values of;’s at
both ends are different.

n Mn Nip Mn Nin

3 3.664 5 0.996 763 57 1.8362 —-1.01028572

4 2.946 7 1.000 444 09 3.0573 —0.998 599 423
5 2.990 8 0.999 939 19 2.9682 —1.00019198

6 29941 1.000 000 33 2.9970 -—-0.99997371

7 2.998 3 0.999 998 86 2.9980 —1.00000360

8 2.9994 1.000 000 16 29995 —-0.999999 51

9 2.9998 0.999 999 98 2.9998 —1.000000 07

(=981.594 . .) isjust the parameter scaling factor for the

1D case. On the other hand, the sequdge obeys well the

two-term scaling law,
Ac,~Cyiul+Coul (3.25

for large n,

whereAc,=c,—Cp_1, | 42| >|u1|, andC; andC, are some

SANG-YOON KIM

,(A%.c)

oL—— 1
-3.60 -3.58 -3.56 -3.54 -3.52 -3.50 -3.48

C

FIG. 5. Plot of the asynchronous Lyapunov exponent
a1(AD) c) versusc near the leftmost critical line. The plot consists
of 200 c values, each of which is obtained by iterating the map
100 000 times to eliminate transients and then averaging over an-
other 500 000 iterations.

that the growth of the slopg&, of A, at the zero-coupling
critical point is also governed by the two CE’s, i.e.,

S,~dvi+d,v)  forlarge n,

(3.27

whered; andd, are some constants.

constants. As shown in Table VI, the two scaling factors We next consider the cases bof routes, each of which

mq and u, are given by

2
vy

=,, =
M1 1, M2 vy

(3.2

ends at a critical line segment. As an example, consider the
leftmost L, route [see Fig. &)], in which we follow two
self-similar sequences of parameters, one converging to the
left end A c,) of the critical line segment and the other
one converging to the right end\(*) ,c,). As in the case of

We also study the effect of the CE’s on the asynchronoushe Z, route, the sequendg\,} converges geometrically to

stability multipliers\;, of synchronous orbits. It is found

1.0

0.5

)

3

0.0

}”1 ,n(A

-0.5

-1.0

-3.60 -3.58 -3.56 -3.54 -3.52 -3.50 -3.48

C

FIG. 4. Plots of the asynchronous stability multipliers
)\lvn(Aﬁf’) ,C) versusc near the leftmost critical line for the synchro-
nous orbits of periodj=3" (n=2,3,4).

its limit value A% with the 1D scaling facto. The se-
quence{c,} also obeys the one-term scaling law,
Ac,~u~" forlarge n, (3.28
whereAc,=c,—c,_;. The convergence of the scaling fac-
tor w, of level n to its limit value x is shown in Table VII.
Note that the scaling factoys at both ends are the same, i.e.
pn=4. Moreover, the critical asynchronous stability multipli-
ers\} at both ends are also the same, iN.=1, as shown
in Table VII. This is in contrast to the period-tripling case
where\?’s at both ends are different. We also compare the
values ofu and A} with those of the CEv and A} listed
in Table I and find that the CB at both ends is governed by
the same fixed point f¢,G*) of R with G*(x)
=2[f* '(x)— 1], unlike the period-tripling case.

Figure 10 shows the behavior of the asynchronous stabil-
ity multiplier )\Ln(Afj‘) ,C) near the leftmost critical line seg-
ment. The growth of the slop&, of \;, at both ends is
governed by the C (=4), i.e.,

S

for large n.

(3.29



0.02 T T T

PERIOD p-TUPLINGS IN COUPLED MAPS

(@)
0.01F

> 0.00}

-0.01 +

-0.02

-0.02 -0.01 0.00

0.01

0.

02

0.10 T T T

0.05

0.00

-0.05

-0.10}

-0.10

0.

10

0.02 . .
(©
0.01F

> 0.00}

-0.01}

-0.0

0.00
X

.02 L
-0.02 -0.01

FIG. 6. Attractors near the leftmost critical lin@) a synchro-

0.01

0.

02

3405

0.0010 @ .

0.0005

g 0.0000

-0.0005

-0.0010 1

0.0000 0.0001

€

0.0010 . . .
(b)

-0.0001

0.0005

g 0.0000

-0.0005

-0.0010

0.0000 0.0001

€

-0.0001

FIG. 7. Plots of the asynchronous Lyapunov exponent
o1(A® &) versuse (e=c—c*,c*=c, orc,) near the(a) left and
(b) right ends of the leftmost critical line. Each plot consists of 50
e values, each of which is obtained by iterating the map 100 000
times to eliminate transients and then averaging over another
500 000 iterations.

In order to see the phase dynamics near the critical line
segment in more detail, we fix the value of the nonlinearity
parameterA=A® and obtain the asynchronous Lyapunov
exponento; [see Eq.(3.19] of the synchronous orbit by
varying the coupling parameter which is shown in Fig. 11.
Inside the critical line segment(<c<c,), the synchronous
quasiperiodic orbit on thgg=x symmetry line becomes a
synchronous attractor with;<<0, as shown in Fig. 12).
Note that the dynamics on the synchronous attractor is the

nous attractor inside the critical line and asynchronous attractor§@Me as that for the uncoupled 1D case. Hence the critical

outside the critical line fofb) c=—3.590 5 andc) c=—3.482 4.

maps inside the critical line segment exhibit 1D-like CB.

For each case, the map is iterated 100 000 times to eliminate trafdowever, as the coupling parametepasses through, or
sients and the next 10 000 iterations are plotted.

However, for any fixed value of inside the critical line
segment\ ; , converges to zero as—<. Thus all the inte-
rior points become critical ones witk} =0. Consequently,

¢, , the asynchronous Lyapunov exponeftof the synchro-
nous quasiperiodic orbit increases from zero, and hence the
coupling leads to desynchronization of the interacting sys-
tems. Thus the synchronous quasiperiodic orbit ceases to be
an attractor outside the critical line segment, and new asyn-

the CB inside the critical line Segment becomes the same Ehronous attractors appear, as shown in F|gib)1and
that of the 1D map, as will be seen below. This kind of 12(c).

1D-like CB is governed by

the fixed point with
G*(x)=1f*"(x), which has no relevant CE{see Table)l

We also study the scaling behavior of the asynchronous
Lyapunov exponentr; near both ends of the critical line
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and study the CB of the period triplingp€ 3) and period

7 71 v 1 171 1T 71 ™ _ 17 d I :4
1 e [ ~' [ quadruplings p=4). N _
sl * : R Figures 18a) and 13b) show the stability diagrams of
L 1 synchronous orbits with periog=p" (n=1,2,3) forp=3
5 — and 4, respectively. As previously shown, each stability re-
r 1 gion of leveln (periodp") in the parameter plane is bounded
ar T by four bifurcation curves determined by; ,==*1 for
? 3 [ ] i=0,1. An infinite sequence of such stability regions, called
i{s | | the “period p-tupling route,” converges to a critical line
= 2oL 4 joining two ends AP c) and AP ,c*), whereAP is the
v accumulation point of the periop-tupling sequence for the
r 7 1D casec] =0 andc; =2, as shown below. Hence only one
0 i ] critical line segment constitutes the critical set for the dissi-
L ol | pative case, unlike the linearly coupled case.
gl . : L Consider two dissipatively coupled 1D maps on the line
4 3 2 1 0 1 2 3 4 A=AP) in the parameter plane, in which case the reduced
c coupling function of the coupling functiof8.30 is given by
FIG. 8. Stability diagram of the synchronou8-geriodic orbits G(x)= Ef (X) (3.31)
of the lowest two level®=0,1 in two linearly coupled maps. Each 2 ¢

periodic orbit of leveln is created via its own saddle-node bifurca-

tion. Its stable regions, denoted loy=4", are bounded by four wheref is the 1D critical map with the nonlinearity param-
bifurcation curves determined by=+1 fori=0,1. The solid and eter set to its critical value. By successive applications of the
short-dashed boundary lines represent the same as those in Fig. denormalization operatdﬁ to (f.,G), we have

segment. As in the period-tripling case, using the scaling X c

theory, one can also obtain the scaling relation oof, fn(x)=aff1"_>1(—), Gy(x)= ?nfr’](x), 3.32
o~ € with exponenty=In4/Inv=1, wherev (=4) is the @

CE of the fixed point withG* (x) =3[ *'(x) —1]. Hence the
asynchronous Lyapunov exponeni varies linearly with re-
spect toc near both ends.

Finally, we briefly summarize the results for the linear- 33
coupling case. The critical set consists of the zero-coupling (3.34
critical point and an infinite number of critical line segments. _ _ _ N
The CB at the zero-coupling critical point is governed by they:rzreesf?E)thefig()fixGe&()gaﬁG(%)’ andco=c. Heref, con
zero-coupling fixed map with two CE's;, (=a) and », The fixed points of the recurrence equatiq8s33 and
(=p), for all periodp-tupling cases. However, the CB near (3.34 for c are denoted by solid circles in Fig. 14. For
both ends of each critical line segment depends on wheth(ﬂ:3 there are three fixed points
p is even or odd. In the case of ogid the CB at one end is ' '
governed by a fixed point f,G*) of R with c*=0, 1, 2, (3.35
G*(x)=%[1—f*'(x)] and that at the other end by another

fixed point with G* (x)=3[1+f* (x)]. These two fixed While only two fixed points,
points have only one CEy=p. On the other hand, in the *=0 1 (3.36
case of evemp, the CB at both ends is governed by the same T :
fixed point with G* (x)=3[f*'(x)—1]. Inside the critical gyist forp=4. Stability of a fixed point* is determined by
line segment, the CB is the same as that of the 1D map for a|}g stability multiplier X given by A =dc,/dc,_4|.+. Note
period p-tupling cases. This kind OT 1D-like CB is governed that the fixed point at*=1is superstable)\(=0). The ba-
by the fixed point withG* (x)=3f* (x), which has no rel- sin of attraction to the superstable fixed point becomes the
evant CE’'s. Consequently, for eveodd p, three (four)  open interval (0,2), because any init@inside the interval
kinds of fixed points govern the CB for the linearly coupled o<c<2 converges tac* =1. For the period-tripling case,
case. both ends{ =0 andc; =2 of the interval are unstable fixed
points withA =3, and all points outside the interval diverge
B. Dissipatively coupled maps to the plus or minus infinity. However, for the quadrupling

As an example of the nonlinear-coupling case, we contase, only the left endf =0, which is also the image of the
sider two dissipatively coupled 1D maps with the couplingright endcy =2 under the recurrence relatid8.34), is an
function unstable fixed point witlhh=4, and all points outside the
interval diverge to the minus infinity. Thus the line segment
connecting two end points =0 andc; =2 becomes the
critical line for the dissipative-coupling case.

ch=c3_,—3c2_,+3c,_; for p=3, (3.33

Ch=—cCp_,+4c3_,—6c2_,+4c, , for p=4,

9xy) = 5LH) ~ (0], (330
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L B T T T TABLE VI. For the case of theZ, route, scaling factorg., ,
20tf F SE and u,, in the two-term scaling for the coupling parameter are
[20.5 To=64 ' 1 b shown in the second and third columns, respectively. A product of
18 00 :l | ] [— 7 them, u? ./ pon, is shown in the fourth column.
I -0.002 0.000 0.002
16 | 2
| n Min M2n Ml,n//'LZ,n
< My o 1 a6 [ 3 —38.819 021 99 311.92 4.83
§<::8 L T 4 —38.819 074 56 372.98 4.04
= ! 5 —38.819074 24 377.22 3.99
- 10 .
8 1 All critical maps inside the critical line segment are at-
I az4 tracted to the fixed maps with the same reduced coupling
6 L@ L L ! function G*(x)=f*'(x). These fixed maps have no rel-
-0.08 -0.04 0.00 0.04 008 evant CE’s, because the fixed poitit =1 is superstable.
c Hence the critical maps at interior points exhibit essentially
1D-like CB. In the period-tripling case, the critical map at
L p— T T T — the left endc] is attracted to the zero-coupling fixed map,
20 | T : q=64 -
18 - 1 T X 1= (%),  Yer1=* (Y0, (3.37
16 - - . _ . "y
i with the reduced coupling functiod* (x) =0, and the criti-
T “F =16 — cal map at the right end; to another fixed map,
35(8 12 N * * *
=z |t T* X 1= (Y0, Y= (x0), (3.38
T o10F -
sl ] with the reduced coupling fixed functio&* (x)=f*'(x).
L | However, in the period-quadrupling case, the critical maps at
6F () 7 o i both ends are attracted to the zero-coupling fixed (Bz3).
L L L L : L Note that the two fixed maps of Eg®8.37) and(3.38 have
26 28 30 32 34 36 the same relevant CE's;;=«a and v,=p (see Table )l
c However, for this dissipatively coupled case, the CB’s near
both ends are governed only by the second €& p [i.e.,
50k e ' = the first relevant component; in Eq. (2.50 becomes zerp
| which can be easily understood from the fact that the fixed
18 L i points c*=0,2 are unstable ones with stability multiplier
s A=D.
16 |- . We study the critical scaling behavior associated with
i coupling near the critical line segment and confirm the renor-
%\ b [ 4216)
§<8 12k | TABLE VII. We followed, in the leftmostL, route, two self-
= | similar sequences of parametes,(c,), at which\y,=—1 and
= 10l i \1,=0.8. One sequence converges to the left ehif)(c,) of the
I critical line segment with the scaling factat, of the coupling
8 I - parameter shown in the second column. The other sequence con-
- ot ] verges to the right enda(? ,c,) with the scaling factog, of the
6F () * coupling parameter shown in the fourth column. In both cases the
3 é88 3 é84 3 EISSO 3 EIS76 scaling factors are the same. The convergence of the sequence
’ ) ’ ) {\1n} toits limit values\] at the left(right) end is also shown in
C the third (fifth) column. Note that the values afi's at both ends

are the same.

FIG. 9. Stability diagram of the synchronou®-geriodic orbits

of level n (n=1,2,3) in two linearly coupled maps. Each periodic n

orbit of leveln is created via its own saddle-node bifurcation. Its
stable regions, denoted ly=4", are bounded by four bifurcation
curves determined by;==1 for i=0,1. The solid and short- 3
dashed boundary lines represent the same as those in Fig. 1. The
stability diagrams starting from the central, right, and left stability 5
regions of level 1 are shown i), (b), and(c), respectively. See 6
the text for other detalils.

Mn Nin Mn Nin
5.013 1.010 032 65 50.70 0.987 196 90
4.051 0.999 630 89 3.674 1.000 476 66
3.963 1.000 013 65 3.978 0.999 982 38
3.992 0.999 999 50 3.993 1.000 000 65
3.998 1.000 000 02 3.998 0.999 999 98
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FIG. 10. Plots of the asynchronous stability multipliers
)\Ln(Aﬁj‘) ,C) versusc near the leftmost critical line for the synchro-
nous orbits of period 4(n=2,3,4).

malization results. For the dissipative-coupling case, the sta-
bility multipliers of synchronous orbits with periog=p"
(p=3,4) become

q-—1
xo,n<A>=t=Ho (%), Ain(A,C)=(1—C)Nop.
(3.39

Let the pair of stability multipliers of the synchronous orbit
of level n (period p") at a point @,c) be (\g,\;). Then
there exists a “conjugate point”A,—c+2), at which the
pair of stability multipliers becomes \g,—\;) and
(Ng,\q) for p=3 and 4, respectively. Far=1, A;=0 and
the two conjugate points become degenerate.

Like the linearly coupled case, we follow the synchronous
orbits of leveln in the periodp-tupling route, and obtain a

-3.890 -3.885 -3.880

Cc

FIG. 11. Plot of the asynchronous Lyapunov exponent
al(AEf) ,C) versusc near the leftmost critical line. The plot consists
of 200 c values, each of which is obtained by iterating the map
100 000 times to eliminate transients and then averaging over an-
other 500 000 iterations.
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FIG. 12. Attractors near the leftmost critical ling@ a synchro-

A~ AP~ 5N,

the critical

nous attractor inside the critical line and asynchronous attractors
line for (bh) ¢=-3.877059 and (¢
c=—23.888 059. For each case, the map is iterated 100 000 times to
eliminate transients and the next 10 000 iterations are plotted.

self-similar sequence of parameteis, (c,), at which each
orbit of level n has some given stability multipliers
(Ng,\1). Without loss of generality, we chooseg,=—1.
Then one can find a pair of mutually conjugate sequences.
One sequence{(A,,c,)} can be obtained by fixing
—1<\;<0, which converges to the zero-coupling critical
point (AP 0) as follows:

Cn=1-(=\p)P "~ =In(=ry)p~"

for largen, (3.40
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1 L 1 1 1 Cpq
0 1 2
c FIG. 14. Fixed points of the recurrence equatié®s(3.33 and

(b) (3.34). The intersection points between the curves of EBS83
and(3.34 and the linec,=c,,_; are just the fixed points, denoted
by solid circles.

FIG. 13. Stability diagram of the synchronous orbits for the
period-tripling (0=3) and(b) period-quadrupling f=4) cases in
two dissipatively coupled maps. Each periodic orbit of lenels
born via its own saddle-node bifurcation. Its stable regions, denotethe zero-coupling fixed maf3.37) for p=4. Hence the criti-
by g=p" (n=1,2,3), are bounded by four bifurcation curves deter-cal scaling behavior of the coupling parameter near both
mined by\;=*1 fori=0,1. The solid and short-dashed boundary ends becomes the same.
lines represent the same as those in Fig. 1. Figures 1%a) and 15b) show three plots ofxl’n(Agc”) ,C)

versusc for n=1,2,3 in the period-tripling §=3) and
whereA" and 5 are just those for the 1D case. Note that theperiod-quadrupling §=4) cases, respectively. The critical
coupling-parameter scaling factor is just the second relevan{synchronous stability multipliers* of Eq. (2.28 at both
CE, v, (=p), of the zero-coupling fixed ma8.37). The  engds of the critical line segment can be easily obtained from
“conjugate sequence” can also be obtained by foIIowngq_ (3.39. For p=3, A¥ =\*(—\*) at the left(right) end
p"-periodic orbits with\;,=—A; and\, for p=3 and 4,  (\+ jg the critical stability multiplier for the 1D casewhile
respectively. This kind of conjugate sequendd\,,c,)} for p=4, A% =\* at both ends. The slop& of A, at both

converges to the right-end critical poinA&’),Z) (i.e., the  ands also obey well the same one-term scaling law,
conjugate point of the zero-coupling critical pgirds fol-

lows:
(p) Sn—m\l’n p" for large n (3.42
A _ 5 = ~ , .
An A 1) n, dc (Aip)vc*)
—2=—1+(=\)P "~In(— ~" for largen. .
Cn (=) (=20)p orla ge(s 47  Wherec* =cf orc¥ Hence the growth o8, for largen is

governed only by the second Ck; (=p).
Note also that the asymptotic scaling of the coupling- All interior points of the critical line segment become
parameter sequence is governed only by the second CEtitical ones with\] =0, because at any interior poiRg ,
v,=p, of the “conjugate” fixed mag3.38 for p=3 and of  converges to zero as—. Hence the CB inside the critical
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line segment becomes the same as that of the 1D map, as will A. Stability of periodic orbits in many-coupled maps
be seen below. This kind of 1D-like CB is governed by the
fixed maps with the same reduced coupling function

G*'(x)=1f*'(x), which have no relevant CE’s.
For the dissipatively coupled case, the asynchronous Tixp(t+1)=F(a™ (1))
Lyapunov exponent; is given by "

ConsiderN symmetrically coupled 1D maps with a peri-
odic boundary condition,

=FXm(t) Xm+1(1), - - Xm—1(1)),

a1(A,c)=0y(A)+In|1—c|, (3.43
m=1,...N (4.0

where o is the 1D Lyapunov exponent of E¢G3.18. In  where N is a positive integer larger than or equal to 2,
order to see the phase dynamics near the critical line seg=(x,, ... xy), ando is the cyclic permutation of [i.e.,
ment, we fix the value of the nonlinearity parametergx=(x,, ... x;)]. Herex(t) is the state of themth ele-
A=AP . Then, the asynchronous Lyapunov exponent bement at a discrete timg and the periodic condition imposes
comes o(AP ,c)=In|1—c|, becausesy(AP)=0. Inside  X.(t)=Xm.n(t) for all m. Like the two-coupled case with
the critical line segment (€c<2), the synchronous quasi- N=2, the functionF consists of two parts:
periodic orbit on they=x symmetry line becomes a synchro-
nous attractor witho; <0 [see Figs. @) and 1Za)]. Note
that the dynamics on the synchronous attractor is the same as
that for the uncoupled 1D case. Hence the critical maps in-
side the critical line segment exhibit 1D-like CB. However, wheref is an uncoupled 1D map with a quadratic maximum
as the coupling parameter passes througls]® or ¢ the atx=0, andg is a coupling function. The uncoupled 1D
asynchronous Lyapunov exponea’& of the Synchronous mapf satisfies the normalization CondltldIQZ), and the
quasiperiodic orbit increases from zero, and hence the cooupling functiong obeys the condition
pling leads to desynchronization of the interacting systems.
Thus the synchronous quasiperiodic orbit ceases to be an
attractor outside the critical line segment, and new asynchro-
nous attractors appear, as shown in Fig. 16. . )
We also study the scaling behavior of the asynchronous The N-coupled mapl has a cyclic permutation symme-
Lyapunov exponentr; near both ends of the critical line Y
segment. The asynchronous Lyapunov exponent near both
ends becomes;~ ¢, wheree=c—c* (c* =_c,* orcy). As o ITe(x)=T(x) for all x, (4.4)
in the linearly coupled case, using the scaling theory, one can

: ; : R
z;liolnoptl)lt::}::thle 3vcr?elllrnegvr2el(a£c;r; fiil’t(;é SEeC(\;vrl]t(;] ((a:proor:cetnhte whereo 1 is the inverse ofr. The set of all fixed points of

fixed maps(3.37) and (3.39. o forms a symmetry line on which

F(x)=f(x)+9(x), (4.2)

g(x,...x)=0 for any x. (4.3

X1= "+ =XpN- (4.5
IV. EXTENSION TO MANY-COUPLED MAPS

In this section we study the CB of periquttuplings in It follows from Eq. (4.4) that the cyclic permutation- com-
N (N=3) coupled 1D maps, in which the coupling extendsmutes with the maf, i.e., cT=To. Hence the symmetry
to the Kth {1<K<(N/2)[(N—1)/2] for even (odd N} line becomes invariant unddr, i.e., if a pointx lies on the
neighbots) with equal strength. It is found that the CB de- symmetry line, then its imagg(x) also lies on it. An orbit is
pends on the range of coupling. In the global-coupling casegalled a synchronous orbit if it lies on the symmetry line, i.e.,
in which each 1D map is coupled to all the other 1D mapst satisfies
with equal strength, both the structure of the critical set and
the CB are the same as those for the two-coupled case, irre-
spectively ofN. However, for the cases of nonglobal cou- Xy(t)=- - =xy(H)=X(1)
plings of shorter range, a significant change in the structure
of the critical set may or may not occur according to whethefOtherwise, it is called an asynchronous orbit. Here we study
the coupling is linear or not. As examples of the linear andonly the synchronous orbits. They can be easily found from
nonlinear nonglobal couplings, we study the linearly and dif-the uncoupled 1D mapx(t+1)=f[x(t)], because of the
fusively coupled, nearest-neighbor coupling cases, respecondition (4.3).
tively. For the linearly coupled case, of the infinite number Consider an element, say theth element, in the
of period p-tupling routes for the global-coupling case, only N-coupled mapT. Then the (n= §)th elements are called
the route ending at the zero-coupling critical point is left inthe dth neighbors of themth element, where %6
the parameter plane. On the other hand, for the diffusively<(N/2)[(N—1)/2] for even(odd N. If the coupling ex-
coupled case, one critical line segment constitutes the criticaends to theKth neighbo(s), then the numbeK is called the
set, as in the globally coupled case. range of coupling.

for all t. (4.6
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FIG. 15. Plots of the asynchronous stability multipliers
M1n(AP) c) versusc for the synchronous orbits of periog"
(n=1,2,3) near the critical line for thé) period-tripling (=3)
and (b) period-quadrupling f=4) cases in two dissipatively
coupled maps.

A general form of coupling for odtil (N=3) is given by

9(Xg, - Xn) = 2 [U(Xq 4 m) = U(Xp)]

2K+ 1

1 K

=C mm;K U(X14m) —U(Xq) |,

(4.7

wherec is a coupling parameter andis a function of one
variable. Here the coupling extends to tKeh neighbors
with equal coupling strength, and the functigrsatisfies the
condition (4.3). The extreme long-range interaction for
K=(N—1)/2 is called a global coupling, for which the cou-
pling functiong becomes
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FIG. 16. Asynchronous attractors outside the critical line(&r
¢=-0.0015 in the period-tripling case arid) c=—0.000 1 for
the period-quadrupling case. For each case, the map is iterated
100 000 times to eliminate transients and the next 10 000 iterations
are plotted.

g(xs, ... xN)—N E [U(Xm) ~ U(Xy)]

u(xy|. (4.8

1 N
=c[ =N u(Xy) —
N m=1

This is a kind of mean-field coupling, in which each element
is coupled to all the other elements with equal coupling
strength. All the other couplings witK<(N—1)/2 (e.g.,
nearest-neighbor coupling with=1) will be referred to as
nonglobal couplings. Th& =1 case forN=3 corresponds
to both the global coupling and the nearest-neighbor cou-
pling.

We next consider the case of edr(N=2). The form of
coupling of Eqg.(4.7) holds for the cases of nonglobal cou-
plings withK=1,..., (N—2)/2 (N=4). The global cou-
pling for K=N/2 (N=2) also has the form of Eq4.8), but
it cannot have the form of Eq4.7), because there exists
only one farthest neighbor fak =N/2, unlike the case of
odd N. The K=1 case forN=2 also corresponds to the
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nearest-neighbor coupling as well as to the global coupling, q-1

like the N=3 case.

8&(1+1)= HO ' (x(t+m))

The stability analysis of an orbit in many-coupled maps is m=

conveniently carried out by Fourier transforming with re-
spect to the discrete spaden} [20]. Consider an orbit

{Xm(t);m=1,... N} of the N-coupled mapg4.1). The dis-
crete spatial Fourier transform of the orbit is

1 -
Fxm(D]= 5 2, €™M ()= (1),

j=01,...N—-1. (4.9

The Fourier transforng;(t) satisfies¢] (t)=é&y_j(t) (* de-

notes complex conjugateand the wavelength of a mode

with indexj is N/j for j<N/2 andN/(N—j) for j>N/2.

To determine the stability of a synchronous orbit
[X1(t)=---=xn(t)=x(t) for all t], we consider an infini-
tesimal perturbatiod 6x,(t)} to the synchronous orbit, i.e.

Xm()=%(t) + 6x,(t) for m=1,... N. Linearizing the
N-coupled mag4.1) at the synchronous orbit, we obtain

N
6xm<t+1):f'(x<t>)5xm<t>+|2 GUX(1)) X+ m-1,
=1

(4.10
where

(Xqy - .-
x|

XN)

Ghx="3 (4.13)

Xy=- - =XN=X
Hereafter the function&(") will be called “reduced” cou-

pling functions ofg(Xx4, . .. Xn)-
Let 5¢;(t) be the Fourier transform afx(t), i.e.,

N
S& = F Sx.(t =£E —2mimj/N gy
G=Foxm(D]= 2, e me

i=0,1,...N—1. (4.12

N
+ 2 G(|)(X(t+ m))eZWi(l —l)j/N:|
I=1

X8g(t), j=0,1,...N-1. (414

That is, the stability multipliers of the orbit are given by

q-1
vl

N
fr(x(t)+ |2 G(I)(X(t))ezwi(ll)j/N) ,
=1

j=0,1,...N—1. (4.15

Here the first stability multipliei, is associated with the
stability against the synchronous-mode perturbation, and
hence it may be called the synchronous stability multiplier.
On the other hand, all the other stability multiplieks
(j#0) are called the asynchronous stability multipliers, be-

' cause they are associated with the stability against the

asynchronous-mode perturbations.

A synchronous orbit becomes stable when it is stable
against all the synchronous-mode and asynchronous-mode
perturbations, i.e., the moduli of all stability multipliers are
less than unity [&;|<1 for j=0,...N—1). Hence the
stable region of the synchronous orbit in the parameter plane
is bounded by the synchronous and asynchronous bifurcation
lines determined by the equations\j=*=1 for
j=0,...N—1. When theng=1(—1) line is crossed, the
synchronous orbit loses its stability via synchronous saddle-
node (period-doubling bifurcation. However, when tha;
(j#0)=1(—1) line is crossed, it becomes unstable via
asynchronous pitchforkperiod-doubling bifurcation.

It follows from Eq. (4.3 that

N
2}1 c(x)=0. (4.16

Hence the synchronous stability multiplirg for j=0 be-
comes

gq-1
No= tljo f(x(1)), (4.17)

which is just the stability multiplier of the uncoupled 1D

Here 6¢, is the synchronous-mode perturbation, and all th%ap. While there is no coupling effect or, the coupling

other §¢;’s with nonzero indiceg are the asynchronous-

mode perturbations. Then the Fourier transform of @dLO
becomes

N
5§j(t+ 1)=| f'(x(t))+ |21 G(”(x(t))ez”‘(' —1)jIN

xé6gi(t), j=0,1,...N-1 (4.13

Note that all the modes¢; become decoupled for the syn-

chronous orbit.
For a synchronous orbit with periagl its linear stability
is determined by iterating the linearized m@pl3 q times:

generally affects asynchronous stability multipliexs of
j# 0. The effect of the coupling on the asynchronous stabil-
ity multipliers depends on the range of coupling, as will be
seen in the next two subsections.

B. Global-coupling case

In this subsection we study the CB of peripéetuplings in
many-coupled maps with a global coupling. It is shown that
both the structure of the critical set and the CB for the case
of N globally coupled maps are the same as those for the
case of two-coupled maps, independentlyNof

In the case of the global couplirg.8), the reduced cou-
pling functions of Eq.(4.11) become



54 PERIOD p-TUPLINGS IN COUPLED MAPS 3413

(1-N)G(x) for I=1 recurrence relations4.21) and (4.22 define a renormaliza-
GV(x)= GO for 141 (4.18  tion operatorR of transforming a pair of functionsf(g):
f f
where G(x)=(c/N)u’(x). Substituting GM’s into Eq. ( ”H) =73( " (4.25
(4.15, we find that all the asynchronous stability multipliers On+1 9n

re th me: . . . . .
are the same A critical map with the nonlinearity and coupling param-

q-1 eters set to their critical values is attracted to a fixed map
N=---=An_1= 1] [/ (x(1)=NGX(1))] T* under the iterations of the renormalization transformation
t=0 N
q-1
T* Xm(t+ 1) =F* Xm(t) Xm+1(1), - . . Xm—1(1))
- f’ t — ! . . m m m m
L T () —cu'x(t)]. (4.19 o
=" (xm(1))

Hence there exist only two independent stability_multipliers +0* K (1) Xma 1(1), . Xmo1(1)),
Ng andA; (=N;=---=\y_;) for the global-coupling case.
Note also that the values of, and A, are independent of m=1,... N (4.26

N and they are the same as those of two-coupled maps. Thus
the stability diagram of synchronous orbits of peripd  where §*,g*) is the fixed point of R with a=1/f*(1).
(n=0,1,2...) in anyN globally coupled maps becomes the Sincef* is just the 1D fixed map, only the equation for the
same as that of the two-coupled maps. Consequently, theoupling fixed functiong™ is left to be solved.
two-parameter scaling factors associated with scaling of the As in the two-coupled case, we construct a tractable re-
nonlinearity and coupling parameters are the same as thos&lrrence equation for the reduced coupling function
of the two-coupled maps, independently Nf That is, the G{)(x). That is, differentiating the recurrence equation
CB of N globally coupled maps becomes the same as that fo#4.25 with respect to x;, (1= .N) and setting
the case of the two-coupled maps, irrespectiveli}pivhich ~ X;=-- - =Xy=X, we obtain[21]
is also shown below by a renormalization analysis.

We now follow the same procedure of Sec. IIB and G (x)= F(p)(f)
straightforwardly extend the renormalization results of the n+l nl

two coupled maps to many globally coupled maps. The res-
caling operatoB of Eq. (2.10 becomesua! for the case of :F<p—1)<§) f/(f<p—1)(f))
N-coupled maps, wherkis the NX N identity matrix. Ap- Y A a
plying the periodp-tupling operator\ of Eg. (2.9 to the
N-coupled mapg4.1) n times, we obtain tha&-times renor- +fP-D ( ) (I)(f(p 1)( ))
malized mapr,, of the form
Th Xm(t+1)=Fp(Xm(t) Xm+a(t), - .. Xm-1(1)) n z FAD 1(_)[Ggm>(fgp—1>(§))
:fn(Xm(t))+gn(Xm(t):Xm+1(t)’ e ,Xm,l(t)),
_cOlge-n[ X _
m=1,... N. (4.20 Gy (fn (;m 1=2,...N (4.27
Heref, andg, are the uncoupled and coupling parts of theyhere |:(p) ) (x)= 3F(p)(X)/r9Xm|x o mxyex (M=1,..N).

n tlmes renormalized functioR,, respectively. They satisfy

Note that these reduced coupling functions satlsfy the sum
the following recurrence equations:

rule of Eq. (416 [ie, =N,GP(x)=0], and

X, GP(x)=G{ "M (x) [or equivalently,F ) (x)=F{), \(x)]
frr1(X))= afﬁf”(—), (4.23) due to the periodic condition.
@ In the global-coupling case, the initial reduced coupling

functions{G()(x)} satisfy Eq.(4.18), i.e., there exists only

Uns1(X)= a,:gp)(f) — aﬁ\p)(ﬁ), (4.22 one independent reduced coupling func_:t(B(x). 'll'hen, itis
a@ @ easy to see that the successive imad@&\)(x)} of

{G(x)} under the transformatio4.27) also satisfy Eq.

where (4.18, i.e.,
fiP(xy) = (FP P (x0), (4.23 GA(x)=-- =GN (x)=G(x) 4.29
FP)=Fa(FP P (x),FP P(ox), ... FP V(N x)), [or equivalently, F{P}(x)="--- =FR(x)=FP(x)].
(4.24 (4.29

and the rescaling factor is chosen to preserve the normaliz&onsequently, there remains only one recurrence equation
tion conditionf,,;(0)=1, i.e., a=1/fP"(1). Then, the for the independent reduced coupling functidx):
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X TABLE VIIIl. Independent reduced coupling fixed functions
Ghr1(x)= ng)( —) G*(x), relevant CE'sv, and independent critical asynchronous sta-
@ bility multipliers AT in all the periodp-tupling cases are shown for
X X X the case oN globally coupled maps. The first three 18F (x) exist
= Fﬁp_1)<—)[f,’1 fgp_l)(—) -NG, fﬁf’_l)<—) for all p, whereas the last two exist only for ogd Here a and
@ @ @ \* are the orbital scaling factor and the critical stability multiplier
X for the 1D case, respectively. Note thatand\} for eachG*(x)
+ fﬁf"“ (—) G, fff"”(—) (4.30 are also the same as those for the two-coupled case, independently
of N.

Then, together with Eq4.21), Eq. (4.30 defines a reduced
renormalization operatoR of transforming a pair of func-
tions (f,G) such that {,+1,Gn+1)=R(f,,Gy). 0 a,p A
We look for fixed points {*,G*) of R such that Ef*, nonexistent 0
(f*,G*)=R(f*,G*). Heref*(x) is just the 1D fixed func- N
tion. Only the equation foG* is therefore left to be solved. 1__
Since the transformatiof®.30 for G holds for any globally N[f* (x)—1] p 1
coupled map cases with=2, it can be regarded as a gen- ;
eralized version of Eq(2.21) for the two-coupled case. N[f*’(x)+1] p -1
Comparing the expression in E¢.30 with that in Eq.
(2.21), one can easily see that they are the same except fcﬁf*,(x)
the factorN. Making a change of the independent reducedV
coupling function G(x)—(2/N)G(x) [equivalently,
FP(x)— (2/N)F(P(x)], Eq. (4.30 is transformed into Eq. N
(2.21. Consequently, rescaling the solutiof®26) for the  Linearizing R at the fixed point, we obtain the recurrence
two-coupled case with the scaling factoM\2/one can obtain  equation for the evolution of H®), (hpsiq1,Pnyq)
the solutions for the case &f globally coupled maps: :Z(hn;g)n)- As in the two-coupled case, the linearized op-
G*(x)=0 forall p, (4.313 erator £ also has a semiblock foan{i.e., hps1(X)
=[L1hn](x) and® ., 1(X) =[ LP](X) + [ L30,](X)]. It fol-
1, lows from the reducibility ofZ into_a semiblock form that
G*()=f* (x) forall p, (4310 one can find eigenvalues df, and £, separately and then
they give the whole spectrum df.
1, All the fixed points ¢*,G*) have a common relevant
G*(x)= N[f* (x)—1] forall p, (4310 eigenvalues of £, (i.e., the relevant eigenvalue for the case
of the uncoupled 1D mapsssociated with the critical scal-
1 ing of the nonlinearity parameter of the uncoupled 1D map.
G*(x)= —[f*'(x)+1] forodd p, (4.31d However, the relevant CE’s df,, associated with the criti-
N cal scaling of the coupling parameter, depend on the kind of
the fixed points, as in the case of the two-coupled maps.
G*(x)=3f*'(x) for odd p. (4.318 Consider an infinitesimal perturbatioh to a fixed point
N G* of the recurrence equatidd4.30. Linearizing Eq.(4.30
- at the fixed poinG*, we obtain an equation for the evolution
Thus there exist thredive) fixed points ¢*,G*) of R for  of @ [j.e., ®,,1(x)=L,P,(x)]. Note again that Eq4.30
the case of evefodd p, independently of. is transformed into the recurrence equati@?21) for the
For the same reason as for the two-coupled niaes Eq.  two-coupled case under a mere scale change of the indepen-
(2.29)}, the critical stability multipliers have the values of the gent reduced coupling functio®(x)— (2/N)G(x). Conse-
stability multipliers of the fixed point c_;f the f|>_<ed map" . quently, the CE equatiofi.e., qu)*(x): v®* (x)] for the
Fr_o_m Eqs.(f}.l?) aqd ,(4'191' we OPta'n two independent coqe ofN globally coupled maps becomes the same as that
critical stability multipliershg andAy : for the case of two-coupled maps, independentliloThen,
. exlos A R following the same procedure of Sec. Il B, one can obtain the
A= (%), A =" (X)=NG*(X), (432  same CE’s as those for the case of two-coupled maps, as
listed in Table VIII.

G*(x) v h%y

a, p —\*

where X is the fixed point of the 1D fixed functiofi.e.,

x=f*(X)] and\} is just the critical stability multiplien*

of the uncoupled 1D map. Substituti®j 's into Eq.(4.32), C. Nonglobal-coupling cases

we obtain the same critical asynchronous stability multipliers  |n this subsection, we choodéx)=1—Ax? as the un-

A7 as in the case of two-coupled maps, as listed in Tablgoupled 1D map and study the CB of the perjpduplings

VIII. for the nonglobal-coupling cases. A significant change in the
Consider an infinitesimal perutrbatiom,®) to a fixed  structure of the critical set may or may not occur according

point (f*,G*) of the reduced renormalization operat®:  to whether the coupling is linear or not. As examples of the
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linear and nonlinear nonglobal couplings, we study the linthe same, independently di. The stable region for this
early and diffusively coupled, nearest-neighbor couplingglobal-coupling case will be denoted ly. Note thatUg
cases, respectively. For the linearly coupled case, only thigself is just the stability region of the synchronous orbit,
zero-coupling critical point is left in the parameter plane,irrespectively ofN, because the synchronous orbit is stable
which is in contrast to the global-coupling case. On the otheagainst the perturbations of all the synchronous and asyn-
hand, for the diffusively coupled case, one critical line seg-chronous modes in the regid# .

ment constitutes the critical set, as in the global-coupling However, the stable regiorldy vary depending on the

case. coupling rangeK and the mode numbeérfor the nonglobal-
Consider a nonglobal coupling of the for.7) and de-  coupling cases, i.elJy=Uy(K,j). To find the stability re-
fine gion of a synchronous orbit in aN-coupled map with a

given K, one may start with the stability regiddg for the
C global-coupling case. Rescaling the coupling parametey
eSS (433  a scaling factor 1%(K,j) for each nonzerq, the stable
regionUg is transformed into a stable regidh(K,j). Then
where 1=<K<[(N—2)/2][(N—3)/2] for even (odd) N  the stability region of the synchronous orbit is given by the
larger than 3. Then we have intersection of all such stable region$y. A significant
change in the stability diagram of the synchronous orbits of
_2KG(x) for I=1 periodp" (n=0,1,2 . ..) may or may nobceur according to
whether the coupling is linear or not, as will be seen below.
G(x) for 2<I<1+K or As the first example, we study the linearly coupled,
for N+ 1—K<|<N (4.349  nearest-neighbor coupling case with= 1, in which the cou-
pling function is

G(x)=

0 otherwise.

SubstitutingG"’s into Eq.(4.15), we find that each stability
multiplier \; (associated with the stability against the
jth-mode perturbationis given by (4.38

c
O(Xq, . .- XN)= §(x2+xN—2xl) for N=3.

This kind of coupling can be regarded as a generalized ver-
. , o sion of Eqg.(3.1) for the linearly coupled case fdi=2.
}‘i_t:Ho [ ()= Su(K. e (x(v)], - (4.39 (Note that as mentioned above, the casedNef2 and 3
correspond to the global-coupling cgs€or K=1, the scal-
where ing factor 15y(K,j) of Eq. (4.36) becomes

q-1

Tk Sin(2K +1)(7j/N)
Sif——=

2K+1k21 N~ LT (2K+1)sin(aj/N)

(4.39 This scaling factor 1%(1,j)) has its minimum value
Hence, unlike the global-coupling cafsee Eq.(4.19], the  ¥{3[4cog(w/2N)]} at jmin=(N/2)[(N—3)] for even (odd)
stability multipliers vary depending on the coupling rangeN. We also note that the minimum value for oNddepends
K as well as on the mode numbelj. Since onN, but asN—® it converges to the minimum value for

4 |
Sn(K,j)= Su(l,j)= §sin2(WJ). (4.39

Sn(K,j) =Sy(K,N—j), the stability multipliers satisfy the case of evell.
Rescaling the coupling parametewith the scaling factor
N=An_j, §i=01,...N-1. (437  1/S\(1}), the stability regiorlJg for theN=2 and 3 cases

of global coupling is transformed into the regibiy(1,j) for

Thus it is sufficient to consider only the case of N>3. Then, as a result of the intersection of all such regions
0<j=<(N/2) [(N—1)/2] for even(odd) N. Comparing the Uy(1,j), only the regionUy(1,jyn) including ac=0 line
expression in Eqg4.35 with that in Eq.(4.19 for j#0, one  segment is left as the stability region of a synchronous orbit.
can easily see that they are the same except for the factéfonsequently, of the infinite number of perigdtupling
Su(K,j). Consequently, making a change of the couplingroutes for the global-coupling case, only thgroute ending
parameterc— c/Sy(K,j), the stability multiplier\; for the  at the zero-coupling critical pointA(P),0) remains. Thus
nonglobal-coupling case of randé becomes the same as only the zero-coupling point is left as a critical point in the
that for the global-coupling case. parameter plane. An example for the period-tripling case

For each mode with nonzero indéxwe consider a region with p=3 is shown in Fig. 17. The largest stability region
in the parameter plane, in which a synchronous orbit is stableorresponds to the stability region for the=2 and 3 cases
against the perturbations of both modes with indices 0 anaf the global coupling, while the smallest one corresponds to
j. This stable region is bounded by four bifurcation curvesthat for the case of eveN (N>2). Between them, there
determined by the equationg,=*1 and\j==*1, and it  exist stability regions for the case of otld(N>3) (e.g., see
will be denoted byU,. For the case of global coupling, the N=5 case in Fig. 1)
those stable regions coincide, irrespectivelyNoind j, be- We now examine the CB near the zero-coupling critical
cause all the asynchronous stability multipliafs(j #0) are  point for the case of the linearly coupled, nearest-neighbor
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FIG. 17. Stable regions of the synchronolsg@riodic orbits of
leveln=1,2,3inN (N=2,3,4...) coupled 1D maps for the lin-
early coupled, nearest-neighbor coupling case Withl. The cases
of n=1, 2, and 3 are shown ifa), (b), and(c), respectively. The

symbolsg?®, g7V, andg " with j =0 andj i, represent the period-

coupling. Consider a self-similar sequence of parameters
(A, ,cy), at which the synchronous orbit of lewelhas some
given stability multipliers, in theZ, route for the global-
coupling case. Rescaling the coupling parameter with the
factor 1/Sy(1,j min), this sequence is transformed into a self-
similar one for the case of the linearly coupled, nearest-
neighbor coupling. Thus the “width” of each stability region

in the Z,, route for the case of the global coupling is reduced
to that for the case of the linearly coupled, nearest-neighbor
coupling by the scaling factor ${(1,jnin), While the
“heights” of all stable regions in theZ, route remain un-
changed 22]. It is therefore obvious that the critical scaling
behavior near the zero-coupling critical point for the case of
the linearly coupled, nearest-neighbor coupling is the same
as that for the global-coupling case. That is, the height and
width h,, andw,, of the stability region of leveh geometri-
cally contract in the limit of largen,

h,~6", w,~a " for large n, (4.40

whereé anda are the scaling factors of the nonlinearity and
coupling parameters, respectively. As an example, see again
Fig. 17 and note that Figs. (&, 17(b), and 17c) nearly
coincide near the zero-coupling critical point except for
small numerical differences.

The results of the linearly coupled, nearest-neighbor cou-
pling with K=1 extend to all the other linearly coupled,
nonglobal-coupling cases with<dK<<(N/2)[(N—1)/2] for
even (odd N. For each nonglobal-coupling case with
K>1, we first consider a mode with indéy,, for which the
scaling factor 18y(K,j) becomes the smallest one. Here the
value of j,, varies depending on the randé Like the
K=1 case, only the regiod y(K,jmin) including ac=0 line
segment is left as the stability region of a synchronous orbit.
Consequently, only the zero-coupling point remains as a
critical point in the parameter plane, and the CB near the
zero-coupling critical point is also the same as that for the
global-coupling case.

Finally, as an example of the nonlinear coupling, we
study the diffusively coupled, nearest-neighbor coupling case
with K=1, in which the coupling function is given by

g(Xq, ... ,xN)=§[f(x2)+f(xN)—2f(x1)] for N=3.
(4.4)

This kind of coupling can be regarded as a generalized ver-
sion of Eq.(3.30 for the dissipatively coupled case for
N=2. For this diffusively coupled case, the stability multi-
pliers of Eq.(4.35 for a synchronougy-periodic orbit of
leveln (q=p") become

Nj=[1-cSy(L1,))]%. (4.42

Like the linearly coupled case, rescaling the coupling pa-
rameterc with the minimum scaling factor B(1,jmin),
each stability regiord of level n for the global-coupling
case is transformed into the stability regipre., the region

doubling, saddle-node, and pitchfork bifurcation lines associatedJ (1,jin)] Of level n for the diffusively coupled case. The

with the stability of a synchronous orbit of periaf against the
perturbation of thgth mode. The scaling factors used(b) and(c)

stability regionUy(1,jmin) is bounded by four bifurcation
curves determined by the equations=*1 for j=0,] yin-

are 6=55.247 026 andv=—9.277 341. For other details, see the A infinite sequence of such stability regions converges to a

text.
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critical line segment joining two points;® (=0)and c

[=2/S\(L,imin)] on the A=AP) line. Consequently, one 121 ot ~ 5770 270, ]

critical line segment constitutes the critical set, like the 1L ' e ’ i

global-coupling case. An example for the period-tripling L 27N

case for everN (N>2) is shown in Fig. 18. 10 N(even)>2 .
As shown above, the stability diagram for the diffusively ol D |

coupled case is essentially the same as that for the globally —_ L ofD 30 oPF

coupled case, except for the scale in the coupling parameter j: 8r iN/Z/ S

c. Hence the critical scaling behavior of the nonlinearity and = A pr -

coupling parameters and so on becomes the same as that for & - 9"

the global-coupling caséor details on the CB, refer to Sec. ' 6 i 7]

[l B). Finally, we briefly discuss the critical asynchronous 5| 4PD i

stability multipliers. At the zero-coupling critical point NP f 3

(AEP),O) and interior critical points, they are the same as 4 [ N e ]

those  for the  global-coupling  case [i.e., g L

)\i:,,,:)\;\]_lz)\é at (Ac(,cp).o), and)\’l‘:~~=)\’,§_1=0 05 00 05 10 15 20

at interior critical pointy However, at the right end C

(AP ¢*), the critical asynchronous stability multiplier for

i =1min is given by)\rmm:)\g (evenq) and —\§ (odd q), FIG. 18. Stable regions of the synchronodsg@riodic orbits of

o s S leveln=1,2,3 in everN- (N>2) coupled 1D maps for the diffu-
but all other)\j S (1#]min) are zero, which is somewhat sively coupled, nearest-neighbor coupling case witk1. The

dll‘ferent fram thalt for the global;coupllng casb.e., symbolsquD, quN, andquFwith i =0 andj, represent the period-
A7=---=\{-1=\o (evenq) and—Ag (oddq)]. Like the  goupling, saddle-node, and pitchfork bifurcation lines associated
linearly coupled case, the results for the diffusively coupledith the stability of a synchronous orbit of periad against the
nearest-neighbor coupling case wikh=1 can also be ex- perturbation of thgth mode.

tended to all the other diffusively coupled, nonglobal-
coupling cases with £ K< (N/2)[(N—1)/2] for even(odd)

N fixed points govern the CB for the dissipatively coupled

case. Finally, the results of the two-coupled maps are ex-
tended to many-coupled maps wie=3, in which the CB
V. SUMMARY depends on the range of coupling. In the global-coupling
The CB's of all periodp-tuplings (p=2,3,4...) are CaSe both the structure of the critical set and the CB are the

studied inN (N=2,3,4...) symmetrically coupled 1D same as those of the two-coupled case, independenty; of

maps. The two-coupled case wilh=2 is first investigated However, for the nonglobal-coup]ing case, a significant
by a renormalization method. We find thréese) kinds of change in th_e structure of the C”"C?" sgt may or may not
fixed points of the renormalization operator and their rel-0ccur according to whether the coupling is linear or not. For

evant CE’s associated with coupling perturbations for thethe "f!ea“y coupled case, of the |nf|n|te number of period
case of ever(odd) p. We next consider two kinds of cou- p-tu_pllng routes for the global_-(_:ouplln_g case, c_JnIy the route
plings, linear and nonlinear couplings. As examples of theendlng at the zero-coupling critical point |s_left in the param-
linear- and nonlinear-coupling cases, we study the Iinearl)‘?ter plane. (_)_n th(_a other hand, for 'ghe d|ffu3|ve_ly coupled
and dissipatively coupled maps, respectively, and confirnfase, one critical line segment constitutes the critical set, as
the renormalization results. The structure of the critical set” the globally coupled case.

varies depending on the nature of coupling. For the linearly
coupled case, an infinite number of the critical line segments,
together with the zero-coupling critical point, constitute the
critical set, while for the dissipatively coupled case, the criti- This work was supported by the Basic Science Research
cal set consists of only one critical line segment. The CBInstitute Program, Ministry of Education, Korea, Project No.
also depends on the position on the critical set. For eveBSRI-95-2401. The author thanks Professor R. Fox for his
(odd) p, three(four) kinds of fixed points govern the CB for hospitality during a visit to the Georgia Institute of Technol-
the linearly coupled case, while only twihree kinds of  ogy.
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