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We study the critical behavior~CB! of all periodp-tuplings (p52,3,4, . . . ) inN (N52,3,4, . . . ) symmetri-
cally coupled one-dimensional maps. We first investigate the CB for theN52 case of two-coupled maps, using
a renormalization method. Three~five! kinds of fixed points of the renormalization transformation and their
relevant ‘‘coupling eigenvalues’’ associated with coupling perturbations are found in the case of even~odd!
p. We next study the CB for the linear- and nonlinear-coupling cases~a coupling is called linear or nonlinear
according to its leading term!, and confirm the renormalization results. Both the structure of the critical set~set
of the critical points! and the CB vary according to whether the coupling is linear or nonlinear. Finally, the
results of the two-coupled maps are extended to many-coupled maps withN>3, in which the CB depends on
the range of coupling.@S1063-651X~96!02310-0#

PACS number~s!: 05.45.1b, 03.20.1i, 05.70.Jk

I. INTRODUCTION

Universal scaling behavior of periodp-tuplings
(p52,3,4, . . . ) hasbeen found in a one-parameter family
f A(x) of one-dimensional~1D! unimodal maps with a qua-
dratic maximum. As the nonlinearity parameterA increases,
a stable fixed point undergoes the cascade of period-doubling
bifurcations accumulating at a finite parameter valueA` .
The period-doubling sequence corresponding to the MSS
~Metropolis, Stein, and Stein@1#! sequenceR* n @for details
of the MSS sequences and the~* !-composition rule, see
Refs.@1,2## exhibits an asymptotic scaling behavior@3#.

What happens beyond the period-doubling accumulation
point A` is interesting from the viewpoint of chaos. The
parameter interval betweenA` and the final boundary-crisis
point Ac beyond which no periodic or chaotic attractors can
be found within the unimodality interval is called the ‘‘cha-
otic’’ regime. Within this region, besides the period-doubling
sequence, there are many other sequences of periodic orbits
exhibiting their own scaling behavior. In particular, every
primary patternP @that cannot be decomposed using the~* !
operation# leads to a MSS sequenceP* n. For example,
P5RL leads to a period-tripling sequence,P5RL2 to a
period-quadrupling sequence, and the three different
P5RLR2,RL2R, and RL3 to three different period-
quintupling sequences. Thus there exist infinitely many
higher periodp-tupling (p53,4, . . . ) sequences inside the
chaotic regime. Unlike the period-doubling sequence, stabil-
ity regions of periodic orbits in the higher periodp-tupling
sequences are not adjacent on the parameter axis, because
they are created by their own tangent bifurcations. The as-
ymptotic scaling behavior of these~disconnected! higher pe-
riod p-tupling sequences characterized by the parameter and
orbital scaling factors,d anda, vary depending on the pri-
mary patternP @2,4–10#.

In this paper we considerN (N52,3,4, . . . ) symmetri-
cally coupled 1D maps, which may be used as models of
coupled nonlinear oscillators such as Josephson-junction ar-
rays or chemically reacting cells, and so on@11#. We are

interested in the critical behavior~CB! of periodp-tuplings
(p52,3, . . . ) in thecoupled 1D maps. The period-doubling
case withp52 was previously studied@12,13#. Here we
study the critical scaling behavior of all the other higher
periodp-tuplings (p53,4, . . . ).

Using a renormalization method, we first investigate the
critical behavior for theN52 case of two-coupled maps in
Sec. II. In the case of even~odd! p, we find three~five! kinds
of fixed points of a renormalization transformation and their
relevant coupling eigenvalues~CE’s! associated with cou-
pling perturbations. A short account of the renormalization
result has already been published@14#. We next consider two
kinds of couplings, linear- and nonlinear-coupling cases; a
coupling is called linear or nonlinear according to its leading
term. As examples of the linear- and nonlinear-coupling
cases, we study the linearly and dissipatively coupled maps,
respectively, in Sec. III, and confirm the renormalization re-
sults. The structure of the critical set~set of the critical
points! varies depending on the nature of coupling. In the
linearly coupled case, an infinite number of critical line seg-
ments and the zero-coupling critical point, at which theN 1D
maps become uncoupled, constitute the critical set, while in
the dissipatively coupled case, the critical set consists of only
one critical line segment, one end of which is the zero-
coupling critical point. The CB also depends on the position
on the critical set. For even~odd! p, three ~four! kinds of
fixed points govern the CB for the linearly coupled case,
whereas only two~three! fixed points govern the CB for the
dissipatively coupled case.

In Sec. IV we extend the results of the two-coupled maps
to many-coupled maps withN>3. It is found that the critical
scaling behavior depends on the range of coupling. In the
extreme long-range case of global coupling, in which each
1D map is coupled to all the other 1D maps with equal
strength, both the structure of the critical set and the CB are
the same as those for the two-coupled case, independently of
N. However, for the cases of nonglobal couplings of shorter
range, a significant change in the structure of the critical set
may or may not occur according to whether the coupling is
linear or not. For the case of a linear nonglobal coupling,
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only the zero-coupling critical point is left in the parameter
plane, which is in contrast to the global-coupling case. On
the other hand, for the case of a nonlinear nonglobal cou-
pling, one critical line segment still remains, as in the glo-
bally coupled case. Finally, a summary is given in Sec. V.

II. RENORMALIZATION ANALYSIS
OF TWO-COUPLED MAPS

In this section we first discuss stability of periodic orbits
in two-coupled 1D maps, and then study the CB associated
with periodp-tuplings (p52,3,4, . . . ) using a renormaliza-
tion method. Three~five! kinds of fixed points of a renormal-
ization operator and their relevant CE’s with moduli larger
than unity are found in the case of even~odd! p.

A. Stability of periodic orbits in two-coupled maps

We consider a mapT consisting of two symmetrically
coupled 1D maps,

T:H xt115F~xt ,yt!5 f ~xt!1g~xt ,yt!

yt115F~yt ,xt!5 f ~yt!1g~yt ,xt!,
~2.1!

wheret denotes a discrete time,f (x) is a 1D unimodal map
with a quadratic maximum atx50, andg(x,y) is a coupling
function. The uncoupled 1D mapf satisfies a normalization
condition

f ~0!51, ~2.2!

and the coupling functiong obeys a condition

g~x,x!50 for anyx. ~2.3!

The two-coupled map~2.1! is invariant under the ex-
change of coordinates such thatx↔y. The set of all points
which are invariant under the exchange of coordinates forms
a symmetry liney5x. An orbit is called a~n! ~in-phase! syn-
chronous orbit if it lies on the symmetry line, i.e., it satisfies

xt5yt for all t. ~2.4!

Otherwise, it is called an~out-of-phase! asynchronous orbit.
Here we study only the synchronous orbits, which can be
easily found from the uncoupled 1D map,xt115 f (xt), be-
cause of the condition~2.3!.

Stability analysis of a periodic orbit in the two-coupled
mapT can be conveniently carried out in a set of new coor-
dinates (X,Y), defined by

X5
~x1y!

2
, Y5

~x2y!

2
. ~2.5!

HereX andY correspond to the synchronous and asynchro-
nous modes of the orbit, respectively. For example, for a
synchronous orbitX5x andY50, whereas for an asynchro-
nous orbitYÞ0.

In order to study the stability of a synchronous orbit with
period q, we consider an infinitesimal perturbation
(dX,dY) to the orbit. HeredX and dY correspond to the
synchronous-mode and asynchronous-mode perturbations,

respectively. Linearizing theq-times iterated mapTq ~ex-
pressed in terms of the new coordinates! at an orbit point, we
obtain a linearized map,

S dXt1q

dYt1q
D 5JS dXt

dYt
D , ~2.6!

where the Jacobian matrixJ ([DTq) of Tq is given by the
q product of the Jacobian matrixDT of T along the orbit:

J5 )
t50

q21

DT~xt ,xt!

5 )
t50

q21 S f 8~xt! 0

0 f 8~xt!22G~xt!
D .
~2.7!

Here the prime denotes a derivative with respect tox, and
G(x)5]g(x,y)/]yuy5x ; hereafter,G(x) will be referred to
as the ‘‘reduced coupling function’’ ofg(x,y). Note that
dX anddY become decoupled for the case of a synchronous
orbit ~i.e., J has a diagonalized form!.

The eigenvalues ofJ, called the stability multipliers of the
orbit, are then given by

l05 )
t50

q21

f 8~xt!, l15 )
t50

q21

@ f 8~xt!22G~xt!#. ~2.8!

The two stability multipliers,l0 andl1, determine the sta-
bility of the synchronous orbit against the synchronous-mode
and asynchronous-mode perturbations, respectively. Hereaf-
ter, they will be called the synchronous and asynchronous
stability multipliers, respectively. Note also that the synchro-
nous stability multiplierl0 is just the stability multiplier of
the uncoupled 1D map, and the coupling affects only the
asynchronous stability multiplierl1.

A synchronous orbit is stable when it is stable against
both the synchronous-mode and asynchronous-mode pertur-
bations, i.e., the moduli of both stability multipliers are less
than unity (ul i u,1 for i50,1). Hence the stable region of a
synchronous orbit in the parameter plane is bounded by the
synchronous and asynchronous bifurcation lines determined
by the equationsl i561 for i50,1, as will be seen in Sec.
III. When thel051 (21) line is crossed, the synchronous
orbit loses its stability via synchronous saddle-node~period-
doubling! bifurcation. On the other hand, when thel151
(21) line is crossed, it becomes unstable via asynchronous
pitchfork ~period-doubling! bifurcation. Some brief explana-
tions on the bifurcations are given below.

In the case of a synchronous saddle-node bifurcation, the
synchronous orbit collides with an unstable synchronous or-
bit with the same period, and then they disappear, like the
tangent bifurcation in the 1D maps. On the other hand, there
are two types of supercritical and subcritical bifurcations for
each case of the pitchfork and period-doubling bifurcations.
In the supercritical case of the synchronous~asynchronous!
pitchfork and period-doubling bifurcations, the synchronous
orbit loses its stability, and gives rise to the birth of a pair of
new stable synchronous~asynchronous! orbits with the same
period and a new stable synchronous~asynchronous! period-
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doubled orbit, respectively. However, in the subcritical case
of the synchronous~asynchronous! pitchfork and period-
doubling bifurcations, the synchronous orbit becomes un-
stable by absorbing a pair of unstable synchronous~asyn-
chronous! orbits with the same period and an unstable
synchronous~asynchronous! period-doubled orbit, respec-
tively. ~For more details on bifurcations on 2D dissipative
maps, refer to@15#.!

B. Renormalization analysis

We now consider the periodp-tupling renormalization
transformationN, which is composed of thep-times iterat-
ing (T(p)) and rescaling (B) operators:

N~T![BT~p!B21. ~2.9!

Here the rescaling operatorB is

B5S a 0

0 a D , ~2.10!

because we consider only synchronous orbits.
Applying the renormalization operatorN to the coupled

map ~2.1! n times, we obtain then-times renormalized map
Tn of the form

Tn :H xt115Fn~xt ,yt!5 f n~xt!1gn~xt ,yt!

yt115Fn~yt ,xt!5 f n~yt!1gn~yt ,xt!.
~2.11!

Here f n andgn are the uncoupled and coupling parts of the
n-times renormalized functionFn , respectively. They satisfy
the following recurrence equations:

f n11~x!5a f n
~p!S xa D , ~2.12!

gn11~x,y!5aFn
~p!S xa ,

y

a D2a f n
~p!S xa D , ~2.13!

where

f n
~p!~x!5 f n„f n

~p21!~x!…, ~2.14!

Fn
~p!~x,y!5Fn„Fn

~p21!~x,y!,Fn
~p21!~y,x!…, ~2.15!

and the rescaling factor is chosen to preserve the normaliza-
tion condition f n11(0)51, i.e.,

a5
1

f n
~p21!~1!

. ~2.16!

The recurrence relations~2.12! and~2.13! define a renormal-
ization operatorR of transforming a pair of functions
( f ,g):

S f n11

gn11
D 5RS f ngnD . ~2.17!

A mapTc with the nonlinearity and coupling parameters
set to their critical values is called a critical map:

Tc :H xt115Fc~xt ,yt!5 f c~xt!1gc~xt ,yt!

yt115Fc~yt ,xt!5 f c~yt!1gc~yt ,xt!.
~2.18!

A critical map is attracted to a fixed mapT* under iterations
of the renormalization transformationN:

T* :H xt115F* ~xt ,yt!5 f * ~xt!1g* ~xt ,yt!

yt115F* ~yt ,xt!5 f * ~yt!1g* ~yt ,xt!.
~2.19!

Here (f * ,g* ) is a fixed point of the renormalization operator
R with a51/f * (p21)(1):

S f *g* D 5RS f *g* D . ~2.20!

This fixed-point equation can be solved row by row consecu-
tively. Note that f * (x) is just the fixed function in the 1D
map case, which varies depending onp @5,6,8,9#. Only the
equation for the coupling fixed functiong* (x,y) is therefore
left to be solved. One trivial solution isg* (x,y)50. In this
zero-coupling case, the fixed map~2.19! consists of two un-
coupled 1D fixed maps, which is associated with the CB at
the zero-coupling critical point.

However, it is not easy to directly find coupling fixed
functions other than the zero-coupling fixed function
g* (x,y)50. We therefore introduce a tractable recurrence
equation for a reduced coupling function
G(x)5]g(x,y)/]yuy5x . Differentiating the recurrence
equation ~2.13! for g(x,y) with respect toy and setting
y5x, we obtain a recurrence equation forG(x) @16#:

Gn11~x!5Fn,2
~p!S xa D

5Fn,2
~p21!S xa D F f n8Xf n~p21!S xa D C22GnXf n~p21!S xa D CG

1 f n
~p21!8S xa DGnXf n~p21!S xa D C, ~2.21!

where Fn,2
(p)(x)[]Fn

(p)(x,y)/]yuy5x . Then Eqs.~2.12! and
~2.21! define a ‘‘reduced renormalization operator’’R̃ of
transforming a pair of functions (f ,G):

S f n11

Gn11
D 5R̃S f nGn

D . ~2.22!

We look for fixed points (f * ,G* ) of R̃, which satisfy

S f *G* D 5R̃S f *G* D . ~2.23!

Here f * is just the 1D fixed function andG* is the reduced
coupling fixed function of g* , i.e., G* (x)
5]g* (x,y)/]yuy5x .

For the general periodp-tupling case, we have@17#

Fn,2
~p!S xa D50 for Gn~x!50, ~2.24a!
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Fn,2
~p!S xa D5

1

2
f n

~p!8S xa D for Gn~x!5
1

2
f n8~x!,

~2.24b!

Fn,2
~p!S xa D5

1

2F f n~p!8S xa D21G for Gn~x!5
1

2
@ f n8~x!21#,

~2.24c!

Fn,2
~p!S xa D5H 1

2 F f n~p!8S xa D21G for evenp

1

2 F f n~p!8S xa D11G for oddp

for Gn~x!5
1

2
@ f n8~x!11#, ~2.24d!

Fn,2
~p!S xa D5H 0 for evenp

f n
~p!8S xa D for oddp

for Gn~x!5 f n8~x!. ~2.24e!

Differentiating the 1D fixed-function equation forf * (x) with
respect tox in the periodp-tupling case, we also have

f * 8~x!5 f * ~p!8S xa D5 )
i50

p21

f * 8Xf * ~ i !S xa D C. ~2.25!

Using Eqs.~2.24! and~2.25!, we obtain three~five! solutions
for G* (x) in the case of even~odd! p:

G* ~x!50 for all p, ~2.26a!

G* ~x!5
1

2
f * 8~x! for all p, ~2.26b!

G* ~x!5
1

2
@ f * 8~x!21# for all p, ~2.26c!

G* ~x!5
1

2
@ f * 8~x!11# for oddp, ~2.26d!

G* ~x!5 f * 8~x! for oddp. ~2.26e!

Thus we find three~five! kinds of fixed points (f * ,G* ) of
R̃ for the case of even~odd! p.

In the case of a critical map~2.18!, the synchronous and
asynchronous stability multipliersl0,n and l1,n of the syn-
chronous orbits are given by@see Eq.~2.8!#

l0,n5 )
t50

q21

f c8~xt!, l1,n5 )
t50

q21

@ f c8~xt!22Gc~xt!#,

~2.27!

whereGc(x) is the reduced coupling function ofgc(x), i.e.,
Gc(x)5]gc /]yuy5x . As n→`, they converge to their limit
valuesl0* andl1* , called the critical synchronous and asyn-
chronous stability multipliers, respectively:

l0*5 lim
n→`

l0,n , l1*5 lim
n→`

l1,n . ~2.28!

Herel0* is just the critical stability multiplierl* for the 1D
case, and the coupling affects onlyl1* . The values ofl1*
depend on the fixed points, as shown below.

The invariance of a fixed mapT* under iterations of the
period p-tupling renormalization transformationN implies
that, if T* has a periodic point (x,y) with period pn, then
B21(x,y) is a periodic point ofT* with periodpn11. Since
rescaling leaves the stability multipliers unaffected, all syn-
chronous orbits of periodpn (n50,1,2, . . . ) have the same
stability multipliers, which are just the critical stability mul-
tipliers. Consequently, they have the values of the stability
multipliers of the fixed point of the fixed mapT* :

l0*5 f * 8~ x̂!, l1*5 f * 8~ x̂!22G* ~ x̂!, ~2.29!

where x̂ is the fixed point of the 1D fixed function@i.e.,
x̂5 f * ( x̂)], and l0* is just the critical stability multiplier
l* of the uncoupled 1D map. Note thatl1* depends on the
reduced coupling fixed functionG* (x):

l1*5l* for G* ~x!50, ~2.30a!

l1*50 for G* ~x!5
1

2
f * 8~x!, ~2.30b!

l1*51 for G* ~x!5
1

2
@ f * 8~x!21#, ~2.30c!

l1*521 for G* ~x!5
1

2
@ f * 8~x!11#, ~2.30d!

l1*52l* for G* ~x!5 f * 8~x!, ~2.30e!

where the cases~2.30a! – ~2.30c! exist for all p, but the
cases~2.30d! and ~2.30e! exist only for oddp.

Consider a pair of functions (f * ,G̃). Here G̃(x) is not
necessarily a reduced coupling fixed functionG* (x). When
f n(x)5 f * (x) andGn(x)5G̃(x), the functionFn,2

(p)(x/a) of
Eq. ~2.21! will be denoted byF̃2

(p)(x/a). We now examine
the evolution of a pair of functions (f *1h,G̃1F) close to
( f * ,G̃) under the reduced renormalization operatorR̃. Lin-
earizingR̃ at (f * ,G̃), we obtain a linearized operatorL̃ of
transforming a pair of infinitesimal perturbations (h,F):

S hn11

Fn11
D 5L̃S hnFn

D 5S L̃1 0

L̃3 L̃2
D S hnFn

D , ~2.31!

where
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hn11~x!5@L̃1hn#~x!5ad f n
~p!S xa D[aF f n~p!S xa D2 f * ~p!S xa D G

linear

5a f * 8Xf * ~p21!S xa D Cd f n~p21!S xa D1ahnXf * ~p21!S xa D C, ~2.32!

Fn11~x!5@L̃2Fn#~x!1@L̃3hn#~x!5dFn,2
~p!S xa D[FFn,2

~p!S xa D2F̃2
~p!S xa D G

linear

, ~2.33!

@L̃2Fn#~x!5F f * 8Xf * ~p21!S xa D C22G̃Xf * ~p21!S xa D CGdFn,2
~p21!S xa D1F f * ~p21!8S xa D22F̃2

~p21!S xa D GFnXf * ~p21!S xa D C, ~2.34!

@L̃3hn#~x!5F F̃2
~p21!S xa D f * 9Xf * ~p21!S xa D C22F̃2

~p21!S xa D G̃8Xf * ~p21!S xa D C1 f * ~p21!8S xa D G̃8Xf * ~p21!S xa D CGd f n~p21!8S xa D
1F̃2

~p21!S xa Dhn8Xf * ~p21!S xa D C1G̃Xf * ~p21!S xa D Cd f n~p21!8S xa D . ~2.35!

Here the variationsd f n
(p)(x/a) and dFn,2

(p)(x/a) are intro-
duced as the linear terms„denoted by @ f n

(p)(x/a)
2 f * (p)(x/a)] linear and @Fn,2

(p)(x/a)2F̃2
(p)(x/a)# linear… in h

andF of the deviations off n
(p)(x/a) and Fn,2

(p)(x/a) from
f * (p)(x/a) and F̃2

(p)(x/a), respectively.
When G̃(x) is a reduced fixed coupling functionG* (x)

of Eq. ~2.26!, the operatorL̃ of Eq. ~2.31! becomes a linear-
ized transformation ofR̃ at a fixed point (f * ,G* ). A pair of
perturbations (h* ,F* ) is then called an eigenperturbation
with eigenvaluen, if it satisfies

nS h*
F* D 5L̃S h*

F* D . ~2.36!

The reducibility ofL̃ into a semiblock form implies that to
determine the eigenvalues ofL̃ it is sufficient to work inde-
pendently in each ofh(x) subspace andF(x) subspace. That
is, one can find eigenvalues ofL̃1 andL̃2 separately and then
they give the whole spectrum ofL̃.

We first solve the eigenvalue equation forL̃1, i.e.,

nh* ~x!5@L̃1h* #~x!. ~2.37!

Note that this is just the eigenvalue equation for the 1D map
case. It has been shown that there exists only one relevant
eigenvalued, associated with scaling of the nonlinearity pa-

rameter, whose values vary depending onp @2,4–10#. How-
ever, note that although the eigenvalued of L̃1 is also an
eigenvalue ofL̃, (h* ,0) is not an eigenperturbation ofL̃
unlessL̃3 is a null operator.

We next consider a perturbation of the form (0,F) having
only the coupling part. In this case (0,F* ) can be an eigen-
perturbation ofL̃, only if F* (x) satisfies

nF* ~x!5@L̃2F* #~x!. ~2.38!

Eigenvalues associated with coupling perturbations are
called CE’s.

For the case of coupling perturbation (0,F) to ( f * ,G̃),
L̃2 of Eq. ~2.34! becomes

@L̃2F#~x!5dF2
~p!S xa D

5F f * 8Xf * ~p21!S xa D C22G̃Xf * ~p21!S xa D CG
3dF2

~p21!S xa D1F f * ~p21!8S xa D22F̃2
~p21!

3S xa DFXf * ~p21!S xa D C. ~2.39!

For the general periodp-tupling case, we have@17#

dF2
~p!S xa D5 (

i50

p21

f * ~ i !8S xa DFXf * ~ i !S xa D Cf * ~p212 i !8Xf * ~ i11!S xa D C for G̃~x!50, ~2.40a!

dF2
~p!S xa D50 for G̃~x!5

1

2
f * 8~x!, ~2.40b!
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dF2
~p!S xa D5 (

i50

p21

FXf * ~ i !S xa D C for G̃~x!5
1

2
@ f * 8~x!21#, ~2.40c!

dF2
~p!S xa D55 2 (

i50

p21

FXf * ~ i !S xa D C for evenp

(
i50

p21

FXf * ~ i !S xa D C for oddp

for G̃~x!5
1

2
@ f * 8~x!11#, ~2.40d!

dF2
~p!S xa D55 2 (

i50

p21

f * ~ i !8S xa DFXf * ~ i !S xa D Cf * ~p212 i !8Xf * ~ i11!S xa D C for evenp

(
i50

p21

f * ~ i !8S xa DFXf * ~ i !S xa D Cf * ~p212 i !8Xf * ~ i11!S xa D C for oddp

for G̃~x!5 f * 8~x!. ~2.40e!

For the case of evenp, only the first threeG̃’s in Eqs.
~2.40a! – ~2.40c! are the reduced coupling fixed functions
G* ’s, while for the case of oddp, all G̃’s in Eqs.~2.40a! –
~2.40e! are the reduced coupling fixed functionsG* ’s.

We now find CE’s associated with coupling perturbations.
For the zero-coupling case ofG* (x)50, the CE equation
~2.38! becomes

nF* ~x!5@L̃2F* #~x!5dF2
~p!S xa D

5 (
i50

p21

f * ~ i !8S xa DF* Xf * ~ i !S xa D C
3 f * ~p212 i !8Xf * ~ i11!S xa D C. ~2.41!

Using the fact thatf * 8(0)50, it can be easily shown that
whenx50, Eq. ~2.41! becomes

nF* ~0!5S )
i51

p21

f * 8~ f * ~ i !~0!!DF* ~0!. ~2.42!

Letting x→0 in Eq. ~2.25!, we also have

)
i51

p21

f * 8~ f * ~ i !~0!!5 lim
x→0

f * 8~x!

f * 8~x/a!
5a. ~2.43!

Then Eq.~2.42! reduces to

nF* ~0!5aF* ~0!. ~2.44!

There are two cases. For the caseF* (0)Þ0, we have the
first CE,

n15a. ~2.45!

The eigenfunctionF1* (x) with CE n1 is of the form

F1* ~x!511a1x1a2x
21•••, ~2.46!

whereai ’s ( i51,2, . . . ) aresome constants. For the other
caseF* (0)50, it is found thatf * 8(x) is an eigenfunction
for the CE equation~2.41!. When F* (x)5 f * 8(x), Eq.
~2.41! becomes

n f * 8~x!5p f* ~p!8S xa D5p f* 8~x!. ~2.47!

We therefore have the second relevant CE,

n25p, ~2.48!

with reduced coupling eigenfunction

F2* ~x!5 f * 8~x!. ~2.49!

Note thatF2* (x) has no constant term, whileF1* (x) has a
constant term. Thus we find two relevant CE’s,n15a and
n25p, for the zero-coupling case.

The nth imageFn of a general reduced coupling pertur-
bationF under the linear transformationL̃2 has the form

Fn~x!5@L̃2nF#~x!

;a1n1
nF1* ~x!1a2n2

nF2* ~x! for large n,

~2.50!

because the irrelevant part ofFn becomes negligibly small
for largen. Herea1 anda2 are relevant components.

A coupling is called linear or nonlinear according to its
leading term. In the case of a linear coupling, in which the
coupling perturbationw(x,y) has a leading linear term, its
reduced coupling functionF(x) has a leading constant term,
and henceF(0)Þ0. However, for any other case of nonlin-
ear coupling with a leading nonlinear term, its reduced cou-
pling function has no constant term, and henceF(0)50.
Note that the relevant componenta1 becomes zero for the
nonlinear-coupling case, while it is nonzero for the linear-
coupling case. Consequently, the CB associated with cou-
pling perturbations is governed by two relevant CE’s,
n15a andn25p, for the linear-coupling case, but by only
one CE,n25p, for the nonlinear-coupling case, which will
be confirmed in Sec. III.
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We now consider the cases of two~four! other reduced
coupling fixed functionsG* (x)’s for even~odd! p @see Eq.
~2.26!#. They are associated with CB at critical points other
than the zero-coupling critical point, as will be seen in Sec.

III. Since dF2
(p)(x/a)50 for G* (x)5 1

2 f * 8(x), L̃2 becomes
a null operator. Hence there exist no CE’s, and the CB is
essentially the same as that for the 1D case. When

G* (x)5 1
2 @ f * 8(x)21#, the CE equation~2.38! becomes

nF* ~x!5@L̃2F* #~x!5dF2
~p!S xa D

5 (
i50

p21

F* Xf * ~ i !S xa D C. ~2.51!

There exists a relevant CE,

n5p, ~2.52!

when F* (x) is a nonzero constant function, i.e.,
F* (x)5b (b is a nonzero constant!. For oddp there are two
additional reduced coupling fixed functions,

G* (x)5 1
2 @ f * 8(x)11# andG* (x)5 f * 8(x). The CE equa-

tion ~2.38! for G* (x)5 1
2 @ f * 8(x)11# is just that of Eq.

~2.51!. Therefore it has the same CE,n5p , as that for the

caseG* (x)5 1
2 @ f * 8(x)21#. However, the critical asynchro-

nous stability multipliersl1* for the two cases are different

@see Eq.~2.30!#. When G* (x)5 f * 8(x), the CE equation
~2.38! is the same as that for the caseG* (x)50. Hence it
also has two relevant CE’s,n15a and n25p. However,
l1* for this case is different from that for the case
G* (x)50, as can be seen in Eq.~2.30!. The results of rel-
evant CE’s, along with those of the critical asynchronous
stability multipliers, are listed in Table I.

III. LINEAR AND NONLINEAR COUPLINGS

We choosef (x)512Ax2 as the uncoupled 1D map and
consider two kinds of couplings, linear and nonlinear cou-
plings. As examples of the linear- and nonlinear-coupling
cases, we study the linearly and dissipatively coupled maps,
respectively, and confirm the renormalization results. The
structure of the critical set~set of the critical points! varies
depending on the kind of coupling. In the linearly coupled
case, an infinite number of critical line segments, together
with the zero-coupling critical point, constitute the critical
set, whereas in the dissipative case, the critical set consists of
only one critical line segment, one end of which is the zero-
coupling critical point. The CB also depends on the position
on the critical set. For even~odd! p, three ~four! kinds of
fixed points govern the CB for the linearly coupled case,
while only two ~three! kinds of fixed points govern the CB
for the dissipative case.

A. Linearly coupled maps

We numerically study the CB of periodp-tuplings in two
linearly coupled 1D maps with the coupling function

g~x,y!5
c

2
~y2x!, ~3.1!

wherec is the coupling parameter. The critical scaling be-
havior depends on whetherp is even or odd.

As an example of odd periodp-tuplings, we take the
period-tripling case (p53) and study its CB. The stability
diagrams of synchronous orbits with periodq53n

(n50,1,2,3) are shown in Figs. 1 and 2. As noted in Sec.
II A, the stable region of each synchronous orbit of leveln
~period 3n) in the parameter plane is bounded by the four
synchronous and asynchronous bifurcation curves deter-
mined by the equationsl i ,n561 for i50,1. Since each syn-
chronous orbit of leveln is created by its own synchronous
saddle-node bifurcation~which occurs forl0,n51), a se-
quence of stability regions with increasingn is not con-
nected, unlike the period-doubling case@13#. We now exam-
ine the treelike structure of stability regions. Figure 1 shows
the stability regions of synchronous orbits of the lowest two
levels~i.e., n50 and 1). The synchronous orbit with period
q51 is stable in some quadrilateral-shape region containing
the c50 line segment. However, the stability region of the
next leveln51 consists of three quadrilateral-shape areas.
They can be regarded as ‘‘daughter’’ quadrilaterals of the
‘‘mother’’ quadrilateral of level 0. That is, it may be thought
that they branch off from the mother quadrilateral.

We next consider the stability regions of higher levels in
Fig. 2. The branchings occur from the central one containing
the c50 line segment and its nearest-neighboring one~i.e.,
the right one! among the three quadrilaterals of level 1@see
Figs. 2~a! and 2~b!#, while there is no branching from the left
one@see Fig. 2~c!#. This rule governs the treelike structure of
the stability regions. That is, for each leveln branchings
occur only from two quadrilateral-shape areas, the central
one containing thec50 line segment and its nearest-
neighboring one. However, an infinite number of successive
branchings occur only for the case of the central quadrilateral
including thec50 line segment@see Fig. 2~a!#. For the case
of the nearest-neighboring quadrilateral, branching occurs
only once, and after that, successive quadrilaterals of higher
levels pile up without any further branchings@e.g., see Fig.
2~b!#. For the cases of quadrilaterals other than the central
and its nearest-neighboring ones, successive quadrilaterals of
higher levels pile up without any branchings@e.g., see Fig.
2~c!#.

A sequence of stability regions with increasing period is
called a ‘‘period-tripling route,’’ like the period-doubling
case@13#. There are two kinds of period-tripling route. The
sequence of the quadrilateral-shape areas containing
the c50 line segment converges to the zero-coupling point
c50 on the A5A`

(3) line, where A`
(3)

(51.786 440 255 563 639 354 534 447 . . . ) is the ac-
cumulation point of the period-tripling sequence for the 1D
case. It will be referred to as theZ3 route. On the other hand,
a sequence of quadrilaterals which piles up without succes-
sive branchings converges to a critical line. For example, the
leftmost one is the line joining two pointscl
(523.590 291 636 032 974 400 442 . . . ) and cr
(523.482 633 674 606 564 177 473 . . . ) on the
A5A`

(3) line @see Fig. 2~c!#. This kind of route will be called
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an L3 route. Note that there are infinitely manyL3 routes,
while theZ3 route converging to the zero-coupling critical
point (A` ,0) is unique. Hence an infinite number of critical
line segments, together with the zero-coupling critical point,
constitute the critical set.

We now study the critical scaling behavior on the critical
set. First, consider the case of theZ3 route ending at the
zero-coupling critical point. The CB for this zero-coupling
case is governed by the zero-coupling fixed map~2.19! with
g* (x,y)50, which has two relevant CE’s,n15a
(529.277 341. . . ) andn253 ~see Table I! as follows.

We follow the synchronous orbits of periodq53n up to
level n510 in the Z3 route, and obtain a self-similar se-
quence of parameters (An ,cn), at which each orbit of level
n has some given stability multipliers (l0 ,l1) ~e.g.,
l0521 and l151). Then the sequence$(An ,cn)% con-
verges geometrically to the zero-coupling critical
point (A`

(3),0). In order to see the convergence of each of
the two scalar sequences$An% and $cn%, definedn[DAn /
DAn11 and mn[Dcn /Dcn11, whereDAn5An2An21 and
Dcn5cn2cn21. Then they converge to their limit valuesd
and m, respectively, as shown in Table II. Hence the two
sequences$An% and$cn% obey one-term scaling laws asymp-
totically:

DAn;d2n, Dcn;m2n for large n, ~3.2!

where d555.247 . . . andm529.277 . . . . Note that the
nonlinearity-parameter scaling factord is just that for the 1D
case, and the value of the coupling-parameter scaling factor
m is close to that of the first CE,n1 (5a).

In order to take into account the effect of the second rel-
evant CE,n2 (53), on the scaling of the sequence$Dcn%,
we extend the simple one-term scaling law~3.2! to a two-
term scaling law@18#:

Dcn;C1m1
2n1C2m2

2n for large n, ~3.3!

whereum2u.um1u, andC1 andC2 are some constants. This is
a kind of multiple-scaling law@19#. Equation~3.3! gives

Dcn5s1Dcn112s2Dcn12 , ~3.4!

wheres15m11m2 ands25m1m2. Thenm1 andm2 are so-
lutions of the following quadratic equation:

m22s1m1s250. ~3.5!

To evaluatem1 and m2, we first obtains1 and s2 from
Dcn’s using Eq.~3.4!:

s15
DcnDcn112Dcn21Dcn12

Dcn11
2 2DcnDcn12

, s25
Dcn

22Dcn11Dcn21

Dcn11
2 2DcnDcn12

.

~3.6!

Note that Eqs.~3.3!–~3.6! hold only for largen. In fact the
values of si ’s and m i ’s ( i51,2) depend on the leveln.
Therefore we explicitly denotesi ’s and m i ’s by si ,n’s and
m i ,n’s, respectively. Then each of them converges to a con-
stant asn→`:

lim
n→`

si ,n5si , lim
n→`

m i ,n5m i , i51,2. ~3.7!

Three sequences$m1,n%, $m2,n%, and $m1,n
2 /m2,n% are

shown in Table III. The second column shows rapid conver-
gence ofm1,n to its limit value m1 (529.277341. . . ),
which is close to the renormalization result of the first rel-
evant CE,n1 (5a). ~Its convergence toa is faster than that
for the case of the above one-term scaling law.! From the
third and fourth columns, we also find that the second scaling
factorm2 is given by a product of two relevant CE’s,n1 and
n2,

m25
n1
2

n2
, ~3.8!

TABLE I. Reduced coupling fixed functionsG* (x), relevant
CE’s n, and the critical asynchronous stability multipliersl1* in all
the periodp-tupling cases are shown for the case of two-coupled
maps. In the second column,e (o) denotes the even~odd! period-
p tuplings. The first three forG* (x) exist for all p, while the last
two exist only for odd p. Note also that the case

G* (x)5 1
2 f * 8(x) has no relevant CE’s, anda andl* are the or-

bital scaling factor and the critical stability multiplier for the 1D
case, respectively.

G* (x) p n l1*

0 e, o a, p l*
1
2 f * 8 e, o nonexistent 0
1
2 @ f * 8(x)21# e, o p 1
1
2 @ f * 8(x)11# o p 21
f * 8(x) o a, p 2l*

FIG. 1. Stability diagram of the synchronous 3n-periodic orbits
of the lowest two levelsn50,1 in two linearly coupled maps. Each
periodic orbit of leveln is born via its own saddle-node bifurcation.
Its stable regions, denoted byq53n, are bounded by four bifurca-
tion curves determined byl i561 for i50,1. The horizontal and
nonhorizontal solid ~short-dashed! boundary lines @i.e., the
l0521 (1) andl1521 (1) bifurcation curves# correspond to the
synchronous and asynchronous period-doubling~synchronous
saddle-node and asynchronous pitchfork! bifurcation curves, re-
spectively.
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wheren15a andn253. It has been known that every scal-
ing factor in the multiple-scaling expansion of a parameter is
expressed by a product of the eigenvalues of a linearized
renormalization operator@19#.

We also study the effect of CE’s on the asynchronous
stability multipliers of synchronous periodic orbits. Consider
the two-coupled map ~2.1! with f (x)5 f c(x) and
g(x,y)5«w(x,y). Heref c(x) is the 1D critical map with the
nonlinearity parameter set to its critical valueA5A`

(p) and
« is an infinitesimal coupling parameter. The map for«50
is just the critical mapTc at the zero-coupling critical point
consisting of two uncoupled 1D critical mapsf c . It is at-
tracted to the zero-coupling fixed map~2.19! with
F* (x,y)5 f * (x) under iterations of the renormalization
transformationN of Eq. ~2.9!. Hence the reduced coupling
functionG(x) @5«F[«]w(x,y)/]yuy5x# corresponds to an
infinitesimal reduced coupling perturbation to the reduced
coupling fixed functionG* (x)50.

In the periodp-tupling case, the stability multipliersl0,n
andl1,n of thep

n-periodic orbit are the same as those of the
fixed point of then times renormalized mapNn(T), which
are given by

l0,n5 f n8~ x̂n!,

l1,n5 f n8~ x̂n!22Gn~ x̂n!. f n8~ x̂n!22«F~ x̂n!. ~3.9!

Here (f n ,Gn) is thenth image of (f c ,G) under the reduced
renormalization transformationR̃, x̂n is just the fixed point
of f n(x) @i.e., x̂n5 f n( x̂n)# and converges to the fixed point
x̂ of the 1D fixed mapf * (x) as n→`. The first stability
multiplier l0,n converges to the 1D critical stability multi-
plier l*5 f * 8( x̂) as n→`. For the period-tripling case,
l*521.872 705 929 . . . . Since Gn(x).@L̃2nG#(x)
5«Fn(x) @Fn(x) is given in Eq.~2.50!#, the asynchronous
stability multiplier has the form

l1,n.l0,n22«Fn~x!

.l*1«@e1n1
n1e2n2

n# for large n, ~3.10!

where e1522a1F1* ( x̂) and e2522a2f * 8( x̂). Therefore
the slopeSn of l1,n at the zero-coupling critical point
(«50) is

Sn[
]l1,n

]«
u«50.e1n1

n1e2n2
n for large n. ~3.11!

Here the coefficientse1 ande2 depend on the initial reduced
functionF(x), becausean’s are determined only byF(x).
Note that the coefficiente1 is zero for the nonlinear-coupling
case, whereas it is nonzero for the linear-coupling case.
Hence the growth ofSn for largen is governed by the two
relevant CE’s,n15a and n25p, for the linear-coupling
case, but only by the second relevant CE,n25p, for the
nonlinear-coupling case.

Figure 3 shows three plots ofl1,n(A`
(3) ,c) versusc for

n52, 3, and 4. The slopeSn of l1,n at the zero-coupling
critical point increases withn, and obeys well the two-term
scaling law,

FIG. 2. Stability diagram of the synchronous 3n-periodic
(n51,2,3) orbits of leveln in two linearly coupled maps. Each
periodic orbit of leveln is created via its own saddle-node bifurca-
tion. Its stable regions, denoted byq53n, are bounded by four
bifurcation curves determined byl i561 for i50,1. The solid and
short-dashed boundary lines represent the same as those in Fig. 1.
The stability diagrams starting from the central, right, and left sta-
bility regions of level 1 are shown in~a!, ~b!, and~c!, respectively.
See the text for other details.
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Sn;d1r 1
n1d2r 2

n for large n, ~3.12!

where d1 and d2 are some constants andur 1u.ur 2u. This
equation gives

Sn125t1Sn112t2Sn , ~3.13!

where t15r 11r 2 and t25r 1r 2. As in the scaling for the
coupling parameter, we first obtaint1 andt2 of level n from
Sn’s:

t1,n5
Sn11Sn2Sn12Sn21

Sn
22Sn11Sn21

, t2,n5
Sn11
2 2SnSn12

Sn
22Sn11Sn21

.

~3.14!

Then the scaling factorsr 1,n andr 2,n of level n are given by
the roots of the quadratic equation,r n

22t1,nr n1t2,n50. They
are listed in Table IV and converge to constantsr 1 (5n1)
and r 2 (5n2) as n→`, whose accuracies are higher than
those of the coupling-parameter scaling factors.

We next consider the cases ofL3 routes, each of which
converges to a critical line segment. In eachL3 route, there
are two kinds of self-similar sequences of parameters
(An ,cn), at which each orbit of leveln has some given sta-
bility multipliers; the one converges to the left end point of
the critical line segment and the other converges to the right
end point. As an example, consider the leftmostL3 route@see
Fig. 2~c!#, which converges to the critical line segment with
two ends (A`

(3) ,cl) and (A`
(3) ,cr). We follow, in the leftmost

L3 route, two self-similar sequences of parameters, one con-
verging to the left end and the other converging to the right
end. In both cases, the sequence$An% converges geometri-
cally to its accumulation valueA`

(3) as in the case of theZ3
route,

DAn;d2n for large n, ~3.15!

whereDAn5An2An21 andd555.247 . . . . The sequences
$cn% for both cases also obey the one-term scaling law,

Dcn;m2n for large n, ~3.16!

whereDcn5cn2cn21. The convergence of the scaling fac-
tor mn of leveln to its limit valuem (53) is shown in Table
V. Note that the value ofm is different from that (m5a) at
the zero-coupling critical point. Although the scaling factors

of the coupling parameter at both ends are the same, the
critical asynchronous stability multipliersl1* of Eq. ~2.28! at
both ends have different values. The convergence of the se-
quence$l1,n% to its limit valuel1* is also shown in Table V.
At the left ~right! end,l1*51 (21). Comparing the values
of m andl1* with those of the CEn andl1* listed in Table I,
we find that the CB near the left end is governed by the fixed

point (f * ,G* ) of R̃ with G* (x)5 1
2 @ f * 8(x)21#, whereas

that near the right end is governed by the fixed point with

G* (x)5 1
2 @ f * 8(x)11#.

Figure 4 shows the behavior of the asynchronous stability
multiplier l1,n(A`

(3) ,c) near the leftmost critical line seg-
ment. The slopesSn of l1,n at both ends obey well the one-
term scaling law,

Sn;nn for large n, ~3.17!

wheren53. For any fixed value ofc inside the critical line
segment,l1,n converges to zero asn→`. That is, all the
interior points are critical points withl1*50. Hence the CB
inside the critical line segment becomes the same as that of
the 1D map, which will be discussed in more detail below.
This kind of 1D-like CB is governed by the fixed point with

G* (x)5 1
2 f * 8(x), which has no relevant CE’s~see Table I!.

For the case of a synchronous orbit in two linearly
coupled 1D maps, its two Lyapunov exponents are given by

s0~A!5 lim
m→`

1

m(
t50

m21

lnu f 8~xt!u, ~3.18!

s1~A,c!5 lim
m→`

1

m(
t50

m21

lnu f 8~xt!2cu. ~3.19!

Heres0 (s1) is the synchronous~asynchronous! Lyapunov
exponent characterizing the mean exponential rate of diver-
gence of nearby orbits along~across! the symmetry line
y5x. Note that the synchronous Lyapunov exponents0 is
just that of the uncoupled 1D map and the coupling affects
only the asynchronous Lyapunov exponents1. In order to
see the phase dynamics near the critical line segment in more
detail, we fix the value of the nonlinearity parameter
A5A`

(3) and obtain the asynchronous Lyapunov exponent
s1 of the synchronous orbit by varying the coupling param-
eterc, which is shown in Fig. 5.~Note that the synchronous
Lyapunov exponents0 of the synchronous quasiperiodic or-

TABLE II. In the Z3 route, we followed a sequence of param-
eters (An ,cn) at which the pair of stability multipliers (l0,n ,l1,n) of
the orbit of period 3n is (21,1). This sequence converges to the
zero-coupling critical point (A`

(3),0) with the scaling factors shown
in the second and third columns.

n dn mn

3 55.264 789 71 29.272 61
4 55.245 771 51 29.279 20
5 55.247 110 93 29.276 71
6 55.247 020 84 29.277 55
7 55.247 026 98 29.277 27
8 55.247 026 56 29.277 36
9 55.247 026 59 29.277 33

TABLE III. For the case of theZ3 route, scaling factorsm1,n and
m2,n in the two-term scaling for the coupling parameter are shown
in the second and third columns, respectively. A product of them,
m1,n
2 /m2,n , is shown in the fourth column.

n m1,n m2,n m1,n
2 /m2,n

4 29.277 396 06 24.578 89 3.501 79
5 29.277 337 31 27.768 52 3.099 52
6 29.277 341 36 28.502 38 3.019 72
7 29.277 341 10 28.650 77 3.004 08
8 29.277 341 12 28.681 53 3.000 85
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bit becomes zero on theA5A`
(3) line.! Inside the critical line

segment (cl,c,cr), the synchronous quasiperiodic orbit on
the y5x symmetry line becomes a synchronous attractor
with s1,0. Since the dynamics on the synchronous attractor
is the same as that for the uncoupled 1D case, the critical
maps at interior points exhibit essentially 1D-like CB. How-
ever, as the coupling parameterc passes throughcl or cr ,
the asynchronous Lyapunov exponents1 of the synchronous
quasiperiodic orbit increases from zero, and hence the cou-
pling leads to desynchronization of the interacting systems.
Thus the synchronous quasiperiodic orbit ceases to be an
attractor outside the critical line segment, and new asynchro-
nous attractors appear. This is illustrated in Fig. 6.

We also study the critical scaling behavior of the asyn-
chronous Lyapunov exponents1 near both ends for the case
A5A`

(3) . As shown in Fig. 7, the asynchronous Lyapunov
exponents1 varies linearly with respect toc near both ends,
i.e., s1;«, «[c2c* (c*5cl or cr). The critical scaling
behavior ofs1 near both ends is obtained from the same CE,

n53, of the fixed points withG* (x)5 1
2 @16 f * 8(x)#. Con-

sider a map with nonzero« ~but with A5A`
(3)) near both

ends. It is then transformed into a new one of the same form,
but with a renormalized parameter«8 under a renormaliza-
tion transformation. Here the parameter« obeys a scaling
law,

«85n«53«. ~3.20!

Then the asynchronous Lyapunov exponents1 satisfies the
homogeneity relation

s1~«8!53 s1~«!. ~3.21!

This leads to the scaling relation

s1~«!;«h, ~3.22!

with exponent

h5 ln3/lnn51. ~3.23!

We now study the CB of period quadruplings (p54), as
an example of even period-p tuplings. The stability diagrams
of synchronous orbits of periodq54n (n50,1,2,3) are
shown in Figs. 8 and 9. The treelike structure of stability
regions is similar to that for the period-tripling case. As
shown in Fig. 8, four ‘‘daughter’’ quadrilaterals of level 1
branch off from its ‘‘mother’’ quadrilateral of level 0. How-
ever, an infinite number of successive branchings occur only
for the case of the central quadrilateral including thec50
line @see Fig. 9~a!#. For the cases of quadrilaterals other than
the central one, successive quadrilaterals of higher levels pile
up without any branchings@see Figs. 9~b! and 9~c!#.

Like the period-tripling case, there are two kinds of
period-quadrupling route which are a sequence of stability
regions with increasing period. The sequence of the quadri-
laterals containing thec50 line segment, called theZ4
route, converges to the zero-coupling critical point (A`

(4),0),
where A`

(4) (51.942 704 354 755 467 972 167 178. . . ) is
the accumulation point of the period-quadrupling sequence
for the 1D case. On the other hand, a sequence of quadrilat-
erals which piles up without branchings, called anL4 route,
converges to a critical line. For example, the leftmost one is
the line joining two points (A`

(4) ,cl) and (A`
(4) ,cr) @see Fig.

9~c!#, where cl523.888 058 931 772 634 488 . . . and
cr523.877 063 178 096 222 051 . . . . Note also that there
are infinitely manyL4 routes. Hence an infinite number of
critical line segments, together with the zero-coupling criti-
cal point, constitute the critical set. The results of the critical
scaling behavior on the critical set are given below.

We first consider the case of theZ4 route ending at the
zero-coupling critical point. As in the period-tripling case,
the critical scaling behavior for this zero-coupling case is
also governed by the zero-coupling fixed map with two rel-
evant CE’s,n15a (5238.819 074. . . ) andn254 as fol-
lows.

We follow, in the Z4 route, the synchronous orbits of
periodq54n up to leveln57, and obtain a self-similar se-
quence of parameters (An ,cn), at which the pair of stability
multipliers (l0,n ,l1,n) of the 4n-periodic orbit is (21,1).
Then the sequence$(An ,cn)% converges to the zero-coupling
critical point (A`

(4),0). Here the sequence$An% obeys well
the one-term scaling law,

DAn;d2n for large n, ~3.24!

where DAn5An2An21 and the scaling factor d

TABLE IV. In the period-tripling case, scaling factorsr 1,n and
r 2,n in the two-term scaling for the slopeSn of the asynchronous
stability multiplierl1,n at the zero-coupling critical point are shown
in the second and third columns, respectively.

n r1,n r 2,n

4 29.277 335 543 4 2.927 8
5 29.277 341 501 0 2.984 5
6 29.277 341 089 3 2.996 7
7 29.277 341 117 4 2.999 3
8 29.277 341 116 8 2.999 5

FIG. 3. Plots of the asynchronous stability multipliers
l1,n(A`

(3) ,c) versusc near the zero-coupling critical point for the
synchronous orbits of periodq53n (n52,3,4).
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(5981.594. . . ) is just the parameter scaling factor for the
1D case. On the other hand, the sequence$cn% obeys well the
two-term scaling law,

Dcn;C1m1
n1C2m2

n for large n, ~3.25!

whereDcn5cn2cn21, um2u.um1u, andC1 andC2 are some
constants. As shown in Table VI, the two scaling factors
m1 andm2 are given by

m15n1 , m25
n1
2

n2
. ~3.26!

We also study the effect of the CE’s on the asynchronous
stability multipliersl1,n of synchronous orbits. It is found

that the growth of the slopeSn of l1,n at the zero-coupling
critical point is also governed by the two CE’s, i.e.,

Sn;d1n1
n1d2n2

n for large n, ~3.27!

whered1 andd2 are some constants.
We next consider the cases ofL4 routes, each of which

ends at a critical line segment. As an example, consider the
leftmost L4 route @see Fig. 9~c!#, in which we follow two
self-similar sequences of parameters, one converging to the
left end (A`

(4) ,cl) of the critical line segment and the other
one converging to the right end (A`

(4) ,cr). As in the case of
the Z4 route, the sequence$An% converges geometrically to
its limit value A`

(4) with the 1D scaling factord. The se-
quence$cn% also obeys the one-term scaling law,

Dcn;m2n for large n, ~3.28!

whereDcn5cn2cn21. The convergence of the scaling fac-
tor mn of level n to its limit valuem is shown in Table VII.
Note that the scaling factorsm at both ends are the same, i.e.
m54. Moreover, the critical asynchronous stability multipli-
ersl1* at both ends are also the same, i.e.,l1*51, as shown
in Table VII. This is in contrast to the period-tripling case
wherel1* ’s at both ends are different. We also compare the
values ofm and l1* with those of the CEn and l1* listed
in Table I and find that the CB at both ends is governed by
the same fixed point (f * ,G* ) of R̃ with G* (x)
5 1

2 @ f * 8(x)21#, unlike the period-tripling case.
Figure 10 shows the behavior of the asynchronous stabil-

ity multiplier l1,n(A`
(4) ,c) near the leftmost critical line seg-

ment. The growth of the slopeSn of l1,n at both ends is
governed by the CEn (54), i.e.,

Sn;nn for large n. ~3.29!

TABLE V. We followed, in the leftmostL3 route, two self-
similar sequences of parameters. One sequence of parameters
(An ,cn), at which l0,n521 andl1,n50.8, converges to the left
end (A`

(3) ,cl) of the critical line segment with the scaling factor
mn of the coupling parameter shown in the second column. The
other sequence of parameters (An ,cn), at which l0,n521 and
l1,n520.8, converges to the right end (A`

(3) ,cr) with the scaling
factormn of the coupling parameter shown in the fourth column. In
both cases the scaling factors are the same. The convergence of the
sequence$l1,n% to its limit valuesl1* at the left~right! end is also
shown in the third~fifth! column. Note that the values ofl1* ’s at
both ends are different.

n mn l1,n mn l1,n

3 3.664 5 0.996 763 57 1.836 2 21.010 285 72
4 2.946 7 1.000 444 09 3.057 3 20.998 599 423
5 2.990 8 0.999 939 19 2.968 2 21.000 191 98
6 2.994 1 1.000 000 33 2.997 0 20.999 973 71
7 2.998 3 0.999 998 86 2.998 0 21.000 003 60
8 2.999 4 1.000 000 16 2.999 5 20.999 999 51
9 2.999 8 0.999 999 98 2.999 8 21.000 000 07

FIG. 4. Plots of the asynchronous stability multipliers
l1,n(A`

(3) ,c) versusc near the leftmost critical line for the synchro-
nous orbits of periodq53n (n52,3,4).

FIG. 5. Plot of the asynchronous Lyapunov exponent
s1(A`

(3) ,c) versusc near the leftmost critical line. The plot consists
of 200 c values, each of which is obtained by iterating the map
100 000 times to eliminate transients and then averaging over an-
other 500 000 iterations.
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However, for any fixed value ofc inside the critical line
segment,l1,n converges to zero asn→`. Thus all the inte-
rior points become critical ones withl1*50. Consequently,
the CB inside the critical line segment becomes the same as
that of the 1D map, as will be seen below. This kind of
1D-like CB is governed by the fixed point with

G* (x)5 1
2 f * 8(x), which has no relevant CE’s~see Table I!.

In order to see the phase dynamics near the critical line
segment in more detail, we fix the value of the nonlinearity
parameterA5A`

(4) and obtain the asynchronous Lyapunov
exponents1 @see Eq.~3.19!# of the synchronous orbit by
varying the coupling parameterc, which is shown in Fig. 11.
Inside the critical line segment (cl,c,cr), the synchronous
quasiperiodic orbit on they5x symmetry line becomes a
synchronous attractor withs1,0, as shown in Fig. 12~a!.
Note that the dynamics on the synchronous attractor is the
same as that for the uncoupled 1D case. Hence the critical
maps inside the critical line segment exhibit 1D-like CB.
However, as the coupling parameterc passes throughcl or
cr , the asynchronous Lyapunov exponents1 of the synchro-
nous quasiperiodic orbit increases from zero, and hence the
coupling leads to desynchronization of the interacting sys-
tems. Thus the synchronous quasiperiodic orbit ceases to be
an attractor outside the critical line segment, and new asyn-
chronous attractors appear, as shown in Figs. 12~b! and
12~c!.

We also study the scaling behavior of the asynchronous
Lyapunov exponents1 near both ends of the critical line

FIG. 6. Attractors near the leftmost critical line:~a! a synchro-
nous attractor inside the critical line and asynchronous attractors
outside the critical line for~b! c523.590 5 and~c! c523.482 4.
For each case, the map is iterated 100 000 times to eliminate tran-
sients and the next 10 000 iterations are plotted.

FIG. 7. Plots of the asynchronous Lyapunov exponent
s1(A`

(3) ,«) versus« («[c2c* ,c*5cl or cr) near the~a! left and
~b! right ends of the leftmost critical line. Each plot consists of 50
« values, each of which is obtained by iterating the map 100 000
times to eliminate transients and then averaging over another
500 000 iterations.
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segment. As in the period-tripling case, using the scaling
theory, one can also obtain the scaling relation ofs1,
s1;eh with exponenth5 ln4/lnn51, wheren (54) is the

CE of the fixed point withG* (x)5 1
2 @ f * 8(x)21#. Hence the

asynchronous Lyapunov exponents1 varies linearly with re-
spect toc near both ends.

Finally, we briefly summarize the results for the linear-
coupling case. The critical set consists of the zero-coupling
critical point and an infinite number of critical line segments.
The CB at the zero-coupling critical point is governed by the
zero-coupling fixed map with two CE’s,n1 (5a) and n2
(5p), for all periodp-tupling cases. However, the CB near
both ends of each critical line segment depends on whether
p is even or odd. In the case of oddp, the CB at one end is
governed by a fixed point (f * ,G* ) of R̃ with

G* (x)5 1
2 @12 f * 8(x)# and that at the other end by another

fixed point with G* (x)5 1
2 @11 f * 8(x)#. These two fixed

points have only one CE,n5p. On the other hand, in the
case of evenp, the CB at both ends is governed by the same
fixed point with G* (x)5 1

2 @ f * 8(x)21#. Inside the critical
line segment, the CB is the same as that of the 1D map for all
periodp-tupling cases. This kind of 1D-like CB is governed
by the fixed point withG* (x)5 1

2 f * 8(x), which has no rel-
evant CE’s. Consequently, for even~odd! p, three ~four!
kinds of fixed points govern the CB for the linearly coupled
case.

B. Dissipatively coupled maps

As an example of the nonlinear-coupling case, we con-
sider two dissipatively coupled 1D maps with the coupling
function

g~x,y!5
c

2
@ f ~y!2 f ~x!#, ~3.30!

and study the CB of the period triplings (p53) and period
quadruplings (p54).

Figures 13~a! and 13~b! show the stability diagrams of
synchronous orbits with periodq5pn (n51,2,3) for p53
and 4, respectively. As previously shown, each stability re-
gion of leveln ~periodpn) in the parameter plane is bounded
by four bifurcation curves determined byl i ,n561 for
i50,1. An infinite sequence of such stability regions, called
the ‘‘period p-tupling route,’’ converges to a critical line
joining two ends (A`

(p) ,cl* ) and (A`
(p) ,cr* ), whereA`

(p) is the
accumulation point of the periodp-tupling sequence for the
1D case,cl*50 andcr*52, as shown below. Hence only one
critical line segment constitutes the critical set for the dissi-
pative case, unlike the linearly coupled case.

Consider two dissipatively coupled 1D maps on the line
A5A`

(p) in the parameter plane, in which case the reduced
coupling function of the coupling function~3.30! is given by

G~x!5
c

2
f c8~x!, ~3.31!

where f c is the 1D critical map with the nonlinearity param-
eter set to its critical value. By successive applications of the
renormalization operatorR̃ to ( f c ,G), we have

f n~x!5a f n21
~p! S xa D , Gn~x!5

cn
2
f n8~x!, ~3.32!

cn5cn21
3 23cn21

2 13cn21 for p53, ~3.33!

cn52cn21
4 14cn21

3 26cn21
2 14cn21 for p54,

~3.34!

wheref 0(x)5 f c(x), G0(x)5G(x), andc05c. Here f n con-
verges to the 1D fixed mapf * (x).

The fixed points of the recurrence equations~3.33! and
~3.34! for c are denoted by solid circles in Fig. 14. For
p53, there are three fixed points,

c*50, 1, 2, ~3.35!

while only two fixed points,

c*50, 1, ~3.36!

exist forp54. Stability of a fixed pointc* is determined by
its stability multiplier l given by l5dcn /dcn21uc* . Note
that the fixed point atc*51 is superstable (l50). The ba-
sin of attraction to the superstable fixed point becomes the
open interval (0,2), because any initialc inside the interval
0,c,2 converges toc*51. For the period-tripling case,
both endscl*50 andcr*52 of the interval are unstable fixed
points withl53, and all points outside the interval diverge
to the plus or minus infinity. However, for the quadrupling
case, only the left endcl*50, which is also the image of the
right endcr*52 under the recurrence relation~3.34!, is an
unstable fixed point withl54, and all points outside the
interval diverge to the minus infinity. Thus the line segment
connecting two end pointscl*50 and cr*52 becomes the
critical line for the dissipative-coupling case.

FIG. 8. Stability diagram of the synchronous 4n-periodic orbits
of the lowest two levelsn50,1 in two linearly coupled maps. Each
periodic orbit of leveln is created via its own saddle-node bifurca-
tion. Its stable regions, denoted byq54n, are bounded by four
bifurcation curves determined byl i561 for i50,1. The solid and
short-dashed boundary lines represent the same as those in Fig. 1.
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All critical maps inside the critical line segment are at-
tracted to the fixed maps with the same reduced coupling

function G* (x)5 1
2 f * 8(x). These fixed maps have no rel-

evant CE’s, because the fixed pointc*51 is superstable.
Hence the critical maps at interior points exhibit essentially
1D-like CB. In the period-tripling case, the critical map at
the left endcl* is attracted to the zero-coupling fixed map,

T* :xt115 f * ~xt!, yt115 f * ~yt!, ~3.37!

with the reduced coupling functionG* (x)50, and the criti-
cal map at the right endcr* to another fixed map,

T* :xt115 f * ~yt!, yt115 f * ~xt!, ~3.38!

with the reduced coupling fixed functionG* (x)5 f * 8(x).
However, in the period-quadrupling case, the critical maps at
both ends are attracted to the zero-coupling fixed map~3.37!.
Note that the two fixed maps of Eqs.~3.37! and ~3.38! have
the same relevant CE’s,n15a and n25p ~see Table I!.
However, for this dissipatively coupled case, the CB’s near
both ends are governed only by the second CE,n25p @i.e.,
the first relevant componenta1 in Eq. ~2.50! becomes zero#,
which can be easily understood from the fact that the fixed
points c*50,2 are unstable ones with stability multiplier
l5p.

We study the critical scaling behavior associated with
coupling near the critical line segment and confirm the renor-

TABLE VI. For the case of theZ4 route, scaling factorsm1,n

and m2,n in the two-term scaling for the coupling parameter are
shown in the second and third columns, respectively. A product of
them,m1,n

2 /m2,n , is shown in the fourth column.

n m1,n m2,n m1,n
2 /m2,n

3 238.819 021 99 311.92 4.83
4 238.819 074 56 372.98 4.04
5 238.819 074 24 377.22 3.99

TABLE VII. We followed, in the leftmostL4 route, two self-
similar sequences of parameters (An ,cn), at whichl0,n521 and
l1,n50.8. One sequence converges to the left end (A`

(4) ,cl) of the
critical line segment with the scaling factormn of the coupling
parameter shown in the second column. The other sequence con-
verges to the right end (A`

(4) ,cr) with the scaling factormn of the
coupling parameter shown in the fourth column. In both cases the
scaling factors are the same. The convergence of the sequence
$l1,n% to its limit valuesl1* at the left~right! end is also shown in
the third ~fifth! column. Note that the values ofl1* ’s at both ends
are the same.

n mn l1,n mn l1,n

2 5.013 1.010 032 65 50.70 0.987 196 90
3 4.051 0.999 630 89 3.674 1.000 476 66
4 3.963 1.000 013 65 3.978 0.999 982 38
5 3.992 0.999 999 50 3.993 1.000 000 65
6 3.998 1.000 000 02 3.998 0.999 999 98

FIG. 9. Stability diagram of the synchronous 4n-periodic orbits
of level n (n51,2,3) in two linearly coupled maps. Each periodic
orbit of level n is created via its own saddle-node bifurcation. Its
stable regions, denoted byq54n, are bounded by four bifurcation
curves determined byl i561 for i50,1. The solid and short-
dashed boundary lines represent the same as those in Fig. 1. The
stability diagrams starting from the central, right, and left stability
regions of level 1 are shown in~a!, ~b!, and ~c!, respectively. See
the text for other details.
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malization results. For the dissipative-coupling case, the sta-
bility multipliers of synchronous orbits with periodq5pn

(p53,4) become

l0,n~A!5 )
t50

q21

f 8~xt!, l1,n~A,c!5~12c!ql0,n .

~3.39!

Let the pair of stability multipliers of the synchronous orbit
of level n ~period pn) at a point (A,c) be (l0 ,l1). Then
there exists a ‘‘conjugate point’’ (A,2c12), at which the
pair of stability multipliers becomes (l0 ,2l1) and
(l0 ,l1) for p53 and 4, respectively. Forc51, l150 and
the two conjugate points become degenerate.

Like the linearly coupled case, we follow the synchronous
orbits of leveln in the periodp-tupling route, and obtain a

self-similar sequence of parameters (An ,cn), at which each
orbit of level n has some given stability multipliers
(l0 ,l1). Without loss of generality, we choosel0521.
Then one can find a pair of mutually conjugate sequences.
One sequence$(An ,cn)% can be obtained by fixing
21,l1,0, which converges to the zero-coupling critical
point (A`

(p),0) as follows:

An2A`
~p!;d2n, cn512~2l1!

p2n
;2 ln~2l1!p

2n

for largen, ~3.40!

FIG. 10. Plots of the asynchronous stability multipliers
l1,n(A`

(4) ,c) versusc near the leftmost critical line for the synchro-
nous orbits of period 4n (n52,3,4).

FIG. 11. Plot of the asynchronous Lyapunov exponent
s1(A`

(4) ,c) versusc near the leftmost critical line. The plot consists
of 200 c values, each of which is obtained by iterating the map
100 000 times to eliminate transients and then averaging over an-
other 500 000 iterations.

FIG. 12. Attractors near the leftmost critical line:~a! a synchro-
nous attractor inside the critical line and asynchronous attractors
outside the critical line for ~b! c523.877 059 and ~c!
c523.888 059. For each case, the map is iterated 100 000 times to
eliminate transients and the next 10 000 iterations are plotted.
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whereA`
(p) andd are just those for the 1D case. Note that the

coupling-parameter scaling factor is just the second relevant
CE, n2 (5p), of the zero-coupling fixed map~3.37!. The
‘‘conjugate sequence’’ can also be obtained by following
pn-periodic orbits withl1,n52l1 andl1 for p53 and 4,
respectively. This kind of conjugate sequence$(An ,cn)%
converges to the right-end critical point (A`

(p),2) ~i.e., the
conjugate point of the zero-coupling critical point! as fol-
lows:

An2A`
~p!;d2n,

cn225211~2l1!
p2n

; ln~2l1!p
2n for largen.

~3.41!

Note also that the asymptotic scaling of the coupling-
parameter sequence is governed only by the second CE,
n25p, of the ‘‘conjugate’’ fixed map~3.38! for p53 and of

the zero-coupling fixed map~3.37! for p54. Hence the criti-
cal scaling behavior of the coupling parameter near both
ends becomes the same.

Figures 15~a! and 15~b! show three plots ofl1,n(A`
(p) ,c)

versus c for n51,2,3 in the period-tripling (p53) and
period-quadrupling (p54) cases, respectively. The critical
asynchronous stability multipliersl1* of Eq. ~2.28! at both
ends of the critical line segment can be easily obtained from
Eq. ~3.39!. For p53, l1*5l* (2l* ) at the left~right! end
(l* is the critical stability multiplier for the 1D case!, while
for p54, l1*5l* at both ends. The slopesSn of l1,n at both
ends also obey well the same one-term scaling law,

Sn5
]l1,n

]c U
~A

`
~p! ,c* !

;pn for large n, ~3.42!

wherec*5cl* or cr* Hence the growth ofSn for largen is
governed only by the second CE,n2 (5p).

All interior points of the critical line segment become
critical ones withl1*50, because at any interior pointl1,n

converges to zero asn→`. Hence the CB inside the critical

FIG. 13. Stability diagram of the synchronous orbits for the~a!
period-tripling (p53) and~b! period-quadrupling (p54) cases in
two dissipatively coupled maps. Each periodic orbit of leveln is
born via its own saddle-node bifurcation. Its stable regions, denoted
by q5pn (n51,2,3), are bounded by four bifurcation curves deter-
mined byl i561 for i50,1. The solid and short-dashed boundary
lines represent the same as those in Fig. 1.

FIG. 14. Fixed points of the recurrence equations~a! ~3.33! and
~b! ~3.34!. The intersection points between the curves of Eqs.~3.33!
and ~3.34! and the linecn5cn21 are just the fixed points, denoted
by solid circles.
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line segment becomes the same as that of the 1D map, as will
be seen below. This kind of 1D-like CB is governed by the
fixed maps with the same reduced coupling function

G* 8(x)5 1
2 f * 8(x), which have no relevant CE’s.

For the dissipatively coupled case, the asynchronous
Lyapunov exponents1 is given by

s1~A,c!5s0~A!1 lnu12cu, ~3.43!

wheres0 is the 1D Lyapunov exponent of Eq.~3.18!. In
order to see the phase dynamics near the critical line seg-
ment, we fix the value of the nonlinearity parameter
A5A`

(p) . Then, the asynchronous Lyapunov exponent be-
comes s1(A`

(p) ,c)5 lnu12cu, becauses0(A`
(p))50. Inside

the critical line segment (0,c,2), the synchronous quasi-
periodic orbit on they5x symmetry line becomes a synchro-
nous attractor withs1,0 @see Figs. 6~a! and 12~a!#. Note
that the dynamics on the synchronous attractor is the same as
that for the uncoupled 1D case. Hence the critical maps in-
side the critical line segment exhibit 1D-like CB. However,
as the coupling parameterc passes throughcl* or cr* the
asynchronous Lyapunov exponents1 of the synchronous
quasiperiodic orbit increases from zero, and hence the cou-
pling leads to desynchronization of the interacting systems.
Thus the synchronous quasiperiodic orbit ceases to be an
attractor outside the critical line segment, and new asynchro-
nous attractors appear, as shown in Fig. 16.

We also study the scaling behavior of the asynchronous
Lyapunov exponents1 near both ends of the critical line
segment. The asynchronous Lyapunov exponent near both
ends becomess1;e, wheree[c2c* (c*5cl* or cr* ). As
in the linearly coupled case, using the scaling theory, one can
also obtain the scaling relation ofs1, s1;eh with exponent
h5 lnp/lnn251, wheren2 (5p) is the second CE of the
fixed maps~3.37! and ~3.38!.

IV. EXTENSION TO MANY-COUPLED MAPS

In this section we study the CB of periodp-tuplings in
N (N>3) coupled 1D maps, in which the coupling extends
to the Kth $1<K<(N/2)@(N21)/2# for even ~odd! N%
neighbor~s! with equal strength. It is found that the CB de-
pends on the range of coupling. In the global-coupling case,
in which each 1D map is coupled to all the other 1D maps
with equal strength, both the structure of the critical set and
the CB are the same as those for the two-coupled case, irre-
spectively ofN. However, for the cases of nonglobal cou-
plings of shorter range, a significant change in the structure
of the critical set may or may not occur according to whether
the coupling is linear or not. As examples of the linear and
nonlinear nonglobal couplings, we study the linearly and dif-
fusively coupled, nearest-neighbor coupling cases, respec-
tively. For the linearly coupled case, of the infinite number
of periodp-tupling routes for the global-coupling case, only
the route ending at the zero-coupling critical point is left in
the parameter plane. On the other hand, for the diffusively
coupled case, one critical line segment constitutes the critical
set, as in the globally coupled case.

A. Stability of periodic orbits in many-coupled maps

ConsiderN symmetrically coupled 1D maps with a peri-
odic boundary condition,

T:xm~ t11!5F„sm21x~ t !…

5F„xm~ t !,xm11~ t !, . . . ,xm21~ t !…,

m51, . . . ,N ~4.1!

where N is a positive integer larger than or equal to 2,
x5(x1 , . . . ,xN), ands is the cyclic permutation ofx @i.e.,
sx5(x2 , . . . ,x1)#. Here xm(t) is the state of themth ele-
ment at a discrete timet, and the periodic condition imposes
xm(t)5xm1N(t) for all m. Like the two-coupled case with
N52, the functionF consists of two parts:

F~x!5 f ~x1!1g~x!, ~4.2!

wheref is an uncoupled 1D map with a quadratic maximum
at x50, andg is a coupling function. The uncoupled 1D
map f satisfies the normalization condition~2.2!, and the
coupling functiong obeys the condition

g~x, . . . ,x!50 for any x. ~4.3!

TheN-coupled mapT has a cyclic permutation symme-
try,

s21Ts~x!5T~x! for all x, ~4.4!

wheres21 is the inverse ofs. The set of all fixed points of
s forms a symmetry line on which

x15•••5xN . ~4.5!

It follows from Eq. ~4.4! that the cyclic permutations com-
mutes with the mapT, i.e., sT5Ts. Hence the symmetry
line becomes invariant underT, i.e., if a pointx lies on the
symmetry line, then its imageT(x) also lies on it. An orbit is
called a synchronous orbit if it lies on the symmetry line, i.e.,
it satisfies

x1~ t !5•••5xN~ t ![x~ t ! for all t. ~4.6!

Otherwise, it is called an asynchronous orbit. Here we study
only the synchronous orbits. They can be easily found from
the uncoupled 1D map,x(t11)5 f @x(t)#, because of the
condition ~4.3!.

Consider an element, say themth element, in the
N-coupled mapT. Then the (m6d)th elements are called
the dth neighbors of themth element, where 1<d
<(N/2)@(N21)/2# for even ~odd! N. If the coupling ex-
tends to theKth neighbor~s!, then the numberK is called the
range of coupling.
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A general form of coupling for oddN (N>3) is given by

g~x1 , . . . ,xN!5
c

2K11 (
m52K

K

@u~x11m!2u~x1!#

5cF 1

2K11 (
m52K

K

u~x11m!2u~x1!G ,
K51, . . . ,

N21

2
~4.7!

wherec is a coupling parameter andu is a function of one
variable. Here the coupling extends to theKth neighbors
with equal coupling strength, and the functiong satisfies the
condition ~4.3!. The extreme long-range interaction for
K5(N21)/2 is called a global coupling, for which the cou-
pling functiong becomes

g~x1 , . . . ,xN!5
c

N (
m51

N

@u~xm!2u~x1!#

5cF 1NN(
m51

N

u~xm!2u~x1!G . ~4.8!

This is a kind of mean-field coupling, in which each element
is coupled to all the other elements with equal coupling
strength. All the other couplings withK,(N21)/2 ~e.g.,
nearest-neighbor coupling withK51) will be referred to as
nonglobal couplings. TheK51 case forN53 corresponds
to both the global coupling and the nearest-neighbor cou-
pling.

We next consider the case of evenN (N>2). The form of
coupling of Eq.~4.7! holds for the cases of nonglobal cou-
plings with K51, . . . , (N22)/2 (N>4). The global cou-
pling for K5N/2 (N>2) also has the form of Eq.~4.8!, but
it cannot have the form of Eq.~4.7!, because there exists
only one farthest neighbor forK5N/2, unlike the case of
odd N. The K51 case forN52 also corresponds to the

FIG. 15. Plots of the asynchronous stability multipliers
l1,n(A`

(p) ,c) versus c for the synchronous orbits of periodpn

(n51,2,3) near the critical line for the~a! period-tripling (p53)
and ~b! period-quadrupling (p54) cases in two dissipatively
coupled maps.

FIG. 16. Asynchronous attractors outside the critical line for~a!
c520.001 5 in the period-tripling case and~b! c520.000 1 for
the period-quadrupling case. For each case, the map is iterated
100 000 times to eliminate transients and the next 10 000 iterations
are plotted.
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nearest-neighbor coupling as well as to the global coupling,
like theN53 case.

The stability analysis of an orbit in many-coupled maps is
conveniently carried out by Fourier transforming with re-
spect to the discrete space$m% @20#. Consider an orbit
$xm(t);m51, . . . ,N% of theN-coupled maps~4.1!. The dis-
crete spatial Fourier transform of the orbit is

F@xm~ t !#[
1

N(
m51

N

e22p im j /Nxm~ t !5j j~ t !,

j50,1, . . . ,N21. ~4.9!

The Fourier transformj j (t) satisfiesj j* (t)5jN2 j (t) (* de-
notes complex conjugate!, and the wavelength of a mode
with index j is N/ j for j<N/2 andN/(N2 j ) for j.N/2.

To determine the stability of a synchronous orbit
@x1(t)5•••5xN(t)[x(t) for all t#, we consider an infini-
tesimal perturbation$dxm(t)% to the synchronous orbit, i.e.,
xm(t)5x(t)1dxm(t) for m51, . . . ,N. Linearizing the
N-coupled map~4.1! at the synchronous orbit, we obtain

dxm~ t11!5 f 8„x~ t !…dxm~ t !1(
l51

N

G~ l !
„x~ t !…dxl1m21 ,

~4.10!

where

G~ l !~x![
]g~x1 , . . . ,xN!

]xl
U
x15•••5xN5x

. ~4.11!

Hereafter the functionsG( l ) will be called ‘‘reduced’’ cou-
pling functions ofg(x1 , . . . ,xN).

Let dj j (t) be the Fourier transform ofdxm(t), i.e.,

dj j5F@dxm~ t !#5
1

N(
m51

N

e22p im j /Ndxm ,

j50,1, . . . ,N21. ~4.12!

Heredj0 is the synchronous-mode perturbation, and all the
other dj j ’s with nonzero indicesj are the asynchronous-
mode perturbations. Then the Fourier transform of Eq.~4.10!
becomes

dj j~ t11!5S f 8„x~ t !…1(
l51

N

G~ l !
„x~ t !…e2p i ~ l21! j /ND

3dj j~ t !, j50,1, . . . ,N21. ~4.13!

Note that all the modesdj j become decoupled for the syn-
chronous orbit.

For a synchronous orbit with periodq, its linear stability
is determined by iterating the linearized map~4.13! q times:

dj j~ t11!5 )
m50

q21 F f 8„x~ t1m!…

1(
l51

N

G~ l !
„x~ t1m!…e2p i ~ l21! j /NG

3dj j~ t !, j50,1, . . . ,N21. ~4.14!

That is, the stability multipliers of the orbit are given by

l j5 )
t50

q21 S f 8„x~ t !…1(
l51

N

G~ l !
„x~ t !…e2p i ~ l21! j /ND ,
j50,1, . . . ,N21. ~4.15!

Here the first stability multiplierl0 is associated with the
stability against the synchronous-mode perturbation, and
hence it may be called the synchronous stability multiplier.
On the other hand, all the other stability multipliersl j
( jÞ0) are called the asynchronous stability multipliers, be-
cause they are associated with the stability against the
asynchronous-mode perturbations.

A synchronous orbit becomes stable when it is stable
against all the synchronous-mode and asynchronous-mode
perturbations, i.e., the moduli of all stability multipliers are
less than unity (ul j u,1 for j50, . . . ,N21). Hence the
stable region of the synchronous orbit in the parameter plane
is bounded by the synchronous and asynchronous bifurcation
lines determined by the equationsl j561 for
j50, . . . ,N21. When thel051(21) line is crossed, the
synchronous orbit loses its stability via synchronous saddle-
node ~period-doubling! bifurcation. However, when thel j
( jÞ0)51(21) line is crossed, it becomes unstable via
asynchronous pitchfork~period-doubling! bifurcation.

It follows from Eq. ~4.3! that

(
l51

N

G~ l !~x!50. ~4.16!

Hence the synchronous stability multiplierl0 for j50 be-
comes

l05 )
t50

q21

f 8„x~ t !…, ~4.17!

which is just the stability multiplier of the uncoupled 1D
map. While there is no coupling effect onl0, the coupling
generally affects asynchronous stability multipliersl j of
jÞ0. The effect of the coupling on the asynchronous stabil-
ity multipliers depends on the range of coupling, as will be
seen in the next two subsections.

B. Global-coupling case

In this subsection we study the CB of periodp-tuplings in
many-coupled maps with a global coupling. It is shown that
both the structure of the critical set and the CB for the case
of N globally coupled maps are the same as those for the
case of two-coupled maps, independently ofN.

In the case of the global coupling~4.8!, the reduced cou-
pling functions of Eq.~4.11! become
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G~ l !~x!5H ~12N!G~x! for l51

G~x! for lÞ1,
~4.18!

where G(x)5(c/N)u8(x). Substituting G( l )’s into Eq.
~4.15!, we find that all the asynchronous stability multipliers
are the same:

l15•••5lN215 )
t50

q21

@ f 8„x~ t !…2NG„x~ t !…#

5 )
t50

q21

@ f 8„x~ t !…2cu8„x~ t !…#. ~4.19!

Hence there exist only two independent stability multipliers
l0 andl1 (5l15•••5lN21) for the global-coupling case.
Note also that the values ofl0 and l1 are independent of
N and they are the same as those of two-coupled maps. Thus
the stability diagram of synchronous orbits of periodpn

(n50,1,2, . . . ) in anyN globally coupled maps becomes the
same as that of the two-coupled maps. Consequently, the
two-parameter scaling factors associated with scaling of the
nonlinearity and coupling parameters are the same as those
of the two-coupled maps, independently ofN. That is, the
CB ofN globally coupled maps becomes the same as that for
the case of the two-coupled maps, irrespectively ofN, which
is also shown below by a renormalization analysis.

We now follow the same procedure of Sec. II B and
straightforwardly extend the renormalization results of the
two coupled maps to many globally coupled maps. The res-
caling operatorB of Eq. ~2.10! becomesaI for the case of
N-coupled maps, whereI is theN3N identity matrix. Ap-
plying the periodp-tupling operatorN of Eq. ~2.9! to the
N-coupled maps~4.1! n times, we obtain then-times renor-
malized mapTn of the form

Tn :xm~ t11!5Fn„xm~ t !,xm11~ t !, . . . ,xm21~ t !…

5 f n„xm~ t !…1gn„xm~ t !,xm11~ t !, . . . ,xm21~ t !…,

m51, . . . ,N. ~4.20!

Here f n andgn are the uncoupled and coupling parts of the
n-times renormalized functionFn , respectively. They satisfy
the following recurrence equations:

f n11~x1!5a f n
~p!S x1a D , ~4.21!

gn11~x!5aFn
~p!S xa D2a f n

~p!S x1a D , ~4.22!

where

f n
~p!~x1!5 f n„f n

~p21!~x1!…, ~4.23!

Fn
~p!~x!5Fn„Fn

~p21!~x!,Fn
~p21!~sx!, . . . ,Fn

~p21!~sN21x!…,
~4.24!

and the rescaling factor is chosen to preserve the normaliza-
tion condition f n11(0)51, i.e., a51/ f n

(p21)(1). Then, the

recurrence relations~4.21! and ~4.22! define a renormaliza-
tion operatorR of transforming a pair of functions (f ,g):

S f n11

gn11
D 5RS f ngnD . ~4.25!

A critical map with the nonlinearity and coupling param-
eters set to their critical values is attracted to a fixed map
T* under the iterations of the renormalization transformation
N:

T* :xm~ t11!5F* „xm~ t !,xm11~ t !, . . . ,xm21~ t !…

5 f * „xm~ t !…

1g* „xm~ t !,xm11~ t !, . . . ,xm21~ t !…,

m51, . . . ,N ~4.26!

where (f * ,g* ) is the fixed point ofR with a51/f * (1).
Since f * is just the 1D fixed map, only the equation for the
coupling fixed functiong* is left to be solved.

As in the two-coupled case, we construct a tractable re-
currence equation for the reduced coupling function
G( l )(x). That is, differentiating the recurrence equation
~4.25! with respect to xl ( l52, . . . ,N) and setting
x15•••5xN5x, we obtain@21#

Gn11
~ l ! ~x!5Fn,l

~p!S xa D
5Fn,l

~p21!S xa D f n8Xf n~p21!S xa D C
1 f n

~p21!8S xa DGn
~ l !Xf n~p21!S xa D C

1 (
m51

N

Fn,l2m11
~p21! S xa D FGn

~m!Xf n~p21!S xa D C
2Gn

~ l !Xf n~p21!S xa D CG , l52, . . . ,N ~4.27!

where Fn,m
(p) (x)[]Fn

(p)(x)/]xmux15•••5xN5x (m51, . . . ,N).
Note that these reduced coupling functions satisfy the sum
rule of Eq. ~4.16! @i.e., ( l51

N Gn
( l )(x)50#, and

Gn
( l )(x)5Gn

( l1N)(x) @or equivalently,Fn,m
(p) (x)5Fn,m1N

(p) (x)#
due to the periodic condition.

In the global-coupling case, the initial reduced coupling
functions$G( l )(x)% satisfy Eq.~4.18!, i.e., there exists only
one independent reduced coupling functionG(x). Then, it is
easy to see that the successive images$Gn

( l )(x)% of
$G( l )(x)% under the transformation~4.27! also satisfy Eq.
~4.18!, i.e.,

Gn
~2!~x!5•••5Gn

~N!~x![Gn~x! ~4.28!

@or equivalently, Fn,2
~p!~x!5•••5Fn,N

~p! ~x![Fn
~p!~x!#.

~4.29!

Consequently, there remains only one recurrence equation
for the independent reduced coupling functionG(x):
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Gn11~x!5Fn
~p!S xa D

5Fn
~p21!S xa D F f n8Xf n~p21!S xa D C2NGnXf n~p21!S xa D CG

1 f n
~p21!8S xa DGnXf n~p21!S xa D C. ~4.30!

Then, together with Eq.~4.21!, Eq. ~4.30! defines a reduced
renormalization operatorR̃ of transforming a pair of func-
tions (f ,G) such that (f n11 ,Gn11)5R̃( f n ,Gn).

We look for fixed points (f * ,G* ) of R̃ such that
( f * ,G* )5R̃( f * ,G* ). Here f * (x) is just the 1D fixed func-
tion. Only the equation forG* is therefore left to be solved.
Since the transformation~4.30! for G holds for any globally
coupled map cases withN>2, it can be regarded as a gen-
eralized version of Eq.~2.21! for the two-coupled case.
Comparing the expression in Eq.~4.30! with that in Eq.
~2.21!, one can easily see that they are the same except for
the factorN. Making a change of the independent reduced
coupling function G(x)→(2/N)G(x) @equivalently,
F (p)(x)→(2/N)F (p)(x)#, Eq. ~4.30! is transformed into Eq.
~2.21!. Consequently, rescaling the solutions~2.26! for the
two-coupled case with the scaling factor 2/N, one can obtain
the solutions for the case ofN globally coupled maps:

G* ~x!50 for all p, ~4.31a!

G* ~x!5
1

N
f * 8~x! for all p, ~4.31b!

G* ~x!5
1

N
@ f * 8~x!21# for all p, ~4.31c!

G* ~x!5
1

N
@ f * 8~x!11# for odd p, ~4.31d!

G* ~x!5
2

N
f * 8~x! for odd p. ~4.31e!

Thus there exist three~five! fixed points (f * ,G* ) of R̃ for
the case of even~odd! p, independently ofN.

For the same reason as for the two-coupled maps@see Eq.
~2.29!#, the critical stability multipliers have the values of the
stability multipliers of the fixed point of the fixed mapT* .
From Eqs.~4.17! and ~4.19!, we obtain two independent
critical stability multipliersl0* andl1* :

l0*5 f * 8~ x̂!, l1*5 f * 8~ x̂!2NG* ~ x̂!, ~4.32!

where x̂ is the fixed point of the 1D fixed function@i.e.,
x̂5 f * ( x̂)# andl0* is just the critical stability multiplierl*
of the uncoupled 1D map. SubstitutingG* ’s into Eq.~4.32!,
we obtain the same critical asynchronous stability multipliers
l1* as in the case of two-coupled maps, as listed in Table
VIII.

Consider an infinitesimal perutrbation (h,F) to a fixed
point (f * ,G* ) of the reduced renormalization operatorR̃.

Linearizing R̃ at the fixed point, we obtain the recurrence
equation for the evolution of (h,F), (hn11 ,Fn11)
5L̃(hn ,Fn). As in the two-coupled case, the linearized op-
erator L̃ also has a semiblock form†i.e., hn11(x)
5@L̃1hn#(x) andFn11(x)5@L̃2Fn#(x)1@L̃3hn#(x)‡. It fol-
lows from the reducibility ofL̃ into a semiblock form that
one can find eigenvalues ofL̃1 and L̃2 separately and then
they give the whole spectrum ofL̃.

All the fixed points (f * ,G* ) have a common relevant
eigenvalued of L̃1 ~i.e., the relevant eigenvalue for the case
of the uncoupled 1D maps! associated with the critical scal-
ing of the nonlinearity parameter of the uncoupled 1D map.
However, the relevant CE’s ofL̃2, associated with the criti-
cal scaling of the coupling parameter, depend on the kind of
the fixed points, as in the case of the two-coupled maps.
Consider an infinitesimal perturbationF to a fixed point
G* of the recurrence equation~4.30!. Linearizing Eq.~4.30!
at the fixed pointG* , we obtain an equation for the evolution
of F @i.e., Fn11(x)5L̃2Fn(x)#. Note again that Eq.~4.30!
is transformed into the recurrence equation~2.21! for the
two-coupled case under a mere scale change of the indepen-
dent reduced coupling functionG(x)→(2/N)G(x). Conse-
quently, the CE equation@i.e., L̃2F* (x)5nF* (x)# for the
case ofN globally coupled maps becomes the same as that
for the case of two-coupled maps, independently ofN. Then,
following the same procedure of Sec. II B, one can obtain the
same CE’s as those for the case of two-coupled maps, as
listed in Table VIII.

C. Nonglobal-coupling cases

In this subsection, we choosef (x)512Ax2 as the un-
coupled 1D map and study the CB of the periodp-tuplings
for the nonglobal-coupling cases. A significant change in the
structure of the critical set may or may not occur according
to whether the coupling is linear or not. As examples of the

TABLE VIII. Independent reduced coupling fixed functions
G* (x), relevant CE’sn, and independent critical asynchronous sta-
bility multipliers l1* in all the periodp-tupling cases are shown for
the case ofN globally coupled maps. The first three forG* (x) exist
for all p, whereas the last two exist only for oddp. Herea and
l* are the orbital scaling factor and the critical stability multiplier
for the 1D case, respectively. Note thatn andl1* for eachG* (x)
are also the same as those for the two-coupled case, independently
of N.

G* (x) n l1*

0 a, p l*

1

N
f* 8 nonexistent 0

1

N
@f* 8~x!21# p 1

1

N
@f* 8~x!11# p 21

2

N
f* 8~x! a, p 2l*
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linear and nonlinear nonglobal couplings, we study the lin-
early and diffusively coupled, nearest-neighbor coupling
cases, respectively. For the linearly coupled case, only the
zero-coupling critical point is left in the parameter plane,
which is in contrast to the global-coupling case. On the other
hand, for the diffusively coupled case, one critical line seg-
ment constitutes the critical set, as in the global-coupling
case.

Consider a nonglobal coupling of the form~4.7! and de-
fine

G~x![
c

2K11
u8~x!, ~4.33!

where 1<K<@(N22)/2#@(N23)/2# for even ~odd! N
larger than 3. Then we have

G~ l !~x!55
22KG~x! for l51

G~x! for 2< l<11K or

for N112K< l<N

0 otherwise.

~4.34!

SubstitutingG( l )’s into Eq.~4.15!, we find that each stability
multiplier l j ~associated with the stability against the
j th-mode perturbation! is given by

l j5 )
t50

q21

@ f 8„x~ t !…2SN~K, j !cu8„x~ t !…#, ~4.35!

where

SN~K, j ![
4

2K11(k51

K

sin2
p jk

N
512

sin~2K11!~p j /N!

~2K11!sin~p j /N!
.

~4.36!

Hence, unlike the global-coupling case@see Eq.~4.19!#, the
stability multipliers vary depending on the coupling range
K as well as on the mode numberj . Since
SN(K, j )5SN(K,N2 j ), the stability multipliers satisfy

l j5lN2 j , j50,1, . . . ,N21. ~4.37!

Thus it is sufficient to consider only the case of
0< j<(N/2) @(N21)/2# for even~odd! N. Comparing the
expression in Eq.~4.35! with that in Eq.~4.19! for jÞ0, one
can easily see that they are the same except for the factor
SN(K, j ). Consequently, making a change of the coupling
parameterc→c/SN(K, j ), the stability multiplierl j for the
nonglobal-coupling case of rangeK becomes the same as
that for the global-coupling case.

For each mode with nonzero indexj , we consider a region
in the parameter plane, in which a synchronous orbit is stable
against the perturbations of both modes with indices 0 and
j . This stable region is bounded by four bifurcation curves
determined by the equationsl0561 andl j561, and it
will be denoted byUN . For the case of global coupling,
those stable regions coincide, irrespectively ofN and j , be-
cause all the asynchronous stability multipliersl j ( jÞ0) are

the same, independently ofN. The stable region for this
global-coupling case will be denoted byUG . Note thatUG
itself is just the stability region of the synchronous orbit,
irrespectively ofN, because the synchronous orbit is stable
against the perturbations of all the synchronous and asyn-
chronous modes in the regionUG .

However, the stable regionsUN vary depending on the
coupling rangeK and the mode numberj for the nonglobal-
coupling cases, i.e.,UN5UN(K, j ). To find the stability re-
gion of a synchronous orbit in anN-coupled map with a
givenK, one may start with the stability regionUG for the
global-coupling case. Rescaling the coupling parameterc by
a scaling factor 1/SN(K, j ) for each nonzeroj , the stable
regionUG is transformed into a stable regionUN(K, j ). Then
the stability region of the synchronous orbit is given by the
intersection of all such stable regionsUN . A significant
change in the stability diagram of the synchronous orbits of
periodpn (n50,1,2, . . . ) may or may notoccur according to
whether the coupling is linear or not, as will be seen below.

As the first example, we study the linearly coupled,
nearest-neighbor coupling case withK51, in which the cou-
pling function is

g~x1 , . . . ,xN!5
c

3
~x21xN22x1! for N>3.

~4.38!

This kind of coupling can be regarded as a generalized ver-
sion of Eq. ~3.1! for the linearly coupled case forN52.
~Note that as mentioned above, the cases ofN52 and 3
correspond to the global-coupling case.! For K51, the scal-
ing factor 1/SN(K, j ) of Eq. ~4.36! becomes

SN~1,j !5
4

3
sin2S p j

N D . ~4.39!

This scaling factor 1/SN(1,j ) has its minimum value
3
4$3/@4cos

2(p/2N)#% at jmin5(N/2)@(N2 1
2 )# for even ~odd!

N. We also note that the minimum value for oddN depends
on N, but asN→` it converges to the minimum value for
the case of evenN.

Rescaling the coupling parameterc with the scaling factor
1/SN(1,j ), the stability regionUG for theN52 and 3 cases
of global coupling is transformed into the regionUN(1,j ) for
N.3. Then, as a result of the intersection of all such regions
UN(1,j ), only the regionUN(1,jmin) including ac50 line
segment is left as the stability region of a synchronous orbit.
Consequently, of the infinite number of periodp-tupling
routes for the global-coupling case, only theZp route ending
at the zero-coupling critical point (A`

(p),0) remains. Thus
only the zero-coupling point is left as a critical point in the
parameter plane. An example for the period-tripling case
with p53 is shown in Fig. 17. The largest stability region
corresponds to the stability region for theN52 and 3 cases
of the global coupling, while the smallest one corresponds to
that for the case of evenN (N.2). Between them, there
exist stability regions for the case of oddN (N.3) ~e.g., see
theN55 case in Fig. 17!.

We now examine the CB near the zero-coupling critical
point for the case of the linearly coupled, nearest-neighbor
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coupling. Consider a self-similar sequence of parameters
(An ,cn), at which the synchronous orbit of leveln has some
given stability multipliers, in theZp route for the global-
coupling case. Rescaling the coupling parameter with the
factor 1/SN(1,jmin), this sequence is transformed into a self-
similar one for the case of the linearly coupled, nearest-
neighbor coupling. Thus the ‘‘width’’ of each stability region
in theZp route for the case of the global coupling is reduced
to that for the case of the linearly coupled, nearest-neighbor
coupling by the scaling factor 1/SN(1,jmin), while the
‘‘heights’’ of all stable regions in theZp route remain un-
changed@22#. It is therefore obvious that the critical scaling
behavior near the zero-coupling critical point for the case of
the linearly coupled, nearest-neighbor coupling is the same
as that for the global-coupling case. That is, the height and
width hn andwn of the stability region of leveln geometri-
cally contract in the limit of largen,

hn;d2n, wn;a2n for large n, ~4.40!

whered anda are the scaling factors of the nonlinearity and
coupling parameters, respectively. As an example, see again
Fig. 17 and note that Figs. 17~a!, 17~b!, and 17~c! nearly
coincide near the zero-coupling critical point except for
small numerical differences.

The results of the linearly coupled, nearest-neighbor cou-
pling with K51 extend to all the other linearly coupled,
nonglobal-coupling cases with 1,K,(N/2)@(N21)/2# for
even ~odd! N. For each nonglobal-coupling case with
K.1, we first consider a mode with indexjmin for which the
scaling factor 1/SN(K, j ) becomes the smallest one. Here the
value of jmin varies depending on the rangeK. Like the
K51 case, only the regionUN(K, jmin) including ac50 line
segment is left as the stability region of a synchronous orbit.
Consequently, only the zero-coupling point remains as a
critical point in the parameter plane, and the CB near the
zero-coupling critical point is also the same as that for the
global-coupling case.

Finally, as an example of the nonlinear coupling, we
study the diffusively coupled, nearest-neighbor coupling case
with K51, in which the coupling function is given by

g~x1 , . . . ,xN!5
c

3
@ f ~x2!1 f ~xN!22 f ~x1!# for N>3.

~4.41!

This kind of coupling can be regarded as a generalized ver-
sion of Eq. ~3.30! for the dissipatively coupled case for
N52. For this diffusively coupled case, the stability multi-
pliers of Eq. ~4.35! for a synchronousq-periodic orbit of
level n (q5pn) become

l j5@12cSN~1,j !#ql0 . ~4.42!

Like the linearly coupled case, rescaling the coupling pa-
rameterc with the minimum scaling factor 1/SN(1,jmin),
each stability regionUG of level n for the global-coupling
case is transformed into the stability region@i.e., the region
UN(1,jmin)] of level n for the diffusively coupled case. The
stability regionUN(1,jmin) is bounded by four bifurcation
curves determined by the equationsl j561 for j50,jmin .
An infinite sequence of such stability regions converges to a

FIG. 17. Stable regions of the synchronous 3n-periodic orbits of
level n51,2,3 inN (N52,3,4, . . . ) coupled 1D maps for the lin-
early coupled, nearest-neighbor coupling case withK51. The cases
of n51, 2, and 3 are shown in~a!, ~b!, and~c!, respectively. The
symbolsqj

PD, qj
SN, andqj

PFwith j50 andjmin represent the period-
doubling, saddle-node, and pitchfork bifurcation lines associated
with the stability of a synchronous orbit of periodq against the
perturbation of thej th mode. The scaling factors used in~b! and~c!
are d555.247 026 anda529.277 341. For other details, see the
text.
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critical line segment joining two pointscl* (50)and cr*
@52/SN(1,jmin)# on the A5A`

(p) line. Consequently, one
critical line segment constitutes the critical set, like the
global-coupling case. An example for the period-tripling
case for evenN (N.2) is shown in Fig. 18.

As shown above, the stability diagram for the diffusively
coupled case is essentially the same as that for the globally
coupled case, except for the scale in the coupling parameter
c. Hence the critical scaling behavior of the nonlinearity and
coupling parameters and so on becomes the same as that for
the global-coupling case~for details on the CB, refer to Sec.
III B !. Finally, we briefly discuss the critical asynchronous
stability multipliers. At the zero-coupling critical point
(A`

(p),0) and interior critical points, they are the same as
those for the global-coupling case @i.e.,
l1*5•••5lN21* 5l0* at (A`

(p),0), andl1*5•••5lN21* 50
at interior critical points#. However, at the right end
(A`

(p) ,cr* ), the critical asynchronous stability multiplier for
j5 jmin is given byl jmin

* 5l0* ~evenq) and2l0* ~odd q),

but all otherl j* ’s ( jÞ jmin) are zero, which is somewhat
different from that for the global-coupling case@i.e.,
l1*5•••5lN21* 5l0* ~evenq) and2l0* ~oddq)#. Like the
linearly coupled case, the results for the diffusively coupled,
nearest-neighbor coupling case withK51 can also be ex-
tended to all the other diffusively coupled, nonglobal-
coupling cases with 1,K,(N/2)@(N21)/2# for even~odd!
N.

V. SUMMARY

The CB’s of all periodp-tuplings (p52,3,4, . . . ) are
studied in N (N52,3,4, . . . ) symmetrically coupled 1D
maps. The two-coupled case withN52 is first investigated
by a renormalization method. We find three~five! kinds of
fixed points of the renormalization operator and their rel-
evant CE’s associated with coupling perturbations for the
case of even~odd! p. We next consider two kinds of cou-
plings, linear and nonlinear couplings. As examples of the
linear- and nonlinear-coupling cases, we study the linearly
and dissipatively coupled maps, respectively, and confirm
the renormalization results. The structure of the critical set
varies depending on the nature of coupling. For the linearly
coupled case, an infinite number of the critical line segments,
together with the zero-coupling critical point, constitute the
critical set, while for the dissipatively coupled case, the criti-
cal set consists of only one critical line segment. The CB
also depends on the position on the critical set. For even
~odd! p, three~four! kinds of fixed points govern the CB for
the linearly coupled case, while only two~three! kinds of

fixed points govern the CB for the dissipatively coupled
case. Finally, the results of the two-coupled maps are ex-
tended to many-coupled maps withN>3, in which the CB
depends on the range of coupling. In the global-coupling
case, both the structure of the critical set and the CB are the
same as those of the two-coupled case, independently ofN.
However, for the nonglobal-coupling case, a significant
change in the structure of the critical set may or may not
occur according to whether the coupling is linear or not. For
the linearly coupled case, of the infinite number of period
p-tupling routes for the global-coupling case, only the route
ending at the zero-coupling critical point is left in the param-
eter plane. On the other hand, for the diffusively coupled
case, one critical line segment constitutes the critical set, as
in the globally coupled case.
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