Universality of period doubling in coupled maps

Sang-Yoon Kim

Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea (Received 18 August 1993; revised manuscript received 8 November 1993)

We study the critical behavior of period doubling in two coupled one-dimensional maps with a single maximum of order z. In particular, the effect of the maximum-order z on the critical behavior associated with coupling is investigated by a renormalization method. There exist three fixed maps of the period-doubling renormalization operator. For a fixed map associated with the critical behavior at the zero-coupling critical point, relevant eigenvalues associated with coupling perturbations vary, depending on the order z, whereas they are independent of z for the other two fixed maps. The renormalization results for the zero-coupling case are also confirmed by a direct numerical method.

PACS number(s): 05.45.+b, 03.20.+i, 05.70.Jk

Universal scaling behavior of period doubling has been found in one-dimensional (1D) maps with a single maximum of order z (z > 1),

$$x_{i+1} = f(x_i) = 1 - A |x_i|^z, \quad z > 1.$$
 (1)

For all z > 1, the 1D map (1) exhibits successive period-doubling bifurcations as the nonlinearity parameter A is increased. The period-doubling bifurcation points $A = A_n(z)$ (n = 0, 1, 2, ...), at which the nth period-doubling bifurcation occurs, converge to the accumulation point $A^*(z)$ on the A axis. The scaling behavior near the critical point A^* depends on the maximum-order z, i.e., the parameter and orbital scaling factors, δ and α , vary depending on z [1-4]. Therefore the order z determines universality classes.

Here we study the critical behavior of period doubling in a map T consisting of two identical 1D maps coupled symmetrically:

$$T: \begin{cases} x_{i+1} = F(x_i, y_i) = f(x_i) + g(x_i, y_i), \\ y_{i+1} = F(y_i, x_i) = f(y_i) + g(y_i, x_i), \end{cases}$$
(2)

where f(x) is a 1D map (1) with a single maximum of even-order z ($z=2,4,6,\ldots$) at x=0, and g(x,y) is a coupling function. The uncoupled 1D map f satisfies a normalization condition f(0)=1, and the coupling function g obeys a condition g(x,x)=0 for any x.

The quadratic-maximum case (z=2) was previously studied in Refs. [5-9]. In this paper, using the renormalization method developed in Ref. [9], we extend the results for the z=2 case to all even-order cases and investigate the dependence of the critical behavior associated with coupling on the order z.

The period-doubling renormalization transformation \mathcal{N} for a coupled map T consists of squaring (T^2) and rescaling (B) operators:

$$\mathcal{N}(T) \equiv BT^2B^{-1}.\tag{3}$$

Here the rescaling operator B is:

$$B = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix},\tag{4}$$

because we consider only in-phase orbits $(x_i = y_i \text{ for all } i)$.

Applying the renormalization operator \mathcal{N} to the coupled map (2) n times, we obtain the n-times renormalized map T_n of the form,

$$T_n: \begin{cases} x_{i+1} = F_n(x_i, y_i) = f_n(x) + g_n(x, y), \\ y_{i+1} = F_n(y_i, x_i) = f_n(y) + g_n(y, x). \end{cases}$$
 (5)

Here f_n and g_n are the uncoupled and coupling parts of the *n*-times renormalized function F_n , respectively. They satisfy the following recurrence equations [9]:

$$f_{n+1}(x) = \alpha f_n \left(f_n \left(\frac{x}{\alpha} \right) \right),$$

$$g_{n+1}(x,y) = \alpha f_n \left(f_n \left(\frac{x}{\alpha} \right) + g_n \left(\frac{x}{\alpha}, \frac{y}{\alpha} \right) \right)$$

$$+ \alpha g_n \left(f_n \left(\frac{x}{\alpha} \right) + g_n \left(\frac{x}{\alpha}, \frac{y}{\alpha} \right), f_n \left(\frac{y}{\alpha} \right)$$

$$+ g_n \left(\frac{y}{\alpha}, \frac{x}{\alpha} \right) \right) - \alpha f_n \left(f_n \left(\frac{x}{\alpha} \right) \right),$$
 (7)

where the rescaling factor α is chosen to preserve the normalization condition $f_{n+1}(0) = 1$, i.e., $\alpha = 1/f_n(1)$. Equations (6) and (7) define a renormalization operator \mathcal{R} for transforming a pair of functions (f,g);

$$\begin{pmatrix} f_{n+1} \\ g_{n+1} \end{pmatrix} = \mathcal{R} \begin{pmatrix} f_n \\ g_n \end{pmatrix}. \tag{8}$$

A critical map T_c with the nonlinearity and coupling parameters set to their critical values is attracted to a fixed map T^* under iterations of the renormalization transformation \mathcal{N} ,

$$T^*: \begin{cases} x_{i+1} = F^*(x_i, y_i) = f^*(x_i) + g^*(x_i, y_i), \\ y_{i+1} = F^*(y_i, x_i). \end{cases}$$
(9)

Here (f^*, g^*) is a fixed point of the renormalization operator \mathcal{R} with $\alpha = 1/f^*(1)$, which satisfies $(f^*, g^*) = \mathcal{R}(f^*, g^*)$. Note that the equation for f^* is just the fixed-

i (#

point equation in the 1D map case. The 1D fixed function f^* varies depending on the order z [4]. Consequently only the equation for the coupling fixed function g^* is left to be solved.

However it is not easy to directly solve the equation for the coupling fixed function. We therefore introduce a tractable recurrence equation for a "reduced" coupling function of the coupling function g(x, y) [9], defined by

$$G(x) \equiv \left. \frac{\partial g(x,y)}{\partial y} \right|_{y=x}$$
 (10)

Differentiating the recurrence equation (7) for g with respect to y and setting y = x, we have

$$G_{n+1}(x) = \left[f_n' \left(f_n \left(\frac{x}{\alpha} \right) \right) - 2G_n \left(f_n \left(\frac{x}{\alpha} \right) \right) \right] G_n \left(\frac{x}{\alpha} \right) + G_n \left(f_n \left(\frac{x}{\alpha} \right) \right) f_n' \left(\frac{x}{\alpha} \right).$$
(11)

Then Eqs. (6) and (11) define a "reduced" renormalization operator $\tilde{\mathcal{R}}$ for transforming a pair of functions (f,G):

$$\begin{pmatrix} f_{n+1} \\ G_{n+1} \end{pmatrix} = \tilde{\mathcal{R}} \begin{pmatrix} f_n \\ G_n \end{pmatrix}. \tag{12}$$

We look for a fixed point (f^*, G^*) of $\tilde{\mathcal{R}}$, which satisfies $(f^*, G^*) = \tilde{\mathcal{R}}(f^*, G^*)$. Here G^* is just the reduced coupling fixed function of g^* [i.e., $G^*(x) = \partial g^*(x,y)/\partial y|_{y=x}$]. As in the quadratic-maximum case (z=2) [9], we find three solutions for G^* :

$$G^*(x) = 0, (13)$$

$$G^*(x) = \frac{1}{2} f^{*'}(x), \tag{14}$$

$$G^*(x) = \frac{1}{2}[f^{*\prime}(x) - 1]. \tag{15}$$

Here the first solution, corresponding to the reduced coupling fixed function of the zero-coupling fixed function $g^*(x,y) = 0$, is associated with the critical behavior at the zero-coupling critical point, whereas the second and third solutions dependent on the order z are associated with the critical behavior at other critical points [9].

Consider an infinitesimal reduced coupling perturbation $(0, \Phi(x))$ to a fixed point (f^*, G^*) of $\tilde{\mathcal{R}}$. We then examine the evolution of a pair of functions, $(f^*(x), G^*(x) +$ $\Phi(x))$ under the reduced renormalization transformation $\tilde{\mathcal{R}}$. In the linear approximation we obtain a reduced linearized operator $\tilde{\mathcal{L}}$ of transforming a reduced coupling perturbation Φ :

$$\begin{split} \Phi_{n+1}(x) &= [\tilde{\mathcal{L}}\Phi_n](x) \\ &= \left[f^{*'} \left(f^* \left(\frac{x}{\alpha} \right) \right) - 2G^* \left(f^* \left(\frac{x}{\alpha} \right) \right) \right] \Phi_n \left(\frac{x}{\alpha} \right) \\ &+ \left[f^{*'} \left(\frac{x}{\alpha} \right) - 2G^* \left(\frac{x}{\alpha} \right) \right] \Phi_n \left(f^* \left(\frac{x}{\alpha} \right) \right). \end{split}$$
(16)

Here the prime denotes a derivative. If a reduced coupling perturbation $\Phi^*(x)$ satisfies

$$\nu \Phi^*(x) = [\tilde{\mathcal{L}}\Phi^*](x), \tag{17}$$

then it is called a reduced coupling eigenperturbation with coupling eigenvalue (CE) ν .

We first show that CE's are independent of the order z for the second and third solutions (14) and (15) of $G^*(x)$. In case of the second solution $G^*(x) = \frac{1}{2}f^{*'}(x)$, the reduced linearized operator $\tilde{\mathcal{L}}$ becomes a null operator, independently of z, because the right-hand side of Eq. (17) becomes zero. Therefore there exist no relevant CE's. For the third case $G^*(x) = \frac{1}{2}[f^{*'}(x) - 1]$, Eq. (17) becomes

$$\nu\Phi^*(x) = \Phi^*\left(\frac{x}{\alpha}\right) + \Phi^*\left(f^*\left(\frac{x}{\alpha}\right)\right). \tag{18}$$

When $\Phi^*(x)$ is a nonzero constant function, i.e., $\Phi^*(x) = c$ (c: nonzero constant), there exists a relevant CE, $\nu = 2$, independently of z.

In the zero-coupling case $G^*(x) = 0$, the eigenvalue equation (17) becomes

$$\nu \Phi^*(x) = f^{*\prime} \left(f^* \left(\frac{x}{\alpha} \right) \right) \Phi^* \left(\frac{x}{\alpha} \right) + f^{*\prime} \left(\frac{x}{\alpha} \right) \Phi^* \left(f^* \left(\frac{x}{\alpha} \right) \right). \tag{19}$$

Relevant CE's of Eq. (19) vary depending on the order z, as will be seen below.

An eigenfunction $\Phi^*(x)$ can be separated into two components, $\Phi^*(x) = \Phi^{*(1)}(x) + \Phi^{*(2)}(x)$ with $\Phi^{*(1)}(x) \equiv a_0^* + a_1^*x + \cdots + a_{z-2}^*x^{z-2}$ and $\Phi^{*(2)}(x) \equiv a_{z-1}^*x^{z-1} + a_z^*x^z + \cdots$, and the 1D fixed function f^* is a polynomial in x^z , i.e., $f^*(x) = 1 + c_z^*x^z + c_{zz}^*x^{2z} + \cdots$. Substituting the functions Φ^* , f^* , and $f^{*'}$ into the eigenvalue equation (19), it has the structure

$$\nu a_k^* = \sum_l M_{kl}(\{c^*\}) a_l^*, \quad k, l = 0, 1, 2, \dots$$
 (20)

We note that each a_l^* $(l=0,1,2,\ldots)$ in the first and second terms in the right-hand side of Eq. (19) is involved only in the determination of coefficients of monomials x^k with k=l+mz and k=(z-1)+mz $(m=0,1,2,\ldots)$, respectively. Therefore any a_l^* with $l\geq z-1$ (in the right-hand side) cannot be involved in the determination of coefficients of monomials x^k with k< z-1, which implies that the eigenvalue equation (20) is of the form

$$\nu \begin{pmatrix} \Phi^{*(1)} \\ \Phi^{*(2)} \end{pmatrix} = \begin{pmatrix} M_1 & 0 \\ M_3 & M_2 \end{pmatrix} \begin{pmatrix} \Phi^{*(1)} \\ \Phi^{*(2)} \end{pmatrix}, \tag{21}$$

where M_1 is a $(z-1) \times (z-1)$ matrix, $\Phi^{*(1)} \equiv (a_0^*, \ldots, a_{z-2}^*)$, and $\Phi^{*(2)} \equiv (a_{z-1}^*, a_z^*, \ldots)$. From the reducibility of the matrix M into a semiblock form, it follows that to determine the eigenvalues of M it is sufficient to solve the eigenvalue problems for the two submatrices M_1 and M_2 independently.

We first solve the eigenvalue equation of M_1 ($\nu\Phi^{*(1)}=M_1\Phi^{*(1)}$), i.e.,

$$\nu a_k^* = \sum_{l} M_{kl}(\{c^*\}) a_l^*, \quad k, l = 0, \dots, z - 2.$$
 (22)

Note that this submatrix M_1 is diagonal. Hence its eigen-

values are just the diagonal elements:

$$\nu_k = M_{kk} = \frac{f^{*'}(1)}{\alpha^k} = \alpha^{z-1-k}, \quad k = 0, \dots, z-2.$$
 (23)

Notice that all ν_k 's are relevant eigenvalues.

Although ν_k is also an eigenvalue of M, $(\Phi_k^{*(1)}, 0)$ cannot be an eigenvector of M, because there exists a third submatrix M_3 in M [see Eq. (21)]. Therefore an eigenfunction $\Phi_k^*(x)$ in Eq. (19) with eigenvalue ν_k is a polynomial with a leading monomial of degree k, i.e., $\Phi_k^*(x) = \Phi_k^{*(1)}(x) + \Phi_k^{*(2)}(x) = a_k^* x^k + a_{z-1}^* x^{z-1} + a_z^* x^z + \cdots$, where $a_k^* \neq 0$.

We next solve the eigenvalue equation of M_2 ($\nu\Phi^{*(2)} = M_2\Phi^{*(2)}$), i.e.,

$$\nu a_k^* = \sum_l M_{kl}(\{c^*\}) a_l^*, \quad k, l = z - 1, z, \dots$$
 (24)

Unlike the case of M_1 , $(0, \Phi^{*(2)})$ can be an eigenvector of M with eigenvalue ν . Then its corresponding function $\Phi^{*(2)}(x)$ is an eigenperturbation with eigenvalue ν , which satisfies Eq. (19). One can easily see that $\Phi^{*(2)}(x) = f^{*'}(x)$ is an eigenfunction with CE $\nu = 2$, which is the zth relevant CE in addition to those in Eq. (23). It is also found that there exist an infinite number of additional (coordinate change) eigenfunctions $\Phi^{*(2)}(x) = f^{*'}(x)[f^{*n}(x) - x^n]$ with irrelevant CE's α^{-n} $(n = 1, 2, \ldots)$, which are associated with coordinate changes [10]. We conjecture that together with the z (noncoordinate change) relevant CE's, they give the whole spectrum of the reduced linearized operator $\tilde{\mathcal{L}}$ of Eq. (16) and the spectrum is complete.

Consider an infinitesimal coupling perturbation g(x, y) [= $\varepsilon \varphi(x, y)$] to a critical map at the zero-coupling critical point, in which case the map T of Eq. (2) is of the form,

$$T: \begin{cases} x_{i+1} = F(x_i, y_i) = f_{A^*}(x_i) + \varepsilon \varphi(x, y), \\ y_{i+1} = F(y_i, x_i), \end{cases}$$
 (25)

where the subscript A^* of f denotes the critical value of the nonlinearity parameter A and ε is an infinitesimal coupling parameter. The map T for $\varepsilon = 0$ is just the zero-coupling critical map consisting of two uncoupled 1D critical maps f_{A^*} . It is attracted to the zero-coupling fixed map (consisting of two 1D fixed maps f^*) under iterations of the renormalization transformation $\mathcal N$ of Eq. (3).

The reduced coupling function G(x) of g(x, y) is given by [see Eq. (10)]

$$G(x) = \varepsilon \Phi(x) \equiv \varepsilon \left. \frac{\partial \varphi(x, y)}{\partial y} \right|_{y=x}$$
 (26)

(27)

Then $\varepsilon\Phi(x)$ corresponds to an infinitesimal perturbation to the reduced zero-coupling fixed function $G^*(x)=0$ of Eq. (13). The *n*th image Φ_n of Φ under the reduced linearized operator $\tilde{\mathcal{L}}$ of Eq. (16) has the form,

$$\begin{split} \Phi_n(x) &= [\tilde{\mathcal{L}}^n \Phi](x) \\ &\simeq \sum_{k=0}^{z-2} \alpha_k \nu_k^n \Phi_k^*(x) + \alpha_{z-1} 2^n f^{*\prime}(x) \ \text{ for large } n, \end{split}$$

since the irrelevant part of Φ_n becomes negligibly small for large n.

The stability multipliers $\lambda_{1,n}$ and $\lambda_{2,n}$ of the 2^n -periodic orbit of the map T of Eq. (25) are the same as those of the fixed point of the n-times renormalized map $\mathcal{N}^n(T)$ [9], which are given by

$$\lambda_{1,n} = f_n'(\hat{x}_n), \quad \lambda_{2,n} = f_n'(\hat{x}_n) - 2G_n(\hat{x}_n).$$
 (28)

Here (f_n, G_n) is the *n*th image of (f_{A^*}, G) under the reduced renormalization transformation $\tilde{\mathcal{R}}$ [i.e., $(f_n, G_n) = \tilde{\mathcal{R}}^n(f_{A^*}, G)$], and \hat{x}_n is just the fixed point of $f_n(x)$ [i.e., $\hat{x}_n = f_n(\hat{x}_n)$] and converges to the fixed point \hat{x} of the 1D fixed map $f^*(x)$ as $n \to \infty$. In the critical case $(\varepsilon = 0)$, $\lambda_{2,n}$ is equal to $\lambda_{1,n}$ and they converge to the 1D critical stability multiplier $\lambda^* = f^{*'}(\hat{x})$. Since $G_n(x) \simeq [\tilde{\mathcal{L}}_2^n G](x) = \varepsilon \Phi_n(x)$ for infinitesimally small ε , $\lambda_{2,n}$ has the form

$$\lambda_{2,n} \simeq \lambda_{1,n} - 2\varepsilon \Phi_n$$

$$\simeq \lambda^* + \varepsilon \left[\sum_{k=0}^{z-2} e_k \nu_k^n + e_{z-1} 2^n \right] \quad \text{for large } n, \quad (29)$$

where $e_k = -2\alpha_k \Phi_k^*(\hat{x})$ (k = 0, ..., z - 2) and $e_{z-1} = -2\alpha_{z-1} f^{*'}(\hat{x})$. Therefore the slope S_n of $\lambda_{2,n}$ at the zero-coupling point $(\varepsilon = 0)$ is

$$S_n \equiv \frac{\partial \lambda_{2,n}}{\partial \varepsilon} \bigg|_{\varepsilon=0} \simeq \sum_{k=0}^{z-2} e_k \nu_k^n + e_{z-1} 2^n \text{ for large } n. (30)$$

Here the coefficients $\{e_k; k=0,\ldots,z-1\}$ depend on the initial reduced function $\Phi(x)$, because the α_k 's are determined only by $\Phi(x)$. Note that the magnitude of slope S_n increases with n unless all e_k 's $(k=0,\ldots,z-1)$ are zero.

We choose monomials x^l (l=0,1,2,...) as initial reduced functions $\Phi(x)$, because any smooth function $\Phi(x)$ can be represented as a linear combination of monomials by a Taylor series. Expressing $\Phi(x) = x^l$ as a linear combination of eigenfunctions of $\tilde{\mathcal{L}}_2$, we have

$$\Phi(x) = x^{l} = \alpha_{l} \Phi_{l}^{*}(x) + \alpha_{z-1} f^{*'}(x) + \sum_{n=1}^{\infty} \beta_{n} f^{*'}(x) [f^{*n}(x) - x^{n}],$$
 (31)

where α_l is nonzero for l < z - 1 and zero for $l \ge z - 1$, and all β_n 's are irrelevant components. Therefore the slope S_n for large n becomes

$$S_n \simeq \begin{cases} e_l \nu_l^n + e_{z-1} 2^n & \text{for } l < z - 1, \\ e_{z-1} 2^n & \text{for } l \ge z - 1. \end{cases}$$
 (32)

Note that the growth of S_n for large n is governed by , two CE's ν_l and 2 for l < z-1 and by one CE $\nu=2$ for $l \geq z-1$.

We numerically study the quartic-maximum case (z = 4) in the two coupled 1D maps (25) and confirm the renormalization results (32). In this case we follow the periodic orbits of period 2^n up to level n = 15 and obtain the slopes S_n of Eq. (30) at the zero-coupling critical point $(A^*, 0)$ $(A^* = 1.594901356228...)$ when the reduced function $\Phi(x)$ is a monomial x^l (l = 0, 1, ...).

The renormalization result implies that the slopes S_n for $l \geq z-1$ obey a one-term scaling law asymptotically:

$$S_n = d_1 r_1^n. (33)$$

We therefore define the growth rate of the slopes as follows:

$$r_{1,n} \equiv \frac{S_{n+1}}{S_n}. (34)$$

Then it will converge to a constant r_1 as $n \to \infty$. A sequence of $r_{1,n}$ for $\Phi(x) = x^3$ is shown in the second column of Table I. Note that it converges fast to $r_1 = 2$. We have also studied several other reduced-coupling cases with $\Phi(x) = x^l$ (l > 3). In all higher-order cases studied, the sequences of $r_{1,n}$ also converge fast to $r_1 = 2$.

When l < z-1, two relevant CE's govern the growth of the slopes S_n . We therefore extend the simple one-term scaling law (33) to a two-term scaling law:

$$S_n = d_1 r_1^n + d_2 r_2^n$$
, for large n , (35)

where $|r_1| > |r_2|$. This is a kind of multiple-scaling law [11]. Equation (35) gives

$$S_{n+2} = t_1 S_{n+1} - \underline{t}_2 S_n, \tag{36}$$

where $t_1 = r_1 + r_2$ and $t_2 = r_1 r_2$. Then r_1 and r_2 are solutions of the following quadratic equation,

$$r^2 - t_1 r + t_2 = 0. (37)$$

To evaluate r_1 and r_2 , we first obtain t_1 and t_2 from the S_n 's using Eq. (36):

$$t_1 = \frac{S_{n+1}S_n - S_{n+2}S_{n-1}}{S_n^2 - S_{n+1}S_{n-1}}, \ t_2 = \frac{S_{n+1}^2 - S_nS_{n+2}}{S_n^2 - S_{n+1}S_{n-1}}. (38)$$

Note that Eqs. (35)-(38) are valid for large n. In fact,

TABLE I. In the quartic-maximum case (z=4), a sequence $\{r_{1,n}\}$ for a one-term scaling law is shown in the second column when $\Phi(x)=x^3$, and two sequences $\{r_{1,n}\}$ and $\{r_{2,n}\}$ for a two-term scaling law are shown in the third and fourth columns when $\Phi(x)=1$.

	$\Phi(x)=x^3$	$\Phi(x)=1$	
n	$r_{1,n}$	$r_{1,n}$	$r_{2,n}$
5	1.999 920 2	-4.829 455 8	1.958
6	2.000 009 3	-4.829 422 6	2.090
7	1.9999947	-4.829 409 8	1.973
8	2.0000004	-4.829 406 8	2.039
9	1.999 999 6	-4.829 405 8	1.984
10	2.0000000	-4.829 405 5	2.018
11	2.0000000	-4.829 405 5	1.992
12	2.000 000 0	-4.829 405 4	2.009

the values of t_i 's and r_i 's (i=1,2) depend on the level n. Thus we denote the values of t_i 's in Eq. (38) explicitly by $t_{i,n-1}$'s, and the values of r_i 's obtained from Eq. (37) are also denoted by $r_{i,n-1}$'s. Then each of them converges to a constant as $n \to \infty$:

$$\lim_{n \to \infty} t_{i,n} = t_i, \ \lim_{n \to \infty} r_{i,n} = r_i, \ i = 1, 2.$$
 (39)

The two-term scaling law (35) is very well obeyed. Sequences $r_{1,n}$ and $r_{2,n}$ for $\Phi(x)=1$ are shown in the third and fourth columns of Table I. They converge fast to $r_1=\alpha^3$ ($\alpha=-1.6903...$) and $r_{2,n}=2$, respectively. We have also studied two other reduced-coupling cases with $\Phi(x)=x^l$ (l=1,2). It is found that the sequences $r_{1,n}$ and $r_{2,n}$ for l=1(2) converge fast to their limit values $r_1=\alpha^2(2)$ and $r_2=2(\alpha)$, respectively.

This work was supported by Non-Directed Research Fund, Korea Research Foundation, 1993.

(1985).

M. J. Feigenbaum, J. Stat. Phys. 19, 25 (1978); 21, 669 (1979).

^[2] B. Derrida, A. Gervois, and Y. Pomeau, J. Phys. A 12, 269 (1979).

^[3] B. Hu and I. I. Satija, Phys. Lett. A 98, 143 (1982).

^[4] J. P. van der Weele, H. W. Capel, and R. Kluiving, Physica A 145, 425 (1987).

^[5] S. Kuznetsov, Radiophys. Quantum Electron. 28, 681

^[6] H. Kook, F. H. Ling, and G. Schmidt, Phys. Rev. A 43, 2700 (1991).

^[7] S.-Y. Kim and H. Kook, Phys. Rev. A 46, R4467 (1992).

^[8] S.-Y. Kim and H. Kook, Phys. Lett. A 178, 258 (1993).

^[9] S.-Y. Kim and H. Kook, Phys. Rev. E 48, 785 (1993).

^[10] See Appendix A of Ref. [9].

^[11] J.-m. Mao and B. Hu, J. Stat. Phys. 46, 111 (1987).