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We study the critical behavior of period doubling in two coupled one-dimensional maps with
a single maximum of order z. In particular, the effect of the maximum-order z on the critical
behavior associated with coupling is investigated by a renormalization method. There exist three
fixed maps of the period-doubling renormalization operator. For a fixed map associated with the
critical behavior at the zero-coupling critical point, relevant eigenvalues associated with coupling
perturbations vary, depending on the order z, whereas they are independent of z for the other two
fixed maps. The renormalization results for the zero-coupling case are also confirmed by a direct

numerical method.
PACS number(s): 05.45.+b, 03.20.++, 05.70.Jk

Universal scaling behavior of period doubling has been
found in one-dimensional (1D) maps with a single maxi-
mum of order z (z > 1),

Tit1 = f(a:,) =1—-A |m,'|’, z>1. (1)

For all z > 1, the 1D map (1) exhibits successive period-
doubling bifurcations as the nonlinearity parameter A
is increased. The period-doubling bifurcation points
A = An(2) (n = 0,1,2,...), at which the nth period-
doubling bifurcation occurs, converge to the accumula-
tion point A*(z) on the A axis. The scaling behavior near
the critical point A* depends on the maximum-order 2,
i.e., the parameter and orbital scaling factors, § and «,
vary depending on z [1-4]. Therefore the order z deter-
mines universality classes.

Here we study the critical behavior of period doubling
in a map T consisting of two identical 1D maps coupled
symmetrically: ’

S @i = F(zi,4:) = f(@:) + 926, %:),
T: { y;;: = F(yi, i) = f(3:) + 9(i, %), )

where f(z) is a 1D map (1) with a single maximum of
even-order z (z = 2,4,6,...) at ¢ = 0, and g(z,y) is
a coupling function. The uncoupled 1D map f satisfies
a normalization condition f(0) = 1, and the coupling
function g obeys a condition g(z,z) = 0 for any x.

The quadratic-maxiraum case (z = 2) was previously
studied in Refs. [5-9]. In this paper, using the renor-
malization method developed in Ref. [9], we extend the
results for the z = 2 case to all even-order cases and inves-
tigate the dependence of the critical behavior associated
with coupling on the order z.

The period-doubling renormalization transformation
N for a coupled map T consists of squaring (7%) and
rescaling (B) operators:

N(T) = BT?B™. (3)

Here the rescaling operator B is:
a 0
5=(5 2) g
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because we consider only in-phase orbits (z; = y; for all
i).

Applying the renormalization operator A to the cou-
pled map (2) n times, we obtain the n-times renormalized
map T, of the form,

. { iyl = Fn(mi’yi) = .fn(x) +gn(:l:, y)a (5)
™\ Y1 = Fu(9i,2:) = ful¥) + 9n(y, )

Here f, and g,, are the uncoupled and coupling parts of

the n-times renormalized function Fy,, respectively. They
satisfy the following recurrence equations [9]:

fari(@) = afs (fn (g)) o
gria(:9) = afn (f,, (2) +on(Z g))
vom(1(2) #5:(5:2) 1 (2)
o (12)) - (1(2)): @

where the rescaling factor a is chosen to preserve the
normalization condition fr41(0) = 1, i.e., @ = 1/fn(1).
Equations (6) and (7) define a renormalization operator

" R for transforming a pair of functions (f, g);

(Fe)==(2): ®

A critical map T, with the nonlinearity and coupling
parameters set to their critical values is attracted to a
fixed map T* under iterations of the renormalization
transformation N,

o [ Tier = F* (@i, 3) = () + ¢* (@0, %),
T* ¢ Tt * °
{ Yir1 = F* (4, 2:)- ¥

Here (f*,g*) is a fixed point of the renormalization op-

erator R with a = 1/f*(1), which satisfies (f*,9*) =
R(f*,g*). Note that the equation for f* is just the fixed-

1745 ©1994 The American Physical Society



1746 BRIEF REPORTS 49

point equation in the 1D map case. The 1D fixed function
f* varies depending on the order z [4]. Consequently only
the equation for the coupling fixed function g* is left to
be solved.

However it is not easy to directly solve the equation
for the coupling fixed function. We therefore introduce
a tractable recurrence equation for a “reduced” coupling
function of the coupling function g(z,y) [9], defined by

(10)

y=z

Differentiating the recurrence equation (7) for g with re-
spect to y and setting y = x, we have

cm+ur>=:Pz(ﬁm(ﬁ))-—26%(ﬁw(§))]c%(§)
+6.(£(9)1(2). ()

Then Eqgs. (6) and (11) define a “reduced” renormal-
ization operator R for transforming a pair of functions

(£,G):
(&n)==(&) (2

We look for a fixed point (f*,G*) of R, which sat-

isfies (f*,G*) = ﬁ(f*,G’*). Here G* is just the re-

duced coupling fixed function of g* [ie, G*z) =
8g*(x,y)/0yly=2]. As in the quadratic-maximum case
(2 =2) [9], we find three solutions for G*:

G*(z) =0, | (13)
(@) = 11" (2), (14)
G (@) = () - 1]. (15)

Here the first solution, corresponding to the reduced cou-
pling fixed function of the zero-coupling fixed function
g*(z,y) = 0, is associated with the critical behavior at
the zero-coupling critical point, whereas the second and
third solutions dependent on the order z are associated
with the critical behavior at other critical points [9)].

Consider an infinitesimal reduced coupling perturba-
tion (0, ®(z)) to a fixed point (f*,G*) of R. We then ex-
amine the evolution of a pair of functions, (f*(z), G* (z)+
®(z)) under the reduced renormalization transformation
R. In the linear approximation we obtain a reduced lin-
earized operator £ of transforming a reduced coupling
perturbation ®:

Bni1(z) = [£24](2)
(e @) - (r (2)] 2 2)
(@) (@) (3)). a0

Here the prime denotes a derivative. If a reduced cou-
pling perturbation ®*(z) satisfies

v®*(z) = [£8"](=), (17)

then it is called a reduced coupling eigenperturbation
with coupling eigenvalue (CE) v.

We first show that CE’s are independent of the or-
der z for the second and third solutions (14) and (15) of
G*(z). In case of the second solution G*(z) = 1 f*'(z)
the reduced linearized operator £ becomes a null oper-
ator, independently of z, because the right-hand side of
Eq. (17) becomes zero. Therefore there exist no relevant
CE’s. For the third case G*(z) = 1[f*'(z) — 1], Eq. 17

becomes

v®*(z) = &* (g) + o (f* (z) ) (18)

When $*(z) is a nonzero constant function, i.e., ®*(z) =
¢ (c : nonzero constant), there exists a relevant CE,v =2,
independently of z.

In the zero-coupling case G*(z) = 0, the eigenvalue
equation (17) becomes

V8" (z) = f*'(f* %) )‘I’* (3)
B +};/'(§)<I>*(f* (2)) (19)

Relevant CE’s of Eq. (19) vary depending on the order
z, as will be seen below.

’

~—An eigenfunction ®*(z) can be separated into two com-

ponents, 3*(z) = &*W(z) + @*@(z) with $* W (z) =
ap + aiz + -+ + a;_,2* 7% and ®*®)(z) = a*_ 2" +
azz*+---, and the 1D fixed function f* is a polynomial
in 2%, ie., f*(z) =14 chz” +c§, 22 +--- . Substituting
the functions &*, f*, and f*' into the eigenvalue equation
(19), it has the structure

val = ZM,,,({C*})a;‘, k,1=0,1,2,... . (20)
1

We note that each af (I = 0,1,2,...) in the first and
second terms in the right-hand side of Eq. (19) is involved
only in the determination of coefficients of monomials z*
withk=Il+mzand k= (2 — 1) + mz (m=0,1,2,...),
respectively. Therefore any a} with I > 2 — 1 (in the
right-hand side) cannot be involved in the determination
of coefficients of monomials z* with k < 2z — 1, which
implies that the eigenvalue equation (20) is of the form

o*+(1) M, 0 o*(1)
v ( H*(2) ) = (1‘{3 M, ) (@*(2) )’ (21)

where M; is a (2 — 1) X (2 — 1) matrix, &) =

- (ag,-..,a}_3), and *® = (a*_,,a, ...). From the re-

ducibility of the matrix M into a semiblock form, it fol-
lows that to determine the eigenvalues of M it is sufficient
to solve the eigenvalue problems for the two submatrices
M; and M, independently.

We first solve the eigenvalue equation of M; (v@*) =
Mlé*(l)), i.e.,

vaj = ZMk;({c*})a{, EJl=0,...,z—-2. (22)
1

Note that this submatrix M is diagonal. Hence its eigen-

Tk
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values are just the diagonal elements:

f*’(l) — az~1—k

v = Miw = —

, k=0,...,2—2. (23)

Notice that all 14’s are relevant eigenvalues.

Although v, is also an eigenvalue of M, (@;(1),0) can-
not be an eigenvector of M, because there exists a third
submatrix M3 in M [see Eq. (21)]. Therefore an eigen-
function ®}(z) in Eq. (19) with eigenvalue v is a polyno-
mial with a leading monomial of degree k, i.e., ®}(z) =
@;(1) (m)+<I>:(2) (z) =atz®+at_,z* 1+alz*+---, where
ay, # 0.

We next solve the eigenvalue equation of My (v®*(?) =
M,3*?), ie.,

vay =Y Ma({c'Daf, kl=z-1z2.... (249
!
Unlike the case of My, (0,8*®) can be an eigenvec-
tor of M with eigenvalue v. Then its corresponding
function ®*()(z) is an eigenperturbation with eigen-
value v, which satisfies Eq. (19). One can easily see
that ®*®)(z) = f*'(z) is an eigenfunction with CE
v = 2, which is the zth relevant CE in addition to those
in Eq. (23). It is also found that there exist an infi-
nite number of additional (coordinate change) eigenfunc-
tions ®*@ (z) = f*'(z)[f*"(z) — =] with irrelevant CE’s
a™™ (n = 1,2,...), which are associated with coordi-
nate changes [10]. We conjecture that together with the
z (noncoordinate change) relevant CE’s, they give the
whole spectrum of the reduced linearized operator L of
Eq. (16) and the spectrum is complete.
Clonsider an infinitesimal coupling perturbation g(z,y)
[= ep(z,y)] to a critical map at the zero-coupling critical
point, in which case the map T of Eq. (2) is of the form,

|

where the subscript A* of f denotes the critical value of
the nonlinearity parameter A and ¢ is an infinitesimal
coupling parameter. The map T for ¢ = 0 is just the
zero-coupling critical map consisting of two uncoupled
1D critical maps fa«. It is attracted to the zero-coupling
fixed map (consisting of two 1D fixed maps f*) under
iterations of the renormalization transformation N of Eq.
(3).
The reduced coupling function G(z) of g(z,y) is given
by [see Eq. (10)] :

Zip1 = F(zi,y:) = fa- (z:) + ep(z,y),

25
yit1 = Fyi,z:), (25)

o
G() = ed(z) = 202V (26)
y=z
Then ®(z) corresponds to an infinitesimal perturbation
to the reduced zero-coupling fixed function G*(z) = 0
of Eq. (13). The nth image ®, of ® under the reduced

linearized operator £ of Eq. (16) has the form,
&n(2) = [£9](2)
z—2 ’
o~ Zakv,':{)Z(:c) + 0,127 f* (z) for large n,
k=0

(27)
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since the irrelevant part of ®, becomes negligibly small
for large n.

The stability multipliers A;, and Az, of the 2"-
periodic orbit of the map T of Eq. (25) are the same
as those of the fixed point of the n-times renormalized
map N™(T) [9], which are given by

Mpn =fa'(&n), Aan= fn'(&n) — 2Gn(&n)- (28)

Here (fn,Gr) is the nth image of (f4+, G) under the re-
duced renormalization transformation R [i.e., (fn,Gn) =
R™(fa+,R)], and &, is just the fixed point of fn(x) [i.e.,
#n, = fu(&,)] and converges to the fixed point  of the
1D fixed map f*(z) as n — oo. In the critical case
(¢ = 0), Az is equal to Ay, and they converge to
the 1D critical stability multiplier \* = f*/(%). Since
Gn(z) = [£2G](z) = e®,(z) for infinitesimally small ¢,
Az, has the form

)‘Z,n ~ Al,n —2e®,

z—2 -
> A +e [Eeku;: + e,_lzn] for large n, (29)
k=0
where e = —2a;,®%(&) (k=0,...,2—2)and e;—1 =
—20,1f*'(#). Therefore the slope S, of Az, at the
zero-coupling point (¢ = 0) is

A - z—2 -
S, = %’— L ~ Ejeky}: +e,_12" for large n. (30)

Here the coefficients {ex; & = 0,...,z — 1} depend on
the initial reduced function ®(z), because the oy’s are
determined only by ®(z). Note that the magnitude of
slope S, increases with n unless all ex’s (k = 0,...,2—1)
are zero.

We choose monomials 2! (I = 0,1,2,...) as initial re-
duced functions &(z), because any smooth function ®(z)
can be represented as a linear combination of monomi-
als by a Taylor series. Expressing ®(z) = z! as a linear
combination of eigenfunctions of L2, we have

®(z) = zt = ®} (=) + a1 (z)

+3Baf" @) () — 27,

n=1

(31)

where o is nonzero for | < z — 1 and zero for [ > 2 —1,
and all B,’s are irrelevant components. Therefore the
slope S, for large n becomes

S’n::{

Note that the growth of S, for large n is governed by
two CE’s v; and 2 for [ < z— 1 and by one CE v = 2 for
1>z-1.

We numerically study the quartic-maximum case (z =
4) in the two coupled 1D maps (25) and confirm the
renormalization results (32). In this case we follow the
periodic orbits of period 2™ up to level n = 15 and ob-
tain the slopes S, of Eq. (30) at the zero-coupling crit-
ical point (4*,0) (A* = 1.594901356228...) when the

reduced function ®(z) is a monomial ! (I =0,1,...).

e +e,-12" for [<2z—1,

e,—12" for I>2z—1. (32)
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The renormalization result implies that the slopes S,
for [ > z—1 obey a one-term scaling law asymptotically:

Sn = d]_'l‘z, (33)

We therefore define the growth rate of the slopes as fol-
lows: N

Sn-i-l )
Sn

- (39)

Tin =

Then it will converge to a constant 7y as n — co. A
sequence of ry, for ®(z) = 23 is shown in the second
column of Table I. Note that it converges fast to r; = 2.
We have also studied several other reduced-coupling cases
with &(z) = z* (I > 3). In all higher-order cases studied,
the sequences of r; ,, also converge fast to r; = 2. ,

When! < z—1, two relevant CE’s govern the growth of
the slopes S,,. We therefore extend the simple one-term
scaling law (33) to a two-term scaling law:

Sp = dyr} + dary, for large n, (35)

where |ry| > |rp|. This is a kind of multiple-scaling law
[11]. Equation (35) gives o

Snt+2 = t18n11 — 35, (36)

where ¢ = r; + r5 and t; = ryr3. Then ry and ry are
solutions of the following quadratic equation,

r? — tir+13 =0. (37)

To evaluate 7, and rz, we first obtain ¢; and ts from the
Sy.’s using Eq. (36):

£ = Sn+18n — Snt28n-1 _iz
82 — Sp418n-1 '

_ Sas1— SnSniz
8§52 —Sn418n-1

Note that Eqgs. (35)-(38) are valid for large n. In fact,

TABLE I. In the quartic-maximum case (z = 4), a se-
quence {r;,,} for a one-term scaling law is shown in the sec-
ond column when ®(z) = z°, and two sequences {ri,n} and
{r2,n} for a two-term scaling law are shown in the third and
fourth columns when ®(z) = 1.

b(z) = * P(z)=1

n Tin Ti,n T2,n

5 1.999 9202 -4.8294558 1.958
6 2.000009 3 -4.8294226 2.090
7 1.9999947 -4.829 409 8 1.973
8 2.0000004 -4.829406 8 2.039
9 1.999999 6 -4.8294058 1.984
10 2.0000000 -4.8294055 2.018
11 2.0000000 -4.8294055 1.992

12 2.0000000

the values of ¢;’s and r;’s (i = 1, 2) depend on the level n.
Thus we denote the values of t;’s in Eq. (38) explicitly by
ti;n—1's, and the values of r;’s obtained from Eq. (37) are
also denoted by r; ,_;’s. Then each of them converges to
a constant as n — oo:

lim t,"n = t,’, lim Tin =T, i= 1,2. (39)
n—o0 n—+oo

The two-term scaling law (35) is very well obeyed. Se-
quences 7y,, and r3 , for (z) = 1 are shown in the third
and fourth columns of Table I. They converge fast to
r1 =a® (¢ =—1.6903...) and T2,n = 2, respectively. We
have also studied two other reduced-coupling cases with
®(z) = ! (I = 1,2). It is found that the sequences Tin
and 73, for [ = 1(2) converge fast to their limit values
r1 = a?(2) and r; = 2(a), respectively.
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