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We study the critical behaviors of period doublings inN (N52,3,4, . . . ) coupled parametrically forced
damped pendulums by varyingA ~the amplitude of the external driving force! andc ~the strength of coupling!.
The two-coupled case withN52 is first investigated. AsA is increased, the coupled parametrically forced
damped pendulums exhibit multiple period-doubling transitions to chaos. For each period-doubling transition
to chaos, the zero-coupling critical point and an infinity of critical line segments constitute the critical set in the
A-c plane. Three kinds of critical behaviors are found on the critical set. Note that the structure of the critical
set and the critical behaviors are the same as those for the abstract system of the coupled one-dimensional
maps. We also extend the results of theN52 case to many-coupled cases withN>3, in which the critical
behaviors depend on the range of coupling.@S1063-651X~96!08408-5#

PACS number~s!: 05.45.1b, 03.20.1i, 05.70.Jk

I. INTRODUCTION

In recent years, much attention has been paid to coupled
nonlinear oscillators. Such coupled oscillators are used to
model many physical, chemical, and biological systems such
as coupledp-n junctions@1#, Josephson-junction arrays@2#,
the charge-density waves@3#, chemical-reaction systems@4#,
and biological-oscillation systems@5#. They are known to
exhibit period-doubling bifurcations~PDB’s!, saddle-node
bifurcations, Hopf bifurcations, chaos, as well as pattern for-
mation.

The coupled oscillators investigated in this paper are
coupled parametrically forced damped pendulums~PFDP’s!.
For a single damped pendulum, vertical oscillation of its sup-
port leads to a time-periodic variation of its natural fre-
quency, and hence it is called a PFDP@6,7#. This simple
PFDP shows a richness in its dynamical behavior@8–11#.
One of its interesting behaviors is the following ‘‘multiple
period-doubling transitions to chaos,’’ which have been
found in our recent work@11#. As the amplitudeA of the
vertical oscillation is increased, the stationary point of the
PFDP undergoes an infinite sequence of PDB’s accumulating
at the first period-doubling transition pointA1* . However,
with increasing the amplitudeA further from A5A1* , the
stationary point exhibits a cascade of ‘‘resurrections,’’ i.e., it
will restabilize after it loses its stability, destabilize again,
and so forthad infinitum. For each case of the resurrections,
an infinite sequence of PDB’s follows and leads to chaos.
Consequently, an infinite series of period-doubling transi-
tions to chaos appear with increasingA ~e.g., see Figs. 3, 5,
and 6 in Ref.@11# for the first, second, and third ‘‘bifurcation
trees,’’ respectively!. This is in contrast to the one-
dimensional~1D! map @12#, in which only single period-

doubling transition to chaos occurs. However, the critical
behavior associated with scaling of the amplitudeA near
eachi th period-doubling transition pointAi* ( i51,2,3, . . . )
is the same as that of the 1D map.

Here we study the critical behaviors of PDB’s in the real
system ofN (N52,3,4, . . . ) coupled PFDP’s by varying
both the amplitudeA and the strengthc of coupling between
the PFDP’s, and also compare them with those for the ab-
stract system of the coupled 1D maps@13,14#. The ‘‘cou-
pling effect’’ of the nature, strength, and range of coupling
on the critical behaviors is particularly investigated. We first
consider the simplest two-coupled case withN52. As in the
uncoupled PFDP@11#, the coupled PFDP’s exhibit multiple
period-doubling transitions to chaos@e.g., see Figs. 2~a!,
7~b!, and 8~b! for the ‘‘stability trees’’ associated with the
first, second, and third period-doubling transitions to chaos,
respectively#. For each i th period-doubling transition to
chaos, the critical set~set of the critical points! is composed
of the zero-coupling critical point withc50 and an infinity
of critical line segments lying on the lineA5Ai* in the A-
c plane. Three kinds of critical behaviors associated with
scaling of the coupling parameterc are found on the critical
set, while the critical scaling behavior of the amplitudeA is
always the same as that of the uncoupled PFDP. Note that
the structure of the critical set and the critical behaviors for
the coupled PFDP’s are the same as those for the coupled 1D
maps found by one of us~Kim! and Kook@14#. To the best
of our knowledge, the system of coupled PFDP’s is the first
real system of coupled nonlinear oscillators, in which the
numerical and renormalization results of the critical behav-
iors for the abstract system of the coupled 1D maps are ex-
plicitly confirmed @15#.

We also extend the results for the two-coupled case to
many-coupled cases withN>3. It is found that the critical
behaviors for the many-coupled cases vary depending on
whether or not the coupling is global. In the extreme long-
range case of global coupling, in which each PFDP is
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coupled to all the other ones with equal coupling strength,
the critical behaviors are the same as those for the two-
coupled case, irrespective ofN. However, for any other
nonglobal-coupling cases of shorter-range couplings, a sig-
nificant change occurs in the stability diagram of
2n-periodic (n50,1,2, . . . ) orbits in theA-c plane, and con-
sequently the structure of the critical set becomes different
from that for the global-coupling case.

This paper is organized as follows. We first introduce
two-coupled PFDP’s and discuss their general properties in
Sec. II. Stability of periodic orbits, bifurcations, and
Lyapunov exponents are also discussed there. In Sec. III, the
critical behaviors of PDB’s for the two-coupled case are
studied by varying the two parametersA and c. We also
extend the results of the two-coupled case to many coupled
PFDP’s in Sec. IV. Finally, a summary is given in Sec. V.

II. STABILITY OF PERIODIC ORBITS, BIFURCATIONS,
AND LYAPUNOV EXPONENTS
IN TWO-COUPLED PFDP’S

In this section, we first discuss stability of period orbits in
the Poincare´ map of the two-coupled PFDP’s, using the Flo-
quet theory. Bifurcations associated with the stability and
Lyapunov exponents are then discussed.

Consider a system consisting of two identical PFDP’s
coupled symmetrically:

ẍ15 f ~x1 ,ẋ1 ,t !1g~x1 ,x2!, ~1a!

ẍ25 f ~x2 ,ẋ2 ,t !1g~x2 ,x1!. ~1b!

where

f ~x,ẋ,t !522pg ẋ22p~v0
22Acos2pt !sin2px ~2!

andg(x1 ,x2) is a coupling function, obeying the condition
g(x,x)50 for all x. Here x is the angular position,g the
damping coefficient,v0 the natural frequency of the pendu-
lum, A the amplitude of the external driving force of period
one, and we consider the coupling functiong(x1 ,x2) of the
form,

g~x1 ,x2!5
c

2
@u~x2!2u~x1!#, ~3!

whereu(x) is a function of one variable, andc a coupling
parameter.

The two second-order ordinary differential equations~1!
are reduced to four first-order ordinary differential equations:

ẋ15y1 , ~4a!

ẏ15 f ~x1 ,y1 ,t !1g~x1 ,x2!, ~4b!

ẋ25y2 , ~4c!

ẏ25 f ~x2 ,y2 ,t !1g~x2 ,x1!. ~4d!

Consider an initial pointz(0)@[„z1(0),z2(0)…#, where
zi5(xi ,yi) ( i51,2). Then, its Poincare´ maps can be com-
puted by sampling the pointsz(m) at the discrete timem,

where m51,2,3, . . . . We call the transformation
z(m)→z(m11) the Poincare´ ~time-1) map, and write
z(m11)5P„z(m)….

The four-dimensional~4D! Poincare´ map P has an ex-
change symmetry such that

S1PS1~z!5P~z! for all z, ~5!

whereS1(z1 ,z2)5(z2 ,z1). The set of all points, which are
invariant under the exchange of coordinatesS1, forms a syn-
chronous plane on whichx15x2 and y15y2. An orbit is
called a~n! ~in-phase! synchronous orbit if it lies on the syn-
chronous plane, i.e., it satisfies

x1~m!5x2~m![x* ~m!,

y1~m!5y2~m![y* ~m! for allm. ~6!

Otherwise, it is called an~out-of-phase! asynchronous orbit.
Here we study only the synchronous orbits. They can be
easily found from the uncoupled PFDP, because the coupling
function satisfiesg(x* ,x* )50. Note also that for the cases
of these synchronous orbits, the 4D Poincare´ mapP also has
the inversion symmetry such that

S2PS2~z!5P~z! for all z, ~7!

whereS2(z)52z. If a synchronous orbit$z(m)% of P is
invariant underS2, it is called a symmetric orbit. Otherwise,
it is called an asymmetric orbit and has its ‘‘conjugate’’ or-
bits S2$z(m)%.

We now study the stability of a synchronous periodic or-
bit with period q such thatPq

„z(0)…5z(0) but Pj
„z(0)…

Þz(0) for 1< j<q21. HerePk means thek-times iterated
map. The linear stability of theq-periodic orbit is determined
from the linearized-map matrixDPq

„z(0)… of Pq at an orbit
point z(0). Using the Floquet theory@16#, the matrixDPq

can be obtained by integrating the linearized differential
equations for small perturbations as follows.

Stability analysis of an orbit can be conveniently carried
out in a set of new coordinates (X1 ,Y1 ,X2 ,Y2) defined by

X15
~x11x2!

2
, Y15

~y11y2!

2
, ~8a!

X25
~x12x2!

2
, Y25

~y12y2!

2
. ~8b!

Here the first and second pairs of coordinatesZ1 and Z2,
defined byZi[(Xi ,Yi) ( i51,2), correspond to the synchro-
nous and asynchronous modes of the orbit, respectively. For
example, for a synchronous orbitZ15(x* ,y* ) and
Z25(0,0), while for an asynchronous orbit,Z2Þ(0,0). Here-
after, we will callZ1 andZ2 the synchronous and asynchro-
nous modes of the orbit, respectively.

Let Z(t) @[(Z1 ,Z2)# be a solution lying on the closed
orbit corresponding to a synchronousq-periodic orbit with
Z(t)5Z(t1q). In order to study the stability of the synchro-
nous closed orbit, we consider an infinitesimal perturbation
dZ @[(dZ1 ,dZ2)# to the orbit. Note thatdZ1 anddZ2 are
the synchronous and asynchronous modes of the perturbation
to the synchronous orbit, respectively. Linearizing the ordi-
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nary differential equations~4! ~expressed in terms of the new
coordinates! about the orbit, we obtain

S dŻ1

dŻ2
D 5J~ t !S dZ1

dZ2
D , ~9!

where

J5S J1 0

0 J2
D . ~10!

Here0 is the 232 null matrix, and

J1~ t !5S 0 1

f 1~x* ,ẋ* ,t ! f 2~x* ,ẋ* ,t !
D , ~11!

J2~ t !5S 0 1

f 1~x* ,ẋ* ,t !22G~x* ! f 2~x* ,ẋ* ,t !
D , ~12!

where

f 1~x* ,ẋ* ,t ![
] f ~x* ,ẋ* ,t !

]x*

524p2~v0
22Acos2pt !cos2px* ~ t !,

~13!

f 2~x* ,ẋ* ,t ![
] f ~x* ,ẋ* ,t !

] ẋ*
522pg, ~14!

and

G~x* ![
]g~x1 ,x2!

]x2
U
x15x25x*

5
c

2
u8~x* !. ~15!

Here the prime denotes the differentiation.
Since the 434 matrix J of Eq. ~10! is decomposed into

two 232 submatricesJ1 andJ2, Eq. ~9! is reduced to two
independent equations,

dŻi5Ji~ t !dZi for i51,2. ~16!

That is, dZ1 ~synchronous-mode perturbation! and dZ2
~asynchronous-mode perturbation! become decoupled for the
case of a synchronous orbit. Note also that eachJi ( i51,2)
is a q-periodic matrix. LetWi(t)5„wi

(1)(t),wi
(2)(t)… be a

fundamental solution matrix withWi(0)5I . Here wi
(1)(t)

andwi
(2)(t) are two independent solutions expressed in col-

umn vector forms, andI is the 232 unit matrix. Then a
general solution of theq-periodic system has the form

dZi~ t !5Wi~ t !dZi~0!, Wi~0!5I . ~17!

Substitution of Eq.~17! into Eq.~16! leads to an initial-value
problem to determineWi(t),

Ẇi~ t !5Ji~ t !Wi~ t !, Wi~0!5I . ~18!

In this system of new coordinates, the linearized-map matrix
M ([DPq) has the following block-diagonalized form:

M5SM1 0

0 M2
D , ~19!

where each 232 submatrixMi @[Wi(q)# ( i51,2) is calcu-
lated through integration of Eq.~18! over the periodq. In
order to determine the eigenvalues ofM , it is sufficient to
solve the eigenvalue problems for the two submatricesM1
andM2, independently. Here the submatricesM1 andM2
determine the stability of the synchronous orbit against the
synchronous-mode and asynchronous-mode perturbations,
respectively. Note also that the first submatrixM1 is just the
linearized Poincare´ map of the PFDP@11#, and the coupling
affects only the second submatrixM2.

The characteristic equation of each submatrixMi
( i51,2) is

l i
22trMil i1detMi50, ~20!

where trMi and detMi denote the trace and determinant of
Mi , respectively. As shown in@17#, detMi is calculated from
a formula,

detMi5e*0
qtrJidt. ~21!

Substituting the trace ofJi ~i.e., trJi522pg) into Eq. ~21!,
we obtain

detM15detM25e22pgq. ~22!

Hence, both the submatricesM1 andM2 have the same con-
stant Jacobian determinant~less than unity!. The eigenval-
ues,l i ,1 andl i ,2 , of Mi are called the Floquet stability mul-
tipliers of the synchronousq-periodic orbit. The first
~second! pair of stability multipliers (l1,1,l1,2)
@(l2,1,l2,2)# of M1 (M2) is associated with stability against
the synchronous-mode~asynchronous-mode! perturbation,
and hence it may be called the pair of synchronous~asyn-
chronous! stability multipliers. Note also that the pair of syn-
chronous stability multipliers is just the pair of stability mul-
tipliers of the uncoupled PFDP@11#, and the coupling affects
only the pair of asynchronous stability multipliers.

Each pair of stability multipliers (l i ,1 ,l i ,2) ( i51,2) lies
either on the circle of radiuse2pgq, or on the real axis in the
complex plane. The synchronous orbit is stable when it is
stable against both the synchronous-mode and asynchronous-
mode perturbations, i.e., the moduli of all its four stability
multipliers are less than unity. We first note that all the sta-
bility multipliers never cross the unit circle in the complex
plane, and hence Hopf bifurcations do not occur. Conse-
quently, the synchronous orbit can lose its stability only
when a multiplier decreases~increases! through21 (1) on
the real axis.

Associate with each pair of stability multipliers
(l i ,1 ,l i ,2) a quantityRi , called the residue,

Ri[
11detMi2trMi

2~11detMi !
, ~23!

which was introduced in@18# to characterize stability of pe-
riodic orbits in 2D dissipative maps with constant Jacobian
determinants. Here the first and second residuesR1 andR2
are associated with stability of the synchronous orbit against

54 1239PERIOD DOUBLINGS IN COUPLED PARAMETRICALLY . . .



the synchronous-mode and asynchronous-mode perturba-
tions, respectively. Hereafter, they will be called the syn-
chronous and asynchronous residues, respectively. Note also
that the synchronous residueR1 is just the residue of the
uncoupled PFDP@11#, and the coupling affects only the
asynchronous residueR2. A synchronous periodic orbit is
stable when 0,Ri,1 for i51,2; at both ends ofRi50 and
1, the stability multipliersl i ’s are 1 and21, respectively.
When each residueRi decreases through 0~i.e.,l i increases
through 1), the periodic orbit loses its stability via saddle-
noddle or pitchfork or transcritical bifurcation. On the other
hand, whenRi increases through 1~i.e.,l i decreases through
21), it becomes unstable via PDB, also referred to as a flip
or subharmonic bifurcation. For each case of the PDB’s and
the pitchfork bifurcations~PFB’s!, two types of supercritical
and subcritical bifurcations occur.~For more details on bi-
furcations in 2D dissipative maps, refer to Ref.@19#.!

The stable region of a synchronous periodic orbit in the
A-c plane is bounded by bifurcation lines associated with
PDB’s and PFB’s~i.e., those curves determined by the equa-
tions Ri50 and 1 for i51,2), as will be seen in Sec. III.
When the boundary lines on whichR1 (R2)50 and 1 are
crossed, the synchronous orbit loses its stability via synchro-
nous ~asynchronous! PFB and PDB, respectively. For each
case of the synchronous~asynchronous! PFB and PDB, two
types of supercritical and subcritical bifurcations take place.
In the supercritical case of the synchronous~asynchronous!
PFB and PDB, the synchronous orbit loses its stability, and
gives rise to the birth of a pair of new stable synchronous
~asynchronous! orbits with the same period and a new stable
synchronous~asynchronous! period-doubled orbit, respec-
tively. However, in the subcritical case of the synchronous
~asynchronous! PFB and PDB, the synchronous orbit be-
comes unstable by absorbing a pair of unstable synchronous
~asynchronous! orbits with the same period and an unstable
synchronous~asynchronous! period-doubled orbit, respec-
tively.

Finally, we briefly discuss Lyapunov exponents of a syn-
chronous orbit in the Poincare´ map P, characterizing the
mean exponential rate of divergence of nearby orbits@20#.
The synchronous and asynchronous modes of a nearby orbit
are decoupled, because the linearized Poincare´ mapDP at
the synchronous orbit is just the block-diagonalized matirx
M of Eq. ~19! with q51. Therefore, the 232 submatrices
M1 andM2 of M determine the pairs of synchronous and
asynchronous Lyapunov exponents (s1,1,s1,2) and
(s2,1,s2,2), characterizing the average exponential rates of
divergence of the synchronous and asynchronous modes of a
nearby orbit, respectively, wheres i ,1>s i ,2 for i51,2. Since
the two submatrices have the same constant Jacobian deter-
minant of Eq.~22!, each pair of the Lyapunov exponents
satisfy s i ,11s i ,2522pg ( i51,2). Note also that the first
pair of synchronous Lyapunov exponents (s1,1,s1,2) is just
the pair of the Lyapunov exponents of the uncoupled PFDP
@11#, and the coupling affects only the second pair of asyn-
chronous Lyapunov exponents (s2,1,s2,2).

III. CRITICAL BEHAVIORS IN TWO-COUPLED PFDP’S

In this section, by varying the two parametersA andc, we
study the critical behaviors of the synchronous PDB’s in the

two-coupled PFDP’s~1! for g50.1 andv050.5, and explic-
itly confirm the numerical and renormalization results of the
critical behaviors for the abstract system of the coupled 1D
maps @14#. As in the uncoupled PFDP@11#, the coupled
PFDP’s exhibit multiple period-doubling transitions to
chaos. Here we study the first three period-doubling transi-
tions to chaos. For each period-doubling transition to chaos,
the zero-coupling critical point and an infinity of critical line
segments constitute the critical set in theA-c plane. Three
kinds of critical behaviors associated with scaling of the cou-
pling parameterc are found on the critical set, while the
critical scaling behavior of the amplitudeA is always the
same as that of the uncoupled PFDP. Note that the structure
of the critical set and the critical behaviors for the coupled
PFDP’s are found to be the same as those for the coupled 1D
maps@14#.

We consider a linearly coupled case in which the coupling
function ~3! is

g~x1 ,x2!5
c

2
~x22x1!. ~24!

Figure 1 shows the stability diagram of the synchronous or-
bits with low periodq51,2. The stable region of a synchro-
nous orbit is bounded by its PDB and PFB lines. The hori-
zontal~nonhorizontal! solid and short-dashed boundary lines
correspond to synchronous~asynchronous! PDB and PFB
lines, respectively.~Each bifurcation may be supercritical or
subcritical.! Note also that the horizontal synchronous PDB
or PFB lines extend to the~plus! infinity (c5`). For the
sake of convenience, only some parts~up to c57) of the
infinitely long lines are drawn in the figure.

We first consider the bifurcations associated with stability
of the stationary point@(x1 ,y1 ,x2 ,y2)5(0,0,0,0)#. Its stable
region is denoted by SP in Fig. 1. When the nonhorizontal

FIG. 1. Stability diagram of the synchronous orbits of low pe-
riod q51,2 in two linearly coupled PFDP’s. The stable regions of
the stationary point, a symmetric 2-periodic orbit, and an asymmet-
ric 2-periodic orbit are denoted by SP, SP2, and ASP2, respectively.
The horizontal~nonhorizontal! solid and short-dashed boundary
lines correspond to synchronous~asynchronous! PDB and PFB
lines, respectively. For other details see the text.
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short-dashed line of the SP is crossed, the stationary point
becomes unstable via asynchronous subcritical PFB. How-
ever, at the horizontal solid boundary line, it loses its stabil-
ity via synchronous supercritical PDB, and a new stable syn-
chronous orbit of period 2 appears. The 2-periodic orbit is a
symmetric orbit with respect to the inversion symmetryS2,
and its stable region is denoted by SP2 in Fig. 1. When the
horizontal~nonhorizontal! short-dashed boundary line of the
SP2 is crossed, the symmetric 2-periodic orbit loses its sta-
bility via synchronous~asynchronous! supercritical PFB, and
a pair of new stable synchronous~asynchronous! orbits with
period 2 appears. Note that the new pair of synchronous
orbits is a conjugate pair of asymmteric orbits with respect to
the S2 symmetry. Its stable region is denoted by ASP2 in
Fig. 1. Unlike the cases of the lower-level stability regions
~SP and SP2!, the ASP2 isU-shaped, because a parabolalike
asynchronous PDB line also is a boundary line of the ASP2.
An asynchronous supercritical PDB occurs at the parabola-
like solid line, whereas an asynchronous subcritical PFB
takes place at the nonhorizontal short-dashed line. However,
each synchronous asymmetric 2-periodic orbit becomes un-
stable via synchronous supercritical PDB when the horizon-
tal solid line is crossed, and gives rise to the birth of a new
synchronous asymmetric 4-periodic orbit. Here we are inter-
ested in such synchronous supercritical PDB’s.

Figure 2 shows the stability diagram of synchronous
asymmetric orbits born by synchronous supercritical PDB’s.
Each synchronous asymmetric orbit of leveln ~period 2n,
n51,2,3, . . . ) loses its stability at the horizontal solid line of
its stable region via synchronous supercritical PDB, and
gives rise to the birth of a synchronous asymmetric period-
doubled orbit of leveln11. Such an infinite sequence ends
at a finite value ofA1*50.357 709 845 3, which is the first
period-doubling transition point of the uncoupled PFDP@11#.
Consequently, a synchronous quasiperiodic orbit, whose
maximum synchronous Lyapunov exponent is zero~i.e.,
s1,150), exists on theA5A1* line.

We examine the treelike structure of the stability diagram
in Fig. 2, which consists of an infinite pile ofU-shape re-
gions and rectangular-shape regions. Note that the treelike
structure is asymptotically the same as that in the coupled 1D
maps@14#. TheU-shape branching is repeated at one side of
eachU-shape region, including thec50 line segment. The
branching side will be referred to as the zeroc side. How-
ever, the other side of eachU-shape region grows like a
chimney without any further branchings@as an example, see
the branch starting from the right side of the ASP2 in Fig.
2~b!#. As in the coupled 1D maps@14#, this rule governs the
asymptotic behavior of the treelike structure, even though
there are a few exceptions for lower-level orbits. Other type
of U-shape regions without the zeroc sides@e.g., the left-
mostU-shape region in the third-level stability region in Fig.
2~a!# may appear in the lower-level stability regions. How-
ever, theU-shape branching for this kind ofU-shape region
ends at some finite level, and then each side of theU-shape
region grows like a chimney without any further branchings.
Consequently, an infinite number of successive branchings
occur only for the case of theU-shape region with the zero
c side.

A sequence of connected stability regions with increasing
period is called a ‘‘period-doubling route’’@14#. There are

two kinds of period-doubling routes. The sequence of the
U-shape regions with the zeroc sides converges to the zero-
coupling pointc50 on theA5A1* line. It will be referred to
as theU route. On the other hand, a sequence of rectangular
regions in each chimney converges to a critical line segment
on theA5A1* line. For examples, the rightmost one in Fig.
2~a! is the line segment joining the left end pointcl
(50.343 687 . . . ) and the right end point cr
(50.484 777 . . . ) on theA5A1* line, and the one in Fig.
2~b! is the infinitely long line connecting the two end points
cl (54.407 457 . . . ) andcr (5`) on theA5A1* line. This
kind of route will be called aC route. Note that there are
infinitely manyC routes, while theU route converging to the
zero-coupling critical point (A1* ,0) is unique. Hence, an in-
finite number of critical line segments, together with the
zero-coupling critical point, constitute the critical set.

We now study the critical behaviors on the critical set.
First, consider the case of theU route ending at the zero-

FIG. 2. Stability diagram of synchronous asymmetric
2n-periodic (n51,2,3,4,5) orbits of leveln born via synchronous
supercritical PDB’s. ASP2 denotes the stable region of an asym-
metric orbit of level 1, and PN also designates the stable region of
an asymmetric orbit of periodN (N54,8,16,32). The solid and
short-dashed boundary lines represent the same as those in Fig. 1.
The stability diagram starting from the left~right! side of the ASP2
is shown in~a! @~b!#. Note its treelike structure. See the text for
other details.
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coupling critical point. We follow the synchronous orbits of
periodq52n up to leveln59 in theU route, and obtain a
self-similar sequence of parameters (An ,cn), at which each
orbit of level n has some given residuesR1 andR2 ~e.g.,
R151 andR250). Then the sequence$(An ,cn)% converges
geometrically to the zero-coupling critical point (A1* ,0). In
order to see the convergence of each of the two scalar se-
quences$An% and$cn%, we define

dn[
DAn

DAn11
, mn[

Dcn
Dcn11

, ~25!

whereDAn5An2An21 andDcn5cn2cn21. The sequences
of dn andmn are listed in Table I, and converge to their limit
values,d (.4.67) andm (.22.5), respectively. Hence the
two sequences$An% and $cn% obey one-term scaling laws
asymptotically:

DAn;d2n, Dcn;m2n for large n. ~26!

As in the coupled 1D maps@14#, the value of the scaling
factord of the amplitudeA agrees well with the Feigenbaum
constant (54.669 . . . ) of the 1D map@12#. The value of the
coupling-parameter scaling factorm is also close to that
(522.502 . . . ) of thecoupling-parameter scaling factora
of the coupled 1D maps near the zero-coupling critical point
@14#. It has been also shown in@14# that the scaling factor
a is just the first relevant ‘‘coupling eigenvalue’’~CE! n1 of
the zero-coupling fixed map of the renormalization transfor-
mation for the case of the coupled 1D maps. In addition to
n15a, the zero-coupling fixed map has another second rel-
evant CEn2 (52), which also affects the scaling associated
with coupling in the coupled 1D maps@21#.

In order to get a correction to the leading scaling~26!, we
take into account the effect of the second relevant CEn2
(52) on the scaling of the sequence$Dcn% and extend the
simple one-term scaling law~26! to a two-term scaling law
@21,22#:

Dcn;C1m1
2n1C2m2

2n for large n, ~27!

whereum2u.um1u, andC1 andC2 are some constants. This is
a kind of multiple scaling law@23#. Equation~27! gives

Dcn5s1Dcn112s2Dcn12 , ~28!

wheres15m11m2 ands25m1m2. Then,m1 andm2 are so-
lutions of the following quadratic equation:

m22s1m1s250. ~29!

To evaluatem1 and m2, we first obtains1 and s2 from
Dcn’s using Eq.~28!:

s15
DcnDcn112Dcn21Dcn12

Dcn11
2 2DcnDcn12

, s25
Dcn

22Dcn11Dcn21

Dcn11
2 2DcnDcn12

.

~30!

Note that Eqs.~27!–~30! hold only for largen. In fact, the
values of si ’s and m i ’s ( i51,2) depend on the leveln.
Therefore, we explicitly denotesi ’s andm i ’s by si ,n’s and
m i ,n’s, respectively. Then, each of them converges to a con-
stant asn→`:

lim
n→`

si ,n5si , lim
n→`

m i , n5m i , i51,2. ~31!

Three sequences$m1,n%, $m2,n%, and $m1,n
2 /m2,n% are

shown in Table II. The second column shows rapid conver-
gence of the first scaling factorm1,n to its limit value m1
(.22.50), which agrees well with the first relevant CEn1
(5a). ~Its convergence toa is faster than that for the case of
the above one-term scaling law.! The second scaling factor
m2,n also seems to converge slowly to its limit valuem
(.3.1), whose accuracy is lower than that ofm1. As in the
coupled area-preserving maps@22#, it seems from the third
and fourth columns that the second scaling factorm2 may be
expressed by a product of two relevant CE’sn1 (5a) and
n2 (52),

m25
n1
2

n2
. ~32!

It has been known that every scaling factor in the multiple-
scaling expansion of a parameter is expressed by a product of
the eigenvalues of a linearized renormalization operator@23#.

We also study the coupling effect on the asynchronous
residueR2,n of the synchronous orbit of period 2n near the
zero-coupling critical point (A1* ,0). Figure 3 shows three
plots ofR2,n(A1* ,c) versusc for n54, 5, and 6. Forc50,
R2,n converges to a constantR2* (51.300 59. . . ), called the
critical asynchronous residue, asn→`. However, whenc is

TABLE I. In theU route, we followed a sequence of parameters
(An ,cn) at which the pair of residues (R1,n ,R2,n) of the synchro-
nous orbit of period 2n is (1,0). This sequence converges to the
zero-coupling critical point (A1* ,0). The scaling factors of the two
parametersA and c are shown in the second and third columns,
respectively.

n dn mn

2 5.286 22.96
3 4.692 22.91
4 4.665 22.41
5 4.666 22.59
6 4.667 22.43
7 4.670 22.57
8 4.665 22.45

TABLE II. For the case of theU route, the scaling factors
m1,n andm2,n in the two-term scaling for the coupling parameter are
shown in the second and third columns, respectively. A product of
them,m1,n

2 /m2,n , is shown in the fourth column.

m1,n
2

m2,nn m1,n m2,n

4 22.536 6.87 0.94
5 22.500 2.84 2.20
6 22.500 2.81 2.22
7 22.504 3.09 2.03

1242 54SANG-YOON KIM AND KIJIN LEE



nonzero R2,n diverges as n→`, i.e., its slope Sn
@[(]R2,n /]c)u(A

1* ,0)
# at the zero-coupling critical point di-

verges asn→`.
As in the coupled area-preserving maps@22#, the se-

quence$Sn% also obeys a two-term scaling law,

Sn5D1n1
n1D2n2

n for large n, ~33!

whereun1u.un2u. This equation gives

Sn125r 1Sn112r 2Sn , ~34!

where r 15n11n2 and r 25n1n2. As in the scaling for the
coupling parameter, we first obtainr 1 andr 2 of level n from
Sn’s:

r 1,n5
Sn11Sn2Sn12Sn21

Sn
22Sn11Sn21

, r 2,n5
Sn11
2 2SnSn12

Sn
22Sn11Sn21

.

~35!

Then, the scaling factorsn1,n andn2,n of leveln are given by
the roots of the quadratic equation,

nn
22r 1,nnn1r 2,n50. ~36!

They are listed in Table III and converge to constantsn1
(.22.503) andn2 (.2) asn→`, whose accuracies are

higher than those of the coupling-parameter scaling factors.
Note that the values ofn1 andn2 agree well with those of the
two relevant CE’sn1 andn2.

We next consider the cases ofC routes, each of which
converges to a critical line segment. Two kinds of additional
critical behaviors are found at each critical line segment; the
one critical behavior exists at both ends and the other critical
behavior exists at interior points. In eachC route, there are
two kinds of self-similar sequences of parameters (An ,cn),
at which each synchronous orbit of leveln has some given
residuesR1 andR2; the one converges to the left end point of
the critical line segment and the other converges to the right
end point. As an example, consider the rightmostC route in
Fig. 2~a!, which converges to the critical line segment with
two ends (A1* ,cl) and (A1* ,cr). We follow, in the rightmost
C route, two self-similar sequences of parameters, one con-
verging to the left end and the other converging to the right
end. In both cases, the sequence$An% converges geometri-
cally to its accumulation valueA1* with the 1D scaling factor
d (.4.67) like the case of theU route,

DAn;d2n for large n, ~37!

whereDAn5An2An21. The sequences$cn% for both cases
also obey the one-term scaling law,

Dcn;m2n for large n, ~38!

whereDcn5cn2cn21. The sequence of the scaling factor
mn of level n is listed in Table IV, and converges to its limit
value m (.2). Since the value of the coupling-parameter
scaling factorm is different from that (m5a) for the zero-
coupling case, the critical behavior at both ends differs from
that at the zero-coupling critical point. We also note that the
value ofm agrees well with that of the coupling-parameter
scaling factor (n52) of the coupled 1D maps near both ends
of each critical line segment@14#. It has been also shown in
@14# that the scaling factorn (52) is just the only relevant
CE of a nonzero-coupling fixed map of the renormalization
transformation for the case of the coupled 1D maps.

Figure 4 shows the behavior of the asynchronous residue
R2,n(A1* ,c) of the synchronous orbit of period 2n near the
rightmost critical line segment in Fig. 2~a!. For c5cl and
cr , R2,n converges to a critical residueR2* (50) asn→`,

TABLE III. The scaling factorsn1,n and n2,n in the two-term
scaling for the slopeSn of the asynchronous residueR2,n at the
zero-coupling critical point are shown in the second and third col-
umns, respectively.

n n1,n n2,n

4 22.599 2.783
5 22.511 1.923
6 22.503 2.004
7 22.503 1.998
8 22.503 1.999

TABLE IV. We followed, in the rightmostC route in Fig. 2~a!,
two self-similar sequences of parameters (An ,cn), at which the pair
of residues (R1,n ,R2,n) of the synchronous orbit with period 2n is
(1,0.1). They converge to both ends of the critical line segment.
The scaling factors of the coupling paramter at the left and right
ends are shown in the second and third columns, respectively. In
both cases the scaling factors seem to converge to the same limit
valuem.2.

n mn mn

5 1.05 3.12
6 1.76 2.55
7 1.85 2.26
8 1.94 2.12

FIG. 3. Plots of the asynchronous residueR2,n(A1* ,c) versusc
near the zero-coupling critical point forn54,5,6.
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which is different from that for the zero-coupling case. The
slopesSn’s of R2,n at both ends obey well the one-term scal-
ing law,

Sn;nn for large n. ~39!

The two sequences of the scaling factorsnn of leveln at both
ends are listed in Table V, and converge to their limit values
n.2, which agrees well with that of the only CE (n52) of
the nonzero-coupling fixed map governing the critical behav-
ior at both ends for the case of the 1D maps. However, for
any fixed value ofc inside the critical line segment,R2,n

converges to a critical residueR2* (50.5) asn→` ~see Fig.
4!. This superstable case ofR2*50.5 corresponds to the su-
percritical case ofl2*50 (l2* : the second critical stability
multiplier! for the coupled 1D maps@14#, because Eq.~23!
of R for the case of 2D maps reduces to the equation of
R50.5(12l) for the case of 1D maps. We also note that as
in the case of the coupled 1D maps, there exists no scaling
factor of the coupling parameter inside the critical line seg-
ment, and hence the coupling parameter becomes an irrel-
evant one at interior critical points. Thus, the critical behav-
ior inside the critical line segment becomes the same as that
of the uncoupled PFDP~i.e., that of the 1D map!, which will
be discussed in more details below. This kind of 1D-like

critical behavior was found to be governed by another
nonzero-coupling fixed map with no relevant CE for the case
of the coupled 1D maps@14#.

There exists a synchronous quasiperiodic orbit on the
A5A1* line. As mentioned in Sec. II, its synchronous
Lyapunov exponents are the same as the Lyapunov expo-
nents of the uncoupled PFDP, i.e.,s1,150 and
s1,2520.2p. The coupling affects only the second pair of
asynchronous Lyapunov exponents (s2,1,s2,2), characteriz-
ing the mean exponential rate of divergence of the asynchro-
nous mode of a nearby orbit. The maximum asynchronous
Lyapunov exponents2,1 near the rightmost critical line seg-
ment in Fig. 2~a! is shown in Fig. 5. Inside the critical line
segment (cl,c,cr), the synchronous quasiperiodic orbit on
the synchronous plane becomes a synchronous attractor with
s2,1,0. Since the dynamics on the synchronous attractor is
the same as that of the uncoupled PFDP, the critical maps at
interior points exhibit essentially 1D-like critical behaviors,
because the critical behavior of the uncoupled PFDP is the
same as that of the 1D maps@11#. However, as the coupling
parameterc passes throughcl and cr , the maximum asyn-
chronous Lyapunov exponents2,1 of the synchronous quasi-
periodic orbit increases from zero. Hence, the synchronous
quasiperiodic orbit becomes unstable and ceases to be an
attractor outside the critical line segment. Consequently, the
system of the two coupled PFDP’s is asymptotically at-
tracted to another synchronous or asynchronous attractor out-
side the critical line. For example, the asymptotic state for
c50.343 68 (,cl) becomes an asynchronous attractor of pe-
riod 512, while that forc50.484 79 (.cr) becomes a syn-
chronous rotational attractor of period 1.

We also study the critical scaling behaviors of the maxi-
mum asynchronous Lyapunov exponents2,1 near both ends
of the rightmost critical line segment in Fig. 2~a!. As shown
in Fig. 6, s2,1 varies linearly with respect toc near both
ends, i.e.,s2,1;e, e[c2c* (c*5cl or cr). The critical

TABLE V. The scaling factorsnn’s in the one-term scaling for
the slopesSn’s of the asynchronous residueR2,n at the left and right
ends of the rightmost critical line segment in Fig. 2~a! are shown in
the second and third columns, respectively.

n nn nn

4 2.156 1.991
5 1.971 2.003
6 2.006 1.999
7 1.999 2.000
8 2.000 2.000

FIG. 4. Plots of the asynchronous residueR2,n(A1* ,c) versusc
near the rightmost critical line in Fig. 2~a! for n55,6,7.

FIG. 5. Plot of the maximum asynchronous Lyapunov exponent
s2,1 of the synchronous quasiperiodic orbit near the rightmost criti-
cal line in Fig. 2~a!. This plot consists of 220c values, each of
which is obtained by iterating the Poincare´ mapP 20 000 times to
eliminate transients and then averaging over another 5000 itera-
tions. The values ofs2,1 at both ends of the rightmost critical line
are zero, which are denoted by solid circles.
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exponent ofs2,1 near both ends can be also obtained from
the only CEn52 of the nonzero-coupling fixed map gov-
erning the critical behavior near both ends for the case of the
coupled 1D maps. Consider a system with nonzeroe ~but
with A5A1* ) near both ends. It is then transformed into a
new one of the same form, but with a renormalized param-
etere8 under a renormalization transformation. Here the pa-
rametere obeys a scaling law,

e85ne52e. ~40!

Then the maximum asynchronous Lyapunov exponents2,1
satisfies the homogeneity relation,

s2,1~e8!52s2,1~e!. ~41!

This leads to the scaling relation,

s2,1;eh, ~42!

with critical exponent

h5 ln2/lnn51. ~43!

What happens beyond the first period-doubling transition
pointA1* is interesting. As in the uncoupled PFDP@11#, with
increasing the amplituteA further fromA5A1* , the station-
ary point@x15x25x*50, y15y25y*50# undergoes a cas-
cade of ‘‘resurrections,’’ i.e., it will restabilize after it loses
its stability, destabilize again, and so forthad infinitum. For

each case of the resurrections, an infinite sequence of PDB’s
leading to chaos follows. Consequently, the coupled PFDP’s
exhibit multiple transitions to chaos.

As the first example of the multiple period-doubling tran-
sitions to chaos, we consider the first resurrection of the sta-
tionary point shown in Fig. 7~a!. For A5Ar(1)
(53.150 509 . . . ), a synchronous subcritical PDB occurs.
Hence, the unstable stationary point restabilizes with birth of
a new unstable synchronous symmetric orbit of period 2 for
A.Ar(1). AsA is increased fromA5Ar(1), thestationary
point destabilizes atA5Ad(2) (53.224 230 . . . ) via syn-
chronous supercritical PFB, which results in the birth of a
conjugate pair of synchronous asymmetric orbits with period
1. Figure 7~b! shows the stability diagram of the stationary

FIG. 6. Plots of the maximum asynchronous Lyapunov expo-
nentss2,1 of the synchronous quasiperiodic orbit near both~a! the
left end and~b! the right end of the rightmost critical line in Fig.
2~a!. Here e5c2c* (c*5cl or cr). Each plot consists of 10e
values, each of which is obtained by iterating the Poincare´ mapP
30 000 times to eliminate transients and then averaging another
6000 iterations. Note thats2,1 varies linearly with respect toe near
both ends.

FIG. 7. ~a! Bifurcation diagram~plot of x* versusA) in the
vicinity of the first resurrection of the stationary point with
x*50; x15x2[x* for a synchronous orbit. Hereq51(2) denotes
the period of a synchronous orbit, born via supercritical PFB~sub-
critical PDB!. The solid and short-dashed lines also designate stable
and unstable orbits, respectively.~b! Second stability diagram of
synchronous orbits near thec50 line. Here SP, ASP1, and PN
denote the stable regions of the stationary point, an asymmetric
orbit of period 1, and an asymmetricN-periodic (N52,4,8,16) or-
bit, respectively. The solid and short-dashed boundary lines also
represent the same as those in Fig. 1. For other details see the text.
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point and the synchronous asymmetric orbits of leveln ~pe-
riod 2n, n50,1,2,3,4) near thec50 line in theA-c plane
@24#. Each synchronous asymmetric orbit of leveln becomes
unstable at the horizontal solid line of its stable region via
synchronous supercritical PDB, and gives rise to the birth of
a synchronous asymmetric period-doubled orbit of level
n11. Such an infinite sequence terminates at a finite value
of A2*53.263 703 15 . . . , which is the second period-
doubling transition point of the uncoupled PFDP@11#. Note
that the treelike structure of the stability diagram in Fig. 7~b!
is essentially the same as that in Fig. 2~a!. Hence, the critical
set also consists of an infinite number of critical line seg-
ments and the zero-coupling critical point, as in the first
period-doubling transition case. In order to study the critical
behaviors on the critical set, we follow the synchronous
asymmetric orbits up to leveln57 in theU route and the
rightmostC route. It is found that the critical behaviors are
the same as those for the first period-doubling transition
case. That is, there exist three kinds of critical behaviors at
the zero-coupling critical point, both ends of each critical
line segment and interior points.

As the second example, we also consider the second res-
urrection of the stationary point shown in Fig. 8~a!. A syn-
chronous subcritical PFB takes place atA5Ar(2)
(510.093 985 . . . ). Consequently, the unstable stationary
point restabilizes with birth of a pair of new unstable orbits
with period 1. AsA is further increased, the stationary point
destabilizes atA5Ad(3) (510.097 583 . . . ) via synchro-
nous supercritical PDB, which results in the birth of a new
synchronous symmetric orbit with period 2. The subsequent
bifurcation behaviors are the same as those for the first
period-doubling transition case. That is, a third infinite se-
quence of synchronous supercritical PDB’s follows and ends
at a finite valueA3* (510.099 660 93 . . . ), which is the
third period-doubling transition point of the uncoupled PFDP
@11#. The third stability diagram of synchronous orbits near
thec50 line is shown in Fig. 8~b! @24#. Note that its treelike
structure is essentially the same as that in Fig. 2~a!. Hence,
the critical set is composed of the zero-coupling critical point
and an infinity of critical line segments. Furthermore, the
critical behaviors on the critical set are found to be the same
as those for the first period-doubling transition case.

In addition to the linear-coupling case~24!, we have also
studied other nonlinear-coupling cases,

g~x1 ,x2!5
c

2
@x2

n2x1
n#, n52,3. ~44!

For the first period-doubling transition case, the stability dia-
grams of synchronous orbits near thec50 line for the cases
of the quadratic and cubic couplings are shown in Figs. 9~a!
and 9~b!, respectively. Their treelike structures are essen-
tially the same as that in Fig. 2~a!. Hence, the zero-coupling
critical point and an infinite number of critical line segments
constitute the critical set for each nonlinear-coupling case.
Moreover, the critical behaviors for these nonlinear-coupling
cases are also found to be the same as those for the linear-
coupling case.

IV. EXTENSION TO MANY COUPLED PFDP’S

In this section we study the critical behaviors of the syn-
chronous PDB’s inN-coupled (N>3) PFDP’s in which the
coupling extends to theKth „1<K<N/2@(N21)/2# for even
~odd! N… neighbor~s! with equal strength. It is found that the
critical behaviors depend on the coupling range. In the
global-coupling case, in which each PFDP is coupled to all
the other ones with equal coupling strength, the structure of
the critical set and the critical behaviors are the same as
those for the two-coupled case, independently ofN. How-
ever, for any other nonglobal-coupling cases, the structure of

FIG. 8. ~a! Bifurcation diagram~plot of x* versusA) in the
vicinity of the second resurrection of the stationary point with
x*50; x15x2[x* for a synchronous orbit. Hereq51(2) denotes
the period of a synchronous orbit, born via subcritical PFB~super-
critical PDB!. As in Fig. 7~a!, the solid and short-dashed lines also
designate stable and unstable orbits, respectively.~b! Third stability
diagram of synchronous orbits near thec50 line. Here SP, SP2,
ASP2, and PN (N54,8,16) denote the stable regions of the station-
ary point, a symmetric orbit of period 2, an asymmetric
2-periodic orbit, and an asymmetric orbit with periodN
(N54,8,16) orbit, respectively. The solid and short-dashed bound-
ary lines also represent the same as those in Fig. 1. For other details
see the text.
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the critical set becomes different from that for the global-
coupling case, because of a significant change in the stability
diagram.

ConsiderN symmetrically coupled PFDP’s with a peri-
odic boundary condition,

ẍm5 f ~xm ,ẋm ,t !1g~xm ,xm11 , . . . ,xm21!,

m51,2, . . . ,N. ~45!

Here the periodic boundary condition imposes
xm(t)5xm1N(t) for all m, the functionf (x,ẋ,t) is given in
Eq. ~2!, andg(x1 , . . . ,xN) is a coupling function, obeying
the condition

g~x, . . . ,x!50 for all x. ~46!

A general form of coupling for oddN (N>3) is given by

g~x1 , . . . ,xN!5
c

2K11 (
l52K

K

@u~x11 l !2u~x1!#

5cF 1

2K11 (
l52K

K

u~x11 l !2u~x1!G ,
K51, . . . ,

N21

2
, ~47!

wherec is a coupling parameter andu is a function of one
variable. Here the coupling extends to theKth neighbors
with equal coupling strength, and the functiong satisfies the
condition ~46!. The extreme long-range interaction for
K5(N21)/2 is called a global coupling, for which the cou-
pling functiong becomes

g~x1 , . . . ,xN!5 N(
m51

N

@u~xm!2u~x1!#

5cF N(
m51

N

u~xm!2u~x1!G . ~48!

This is a kind of mean-field coupling, in which each element
is coupled to all the other elements with equal coupling
strength. All the other couplings withK,(N21)/2 ~e.g.,
nearest-neighbor coupling withK51) will be referred to as
nonglobal couplings. TheK51 case forN53 corresponds
to both the global coupling and the nearest-neighbor cou-
pling.

We next consider the case of evenN (N>2). The form of
coupling of Eq.~47! holds for the cases of nonglobal cou-
plings with K51, . . . ,(N22)/2 (N>4). The global cou-
pling for K5N/2 (N>2) also has the form of Eq.~48!, but
it cannot have the form of Eq.~47!, because there exists only
one farthest neighbor forK5N/2, unlike the case of odd
N. TheK51 case forN52 also corresponds to the nearest-
neighbor coupling as well as to the global coupling, like the
N53 case.

The stability analysis of an orbit in many coupled PFDP’s
is conveniently carried out by Fourier-transforming with re-
spect to the discrete space$m% @25#. Consider an orbit
$xm(t);m51, . . . ,N% of the N coupled PFDP’s~45!. The
discrete spatial Fourier transform of the orbit is

F @xm~ t !#[
1

N(
m51

N

e22p im j /Nxm~ t !5j j~ t !,

j50,1, . . . ,N21. ~49!

The Fourier transformj j (t) satisfiesj j* (t)5jN2 j (t) (* de-
notes complex conjugate!, and the wavelength of a mode
with index j is N/ j for j<N/2 andN/(N2 j ) for j.N/2.

To determine the stability of a synchronousq-periodic
orbit @x1(t)5•••5xN(t)[x* (t) for all t and x* (t)
5x* (t1q)#, we consider an infinitesimal perturbation
$dxm(t)% to the synchronous orbit, i.e.,xm(t)5x* (t)
1dxm(t) for m51, . . . ,N. Linearizing the N-coupled
PFDP’s~45! at the synchronous orbit, we obtain:

FIG. 9. First stability diagrams of synchronous orbits near the
c50 line for the cases of~a! the quadratic and~b! cubic couplings.
Here SP2, ASP2, and PN (N54,8) denote the stable regions of a
symmetric orbit of period 2, an asymmetric 2-periodic orbit, and an
asymmetric orbit with period N, respectively.
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d ẍm5
] f ~x* ,ẋ* ,t !

]x*
dxm1

] f ~x* ,ẋ* ,t !
] ẋ*

d ẋm

1(
l51

N

Gl~x* !dxl1m21 , ~50!

where

Gl~x![
]g~x1 , . . . ,xN!

]xl
U
x15•••5xN5x

. ~51!

Hereafter the functionsGl ’s will be called ‘‘reduced’’ cou-
pling functions ofg(x1 , . . . ,xN).

Let dj j (t) be the Fourier transform ofdxm(t), i.e.,

dj j5F @dxm~ t !#5
1

N(
m51

N

e22p im j /Ndxm ,

j50,1, . . . ,N21. ~52!

Heredj0 is the synchronous-mode perturbation, and all the

other dj j ’s with nonzero indicesj are the asynchronous-
mode perturbations. Then the Fourier transform of Eq.~50!
becomes:

dj̈ j5
] f ~x* ,ẋ* ,t !

] ẋ*
dj̇ j1S ] f ~x* ,ẋ* ,t !

]x*

1(
l51

N

Gl~x* !e2p i ~ l21! j /ND dj j ,

j50,1, . . . ,N21. ~53!

Note that all the modesdj j ’s become decoupled for the syn-
chronous orbit.

Equation~53! can also be put into the following form:

S dj̇ j

dḣ j
D 5L j~ t !S dj j

dh j
D , j50,1, . . . ,N21, ~54!

where

L j~ t !5S 0 1

] f ~x* ,ẋ* ,t !
]x*

1(
l51

N

Gl~x* !e2p i ~ l21! j /N
] f ~x* ,ẋ* ,t !

] ẋ*
D . ~55!

Note that each L j is a q-periodic matrix, i.e.,
L j (t)5L j (t1q). Let F j (t)5„f j

(1)(t),f j
(2)(t)… be a funda-

mental solution matrix withF j (0)5I . Here f j
(1)(t) and

f j
(2)(t) are two independent solutions expressed in column

vector forms, andI is the 232 unit matrix. Then a general
solution of theq-periodic system has the following form:

S dj j~ t !

dh j~ t !
D 5F j~ t !S dj j~0!

dh j~0!
D ,

j50,1, . . . ,N21, ~56!

Substitution of Eq.~56! into Eq.~54! leads to an initial-value
problem to determineF j (t),

Ḟj~ t !5L j~ t !F j~ t !, F j~0!5I . ~57!

Each 232 matrixC j @[F j (q)#, which is obtained through
integration of Eq.~57! over the periodq, determines the
stability of the q-periodic synchronous orbit against the
j th-mode perturbation.
The characteristic equation of each matrixC j

( j50,1, . . . ,N21) is

l j
22trC jl j1detC j50, ~58!

where trC j and detC j denote the trace and determinant of
C j , respectively. As shown in@17#, detC j is given by

detC j5e*0
qtrL jdt5e22pgq. ~59!

Hence, all the matricesC j ’s have the same constant Jacobian
determinant~less than unity!. The eigenvalues,l j ,1 and
l j ,2 , of C j are called the Floquet stability multipliers, which
are associated with the stability of the synchronous
q-periodic orbit against thej th-mode perturbation. Since the
j50 case corresponds to the synchronous mode, the first pair
of stability multipliers (l0,1,l0,2) is called the pair of syn-
chronous stability multipliers. On the other hand, all the
other pairs of stability multipliers are called the pairs of
asynchronous stability multipliers, because all the other
cases ofjÞ0 correspond to asynchronous modes. Like the
two-coupled case@see Eq.~23!#, we also associate with a pair
of stability multipliersl j ,1 andl j ,2 a residueRj ,

Rj[
11detC j2trC j

2~11detC j !
, j50,1, . . . ,N21. ~60!

Here the first oneR0 is associated with the stability against
the synchronous-mode perturbation, and hence it may be
called the synchronous residue. On the other hand, all the
other onesRj ( jÞ0) are called the asynchronous residues,
because they are associated with the stability against the
asynchronous-mode perturbations.

It follows from the condition~46! that the reduced cou-
pling functions of Eq.~51! satisfy
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(
l51

N

Gl~x!50. ~61!

Hence the matrix~55! for j50 becomes

L0~ t !5S 0 1

] f ~x* ,ẋ* ,t !
]x*

] f ~x* ,ẋ* ,t !
] ẋ*

D . ~62!

This is just the linearized Poincare´ map of the uncoupled
PFDP@11#. Hence the synchronous residueR0 becomes the
same as the residue of the uncoupled PFDP, i.e., it depends
only on the amplitudeA. While there is no coupling effect on
R0, the coupling affects all the other asynchronous residues
Rj ( jÞ0).

In case of the global coupling of Eq.~48!, the reduced
coupling functions become:

Gl~x!5H ~12N!G~x! for l51

G~x! for lÞ1,
~63!

whereG(x)5(c/N)u8(x). SubstitutingGl ’s into the second
term of the (2,1) entry of the matrixL j (t) of Eq. ~55!, we
have:

(
l51

N

Gl~x!e2p i ~ l21! j /N5H 0 for j50

2cu8~x! for jÞ0.
~64!

Hence all the asynchronous residuesRj ( jÞ0) become the
same, i.e.,R15•••5RN21. Consequently, like the two-
coupled case, there exist only two independent residuesR0
andR1, the values of which are also independent ofN.

We next consider the nonglobal coupling of the form~47!
and define

G~x![
c

2K11
u8~x!, ~65!

where 1<K<(N22)/2@(N23)/2# for even~odd! N larger
than 3. Then we have

Gl~x!55
22KG~x! for l51

G~x! for 2< l<11K or

for N112K< l<N

0 otherwise.

~66!

Substituting the reduced coupling functions into the matrix
L j (t), the second term of the (2,1) entry ofL j (t) becomes:

(
l51

N

Gl~x!e2p i ~ l21! j /N52SN~K, j !cu8~x!, ~67!

where

SN~K, j ![
4

2K11(k51

K

sin2
p jk

N
512

sin~2K11!
p j

N

~2K11!sin
p j

N

.

~68!

Hence, unlike the global-coupling case, all the asynchronous
residues vary depending on the coupling rangeK as well as
on the mode numberj . SinceSN(K, j )5SN(K,N2 j ), the
residues satisfy

Rj5RN2 j , j50,1, . . . ,N21. ~69!

Thus it is sufficient to consider only the case of 0< j<N/2
@(N21)/2# for even~odd! N. Comparing the expression in
Eq. ~67! with that in Eq.~64! for jÞ0, one can easily see
that they are the same except for the factorSN(K, j ). Conse-
quently, making a change of the coupling parameter
c→c/SN(K, j ), the residueRj for the nonglobal coupling
case of rangeK becomes the same as that for the global-
coupling case.

Each pair of stability multipliers (l j ,1 ,l j ,2)
( j50,1, . . . ,N21) lies either on the circle of radius
e2pgq, or on the real axis in the complex plane. The syn-
chronous orbit is stable against thej th-mode perturbation
when 0,Rj,1 @i.e., the pair of stability multipliers
(l j ,1 ,l j ,2) lies inside the unit circle in the complex plane#. A
PDB ~PFB! occurs when the residueRj increases~decreases!
through 1 (0) @i.e., a stability multiplier decreases~in-
creases! through21 (1)#. We also note that a~n! synchro-
nous ~asynchronous! bifurcation takes place forj50
( jÞ0). For more details on bifurcatios, refer to Sec. II.

When the synchronous residueR0 of a synchronous peri-
odic orbit increases through 1, the synchronous orbit loses its
stability via synchronous PDB, giving rise to the birth of a
new synchronous period-doubled orbit. Here we are inter-
ested in such synchronous PDB’s. Thus, for each mode with
nonzero indexj we consider a region in theA-c plane, in
which the synchronous orbit is stable against the perturba-
tions of both modes with indices 0 andj . This stable region
is bounded by four bifurcation curves determined by the
equationsR050, 1 andRj50, 1, and it will be denoted by
UN .

For the case of global coupling, those stable regions co-
incide, irrespectively ofN and j , because all the asynchro-
nous residuesRj ’s ( jÞ0) are the same, independently of
N. The stable region for this global-coupling case will be
denoted byUG . Note thatUG itself is just the stability re-
gion of the synchronous orbit, irrespectively ofN, because
the synchronous orbit is stable against the perturbations of all
synchronous and asynchronous modes in the regionUG .
Thus the stability diagram of synchronous orbits of period
2n (n51,2,3, . . . ) in theA-c plane becomes the same as that
for the two-coupled case, independently ofN. That is, the
stable regions of the synchronous orbits form a ‘‘stability
tree’’ in the parameter plane@e.g., see Figs. 2~a! and 2~b!#.
Consequently, the zero-coupling critical point and an infinite
number of critical line segments constitute the critical set.
There exists one kind of critical behavior in theU route
ending at the zero-coupling critical point, while two other
kinds of critical behaviors exist in eachC route ending at a
critical line segment. The three kinds of critical behaviors are
the same as those for the two-coupled case, independently of
N. For more details on the critical behaviors, refer to Sec. III.

However, the stable regionUN varies depending on the
coupling rangeK and the mode numberj for the nonglobal-
coupling cases, i.e.,UN5UN(K, j ). To find the stability re-
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gion of a synchronous orbit inN coupled PFDP’s with a
givenK, one may start with the stability regionUG for the
global-coupling case. Rescaling the coupling parameterc by
a scaling factor 1/SN(K, j ) for each nonzeroj , the stable
regionUG is transformed into a stable regionUN(K, j ). Then
the stability region of the synchronous orbit is given by the
intersection of all such stable regionsUN’s. An important
change occurs in the stability diagram of the synchronous
orbits of period 2n (n51,2, . . . ), andconsequently the
structure of the critical set becomes different from that for
the global-coupling case, as will be seen below.

As an example, we consider the nearest-neighbor cou-
pling case withK51 in four linearly coupled PFDP’s, in
which the coupling function is given by

g~x1 ,x2 ,x3 ,x4!5
c

3
~x21x422x1!. ~70!

Figure 10 shows the stability regions of the synchronous

2n-periodic (n51,2,3,4) orbits. Note that the scaling factor
1/S4(1,j ) has its minimum value34 at j52. However, for
each synchronous orbit,U4(1,2) itself cannot be the stability
region, because bifurcation curves of different modes with
nonzero indices intersect one another. We first examine the
structure of the stability diagram in Fig. 10~a!, starting from
the left side of the stability region of the synchronous orbit of
level 1 (n51). For the case of level 2 (n52), the zeroc
side ofU4(1,2) including ac50 line segment remains un-
changed, whereas the other side becomes flattened by the
bifurcation curve of the asynchronous mode withj51. Due
to the successive flattening with increasing leveln, a signifi-
cant change in the stability diagram occurs. Of the infinite
number of period-doubling routes for the global-coupling
case, only theU route ending at the zero-coupling critical
point remains. Thus only the zero-coupling point is left as a
critical point in the parameter plane. However, as shown in
Fig. 10~b!, the rightmost branch of the stability diagram,
starting from the right side of the stability region of the syn-
chronous periodic orbit of level 1, is the same as that for the
global-coupling case except that the coupling parameterc is
rescaled with the maximum scaling factor 1/S4(1,1)
(51.5) of thej51 mode. Hence, the rightmostC route end-
ing at a critical line segment is also left. Consequently, the
critical set for this linear-coupling case is composed of the
zero-coupling critical point and one critical line segment.

Consider a self-similar sequence of parameters (An ,cn),
at which the synchronous orbits of period 2n has some given
residues, in theU route for the global-coupling case. Rescal-
ing the coupling parameter with the minimum scaling factor
1/S4(1,2) (50.75), the sequence is transformed into a self-
similar one for theN54 case of nearest-neighbor coupling.
Hence, the critical behavior near the zero-coupling critical
point becomes the same as that for the global-coupling case.
As mentioned above, the rightmostC route in Fig. 2~b! for
the global-coupling case is also transformed into theC route
in Fig. 10~b! for the nearest-neighbor coupling case by res-
caling c with the maximum scaling factor 1/S4(1,1)
(51.5). Hence, the critical behaviors at both ends and inte-
rior points of the critical line segment are the same as those
for the global-coupling case.

The results for the nearest-neighbor coupling case with
K51 extends to all the other nonglobal-coupling cases with
1,K,N/2 @(N21)/2# for even ~odd! N. For each
nonglobal-coupling case withK.1, we first consider a mode
with index jmin for which the scaling factor 1/SN(K, j ) be-
comes the smallest one and the stability regionUN(K, jmin)
including ac50 line segment. Here the value ofjmin varies
depending on the rangeK. Like theK51 case, the zeroc
side ofUN(K, jmin) including thec50 line segment remains
unchanged, whereas the other side becomes flattened by the
bifurcation curves of the other modes with nonzero indices.
Thus the overall shape of the stability diagram, starting from
the left zeroc side of the stability region of the synchronous
2-periodic orbit, becomes essentially the same as that for the
nearest-neighbor coupling case. Consequently, only theU
route ending at the zero-coupling critical point is left as a
period-doubling route, and the critical behavior near the
zero-coupling critical point is also the same as that for the
global-coupling case. We next consider a mode with index

FIG. 10. Stability diagram of synchronous orbits in four linearly
coupled PFDP’s. Each stable region is bounded by its solid bound-
ary curves. For a synchronous orbit of periodq, the PDB ~PFB!
curve of the mode with indexj is denoted by a symbolqj

PD(PF) The
stability diagram starting from the left~right! side of a 2-periodic
orbit is shown in~a! @~b!#. For other details see the text.

1250 54SANG-YOON KIM AND KIJIN LEE



jmax for which the scaling factor 1/SN(K, j ) becomes the
largest one. Rescalingc with the maximum scaling factor
1/SN(K, jmax), the rightmostC route in Fig. 2~b! for the
global-coupling case is transformed into theC route for the
nonglobal-coupling case, and the critical behaviors at the
critical line segment are also the same as those for the
global-coupling case.

V. SUMMARY

The critical behaviors of PDB’s in the real system ofN
coupled PFDP’s have been investigated by varying the two
parametersA and c. The two-coupled case withN52 has
been first studied. As in the uncoupled PFDP@11#, with in-
creasingA the coupled PFDP’s exhibit multiple period-
doubling transitions to chaos. We have studied the first three
period-doubling transitions to chaos. For each period-
doubling transition to chaos, the zero-coupling critical point
and an infinity of critical line segments constitute the critical
set in theA-c plane. Three kinds of critical behaviors asso-
ciated with scaling of the coupling parameterc are found on
the critical set, while the critical scaling behavior of the am-
plitudeA is always the same as that of the uncoupled PFDP.
Note that the structure of the critical set and the critical be-

haviors are the same as those for the coupled 1D maps@14#.
To the best of our knowledge, the system of coupled PFDP’s
is the first real system of coupled oscillators, in which the
numerical and renormalization results of the critical behav-
iors for the abstract system of the coupled 1D maps are ex-
plicitly confirmed. The results of the two-coupled case have
been also extended to many coupled PFDP’s, in which the
critical behaviors vary depending on whether or not the cou-
pling is global. In the global-coupling case, the critical be-
haviors are the same as those for the two-coupled case, in-
dependently ofN. However, for any other nonglobal-
coupling cases, the structure of the critical set becomes
different from that for the global-coupling case, because of a
significant change in the stability diagram of 2n-periodic or-
bits (n50,1,2, . . . ).
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