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We study the critical behaviors of period doublingsNn(N=2,3,4 . ..) coupled parametrically forced
damped pendulums by varyig(the amplitude of the external driving forcendc (the strength of coupling
The two-coupled case withl=2 is first investigated. A4\ is increased, the coupled parametrically forced
damped pendulums exhibit multiple period-doubling transitions to chaos. For each period-doubling transition
to chaos, the zero-coupling critical point and an infinity of critical line segments constitute the critical set in the
A-c plane. Three kinds of critical behaviors are found on the critical set. Note that the structure of the critical
set and the critical behaviors are the same as those for the abstract system of the coupled one-dimensional
maps. We also extend the results of the2 case to many-coupled cases wik=3, in which the critical
behaviors depend on the range of couplif®§1063-651X96)08408-5

PACS numbg(s): 05.45+b, 03.20+i, 05.70.Jk

[. INTRODUCTION doubling transition to chaos occurs. However, the critical
behavior associated with scaling of the amplitutlenear
In recent years, much attention has been paid to couplegachith period-doubling transition poink* (i=1,2,3...)

nonlinear oscillators. Such coupled oscillators are used tg the same as that of the 1D map.

model many physical, chemical, and biological systems such Here we study the critical behaviors of PDB's in the real

as coupledb-n junctions[1], Josephson-junction array8],  system ofN (N=2,3,4...) coupled PFDP’s by varying

the charge-density wav¢s], chemical-reaction systeri8],  pot the amplitudes and the strength of coupling between

and biological-oscillation systemi$]. They are known to  yho prpp's, and also compare them with those for the ab-

exhibit period-doubling bifurcationgPDB’s), saddle-node stract system of the coupled 1D majis,14. The “cou-

mgjtggﬁtlons, Hopf bifurcations, chaos, as well as pattern for'pling effect” of the nature, strength, and range of coupling

The coupled oscillators investigated in this paper ardn the critical behaviors is particularly investigated. We first

: ) consider the simplest two-coupled case Witk 2. As in the
coupled parametrically forced damped pendulPBDP’S. S L .
For a single damped pendulum, vertical oscillation of its supUncoupled PFDR11], the coupled PFDP's exhibit multiple

port leads to a time-periodic variation of its natural fre- Period-doubling transitions to chade.g., see Figs. (a),
quency, and hence it is called a PFD&7]. This simple  /(b), and 8b) for the “stability trees” associated with the
PFDP shows a richness in its dynamical behay®¢11.  first, second, and third period-doubling transitions to chaos,
One of its interesting behaviors is the following “multiple respectively. For eachith period-doubling transition to
period-doubling transitions to chaos,” which have beenchaos, the critical setet of the critical pointsis composed
found in our recent wor11]. As the amplitudeA of the  of the zero-coupling critical point witk=0 and an infinity
vertical oscillation is increased, the stationary point of theof critical line segments lying on the line=A" in the A-
PFDP undergoes an infinite sequence of PDB's accumulating plane. Three kinds of critical behaviors associated with
at the first period-doubling transition poi; . However, scaling of the coupling parameterare found on the critical
with increasing the amplitud@& further from A=A7 , the set, while the critical scaling behavior of the amplitutiés
stationary point exhibits a cascade of “resurrections,” i.e., italways the same as that of the uncoupled PFDP. Note that
will restabilize after it loses its stability, destabilize again, the structure of the critical set and the critical behaviors for
and so forthad infinitum For each case of the resurrections, the coupled PFDP’s are the same as those for the coupled 1D
an infinite sequence of PDB’s follows and leads to chaosmaps found by one of udim) and Kook[14]. To the best
Consequently, an infinite series of period-doubling transi-of our knowledge, the system of coupled PFDP’s is the first
tions to chaos appear with increasiAge.g., see Figs. 3, 5, real system of coupled nonlinear oscillators, in which the
and 6 in Ref[11] for the first, second, and third “bifurcation numerical and renormalization results of the critical behav-
trees,” respectively This is in contrast to the one- iors for the abstract system of the coupled 1D maps are ex-
dimensional(1D) map [12], in which only single period- plicitly confirmed[15].
We also extend the results for the two-coupled case to
many-coupled cases with=3. It is found that the critical
“Permanent address: Department of Physics, Kangwon Nationdlehaviors for the many-coupled cases vary depending on
University, Chunchon, Kangwon-Do 200-701, Korea. Electronicwhether or not the coupling is global. In the extreme long-
address: sykim@cc.kangwon.ac.kr range case of global coupling, in which each PFDP is
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coupled to all the other ones with equal coupling strengthwhere m=1,23.... We call the transformation
the critical behaviors are the same as those for the twoz(m)—z(m+1) the Poincare(time-1) map, and write
coupled case, irrespective ™. However, for any other z(m+1)=P(z(m)).

nonglobal-coupling cases of shorter-range couplings, a sig- The four-dimensional4D) Poincaremap P has an ex-
nificant change occurs in the stability diagram of change symmetry such that

2"-periodic (©=0,1,2 .. .) orbits in theA-c plane, and con-

sequently the structure of the critical set becomes different S1PSi(2)=P(2) forallz, 5

from that for the global-coupling case. B : .
This paper is organized as follows. We first introduceWhere Si(z1,2;) =(2z,21). The set of all points, which are

two-coupled PFDP’s and discuss their general properties ifvariant under the exchange of coordinaggsforms a syn-
Sec. Il. Stability of periodic orbits, bifurcations, and chronous plane on whiclk,=x, andy,=y,. An orbit is
Lyapunov exponents are also discussed there. In Sec. III, tHedlléd dn) (in-phas¢ synchronous orbit if it lies on the syn-
critical behaviors of PDB'’s for the two-coupled case are€nronous plane, i.e., it satisfies

studied by varying the two parametefsand c. We also
extend the results of the two-coupled case to many coupled
PFDP’s in Sec. IV. Finally, a summary is given in Sec. V.

X1 (M) =Xp(mM)=x*(m),

ya(m)=y,(m)=y*(m) forallm. (6)
[l. STABILITY OF PERIODIC ORBITS, BIFURCATIONS, Otherwise, it is called afout-of-phasgasynchronous orbit.
AND LYAPUNOV EXPONENTS Here we study only the synchronous orbits. They can be
IN TWO-COUPLED PFDP’'S easily found from the uncoupled PFDP, because the coupling

In this section, we first discuss stability of period orbits in function satisfieg(x*,x*)=0. Note also that for the cases
the Poincarenap of the two-coupled PFDP’s, using the Flo- of these synchronous orbits, the 4D Poincai@p P also has
quet theory. Bifurcations associated with the stability andthe inversion symmetry such that
Lyapunov exponents are then discussed.

Consider a system consisting of two identical PFDP’s S,PS(2)=P(z) forallz, (7)

coupled symmetrically: where S,(z)=—z. If a synchronous orbi{z(m)} of P is

Xy =F(X1,%Xq,0) +g(X1,X), (1a  Invariant undeiS,, it is called a symmetric orbit. Otherwise,
it is called an asymmetric orbit and has its “conjugate” or-
Xo=Tf(X5,X2,t) +g(X2,X1). 1)  bits Sy{z(m)}.
2= 10z Xz, 9(xz. xy) (1o We now study the stability of a synchronous periodic or-
where bit with period g such thatP9z(0))=z(0) but P!(z(0))

#2(0) for 1<j<q-—1. HereP¥ means thé-times iterated
f(x,X,t)=—27yx—2m(ws—Acos2rt)sin2rx (2)  map. The linear stability of thg-periodic orbit is determined

from the linearized-map matri® P9(z(0)) of P9 at an orbit
andg(x;,X,) is a coupling function, obeying the condition point z(0). Using the Floquet theory16], the matrixD P4
g(x,x)=0 for all x. Here x is the angular positiony the can be obtained by integrating the linearized differential
damping coefficientw, the natural frequency of the pendu- equations for small perturbations as follows.
lum, A the amplitude of the external driving force of period  Stability analysis of an orbit can be conveniently carried
one, and we consider the coupling functig(x,,x,) of the  outin a set of new coordinateX{,Y,X,,Y,) defined by
form,

Xq+X +
. X1=( 12 2)’ le(ylz)’Z), 8a)
9(X1,Xp) = E[U(Xz)_u(xl)], (€©))
_ (Xg—X3) _(y1—y2) b
whereu(x) is a function of one variable, and a coupling 27 o 27T (8b)

parameter.
The two second-order ordinary differential equatighs  Here the first and second pairs of coordinafgsand Z,,
are reduced to four first-order ordinary differential equationsdefined byzZ;=(X;,Y;) (i=1,2), correspond to the synchro-
nous and asynchronous modes of the orbit, respectively. For

X1=Y1, (48 example, for a synchronous orbiZ;=(x*,y*) and
) Z,=(0,0), while for an asynchronous orhit, # (0,0). Here-
y1=f(Xq,y1,1) +9(X1,X2), (4b)  after, we will callZ, andZ, the synchronous and asynchro-
nous modes of the orbit, respectively.
Xo=VY>, (40 Let Z(t) [=(Z,,Z,)] be a solution lying on the closed
orbit corresponding to a synchronogsperiodic orbit with
Yo=1(X5,Y2,1) +9(X5,Xq). (4d) Z(t)=Z(t+q). In order to study the stability of the synchro-

nous closed orbit, we consider an infinitesimal perturbation
Consider an initial pointz(0)[ =(z,(0),z,(0))], where  6Z [=(6Z,,6Z,)] to the orbit. Note thabZ, and 6Z, are
zi=(x,yi) (i=1,2). Then, its Poincareaps can be com- the synchronous and asynchronous modes of the perturbation
puted by sampling the pointg§m) at the discrete timen,  to the synchronous orbit, respectively. Linearizing the ordi-
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nary differential equationg!) (expressed in terms of the new

coordinates about the orbit, we obtain

52, 52, o
=3t ,
6Z, ® 0Z, ©
where
J 0
J= 0 3, (10
HereO is the 2<2 null matrix, and
0 1
N R R e ) A
0
J2(1)= (X%, X* 1) —2G(x*)  fo(x*,x*,t))’ (12
where
o IF(X X D)
f(x*,x ,t)ET
= — 47%( w3— Acos2mt)cos2mx* (1),
(13
ottt _af(x*,k*,t)_ 5 14
2(X* X ’)_T_ Ty, (14
and
dg(Xq,X c
Gy = 280X —Zu(x*). (15
Xy ok
X17X27X

Here the prime denotes the differentiation.

Since the 4«4 matrix J of Eq. (10) is decomposed into
two 2X 2 submatrices); andJ,, Eq. (9) is reduced to two
independent equations,

5Z,=J,(t)5Z,

fori=1,2. (16

That is, §Z; (synchronous-mode perturbatjorand 6Z,

(asynchronous-mode perturbatidrecome decoupled for the

case of a synchronous orbit. Note also that ecfi=1,2)
is a g-periodic matrix. LetW;(t)=(w"(t),w!?(t)) be a
fundamental solution matrix wittW;(0)=1. Here w{?(t)

1239

M; O o
M= 1
where each X2 submatrixM; [=W;(q)] (i=1,2) is calcu-
lated through integration of Eq18) over the periodg. In
order to determine the eigenvalues Mf, it is sufficient to
solve the eigenvalue problems for the two submatridgs
and M,, independently. Here the submatrickly and M,
determine the stability of the synchronous orbit against the
synchronous-mode and asynchronous-mode perturbations,
respectively. Note also that the first submatylx is just the
linearized Poincarenap of the PFDR11], and the coupling
affects only the second submatiix,.

The characteristic equation of each submatii;
(i=1,2) is
AZ—trM;\; +detM; =0, (20)
where tM; and deM; denote the trace and determinant of
M;, respectively. As shown if17], detM; is calculated from
a formula,
detM, = e/dridt, (21)

Substituting the trace af; (i.e., trJj=—27y) into Eq.(21),
we obtain

detM,=detM,=e 2™, (22)
Hence, both the submatricéé, andM, have the same con-
stant Jacobian determina@iess than unity The eigenval-
ues,\; ; and\; ,, of M; are called the Floguet stability mul-
tipliers of the synchronousy-periodic orbit. The first
(secongl pair of stability multipliers §;1,M1))
[(N21,N 2] of M; (M,) is associated with stability against
the synchronous-modéasynchronous-modeperturbation,
and hence it may be called the pair of synchrontsyn-
chronous stability multipliers. Note also that the pair of syn-
chronous stability multipliers is just the pair of stability mul-
tipliers of the uncoupled PFDR.1], and the coupling affects
only the pair of asynchronous stability multipliers.

Each pair of stability multipliersX; ;,\j o) (i=1,2) lies
either on the circle of radius™ 7?9, or on the real axis in the
complex plane. The synchronous orbit is stable when it is
stable against both the synchronous-mode and asynchronous-
mode perturbations, i.e., the moduli of all its four stability
multipliers are less than unity. We first note that all the sta-
bility multipliers never cross the unit circle in the complex
plane, and hence Hopf bifurcations do not occur. Conse-

andwi(z)(t) are two independent solutions expressed in colquently, the synchronous orbit can lose its stability only

umn vector forms, and is the 2x2 unit matrix. Then a
general solution of thg-periodic system has the form

17

Substitution of Eq(17) into Eq.(16) leads to an initial-value
problem to determin&V,(t),

OZi(t)=W,(1)6Z;(0), W;(0)=1I.

Wi(1)=J,()Wi(t), W;(0)=1. (18)

when a multiplier decreasdscreasesthrough—1 (1) on
the real axis.

Associate with each pair of stability multipliers
(Ni1,\j2) a quantityR;, called the residue,

1+dell\/|i—trMi

R= S rdem,)

(23

which was introduced if18] to characterize stability of pe-
riodic orbits in 2D dissipative maps with constant Jacobian

In this system of new coordinates, the linearized-map matrixleterminants. Here the first and second residRegandR,

M (=DP9) has the following block-diagonalized form:

are associated with stability of the synchronous orbit against
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the synchronous-mode and asynchronous-mode perturba- 6.0
tions, respectively. Hereafter, they will be called the syn-
chronous and asynchronous residues, respectively. Note also
that the synchronous residi®, is just the residue of the
uncoupled PFDH11], and the coupling affects only the

asynchronous residuB,. A synchronous periodic orbit is 457

stable when &R;<1 fori=1,2; at both ends dR;=0 and &I‘

1, the stability multipliersk;’s are 1 and—1, respectively. =

When each residuR; decreases through @e., \; increases b=4 a0

through 1), the periodic orbit loses its stability via saddle- .
noddle or pitchfork or transcritical bifurcation. On the other SpP2
hand, wherR; increases through @.e., \; decreases through [ -
—1), it becomes unstable via PDB, also referred to as a flip

or subharmonic bifurcation. For each case of the PDB’s and 151 |
the pitchfork bifurcation§PFB’s), two types of supercritical i . L , SP . L
and subcritical bifurcations occuFor more details on bi- -10 -5 0 5
furcations in 2D dissipative maps, refer to REf9].) ¢

The stable region of a synchronous periodic orbit in the o )
A-c plane is bounded by bifurcation lines associated with FIG. 1. Stability diagram of the synchronous orbits of low pe-

PDB’s and PFB'gi.e., those curves determined by the equa_riod g=1,2 in two linearly coupled PFDP’s. The stable regions of
tions Ri=0 and 1 fori=1,2), as will be seen in Sec. II| the stationary point, a symmetric 2-periodic orbit, and an asymmet-
1 ’ ’ . .

When the boundary lines on whidR, (R,)=0 and 1 are ric 2-periodic orbit are denoted by SP, SP2, and ASP2, respectively.

. . . . The horizontal (nonhorizontgl solid and short-dashed boundar
crossed, the synchronous orbit loses its stat_>|l|ty via synchroﬁnes Corresporgd 0 Synchf?) nowgsynehronous POB and P y
nous (asynchronousPFB and PDB, respectively. For each lines, respectively. For other details see the text.

case of the synchronoygasynchronousPFB and PDB, two ‘

types of supercritical and subcritical bifurcations take place , B B .
In the supercritical case of the synchrondasynchronous FWO'COU_pIed PFDP $1). for y=0.1 andwo_— 0:5’ and explic-
dtly confirm the numerical and renormalization results of the

PFB and PDB, the synchronous orbit loses its stability, and ?.. )
gives rise to the birt% of a pair of new stable synchrgnouscr't'cal behaviors for the abstract system of the coupled 1D

(asynchronousorbits with the same period and a new stableMaPs E14]' A.S n the _uncoupk_—:‘d PFDIP;Ll]’ the c.o'upled
synchronous(asynchronous period-doubled orbit, respec- PFDP’s exhibit multiple - period-doubling transitions to
tively. However, in the subcritical case of the synchronousChaOS' Here we study the first three period-doubling transi-
(asyn.chronowsF;FB and PDB, the synchronous orbit be- tions to chaos. For each period-doubling transition to chaos,
comes unstable by absorbing :’:l pair of unstable synchronoﬁge zero—coupling critical po.if‘t and an infinity of critical line
(asynchronousorbits with the same period and an unstables.egments _c_onstltute t_he crltlcal_ set in _tAa: P'?‘”e- Three
synchronous(asynchronous period-doubled orbit, respec- klnds of critical behaviors associated W.It-h scaling of _the Cou-
tively ' pling parameterc are found on the critical set, while the

" : . _critical scaling behavior of the amplitudk is always the
chronoLs obit i the Poincammap P characierzing he | SAMe 2 that o the uncoupled PFDP. Note that the structure
mean exponential rate of divergence of nearby orfgg. of the’crmcal set and the critical behaviors for the coupled
The synchronous and asynchronous modes of a nearby orlfi)f:DP s are found to be the same as those for the coupled 1D
are decoupled, because the linearized Poinozap DP at maps[14]. id i | led i which th i
the synchronous orbit is just the block-diagonalized matirxf W_e consider a finearly coupled case in whic the coupling
M of Eq. (19 with g=1. Therefore, the X2 submatrices unction (3) is
M; and M, of M determine the pairs of synchronous and
asynchronous Lyapunov exponentso(,0;1,) and
(021,022, characterizing the average exponential rates of
divergence of the synchronous and asynchronous modes of a
nearby orbit, respectively, wherg ;= o, , for i=1,2. Since  Figure 1 shows the stability diagram of the synchronous or-
the two submatrices have the same constant Jacobian detejits with low periodq=1,2. The stable region of a synchro-
minant of Eq.(22), each pair of the Lyapunov exponents nous orbit is bounded by its PDB and PFB lines. The hori-
satisfy o 1+ 07 ,=—27y (i=1,2). Note also that the first zontal(nonhorizontal solid and short-dashed boundary lines
pair of synchronous Lyapunov exponents, (,0 ) iS just  correspond to synchronougsynchronousPDB and PFB
the pair of the Lyapunov exponents of the uncoupled PFDRines, respectively(Each bifurcation may be supercritical or
[11], and the coupling affects only the second pair of asynsubcritical) Note also that the horizontal synchronous PDB

0(%1.%0)= 5 (K= Xa). (29

chronous Lyapunov exponents{;,05; ). or PFB lines extend to théplus) infinity (c=). For the
sake of convenience, only some paft® to c=7) of the
lll. CRITICAL BEHAVIORS IN TWO-COUPLED PFDP’'S infinitely long lines are drawn in the figure.

We first consider the bifurcations associated with stability
In this section, by varying the two parametérandc, we  of the stationary point(x;,Y1,X2,Y,)=(0,0,0,0). Its stable
study the critical behaviors of the synchronous PDB's in theregion is denoted by SP in Fig. 1. When the nonhorizontal
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short-dashed line of the SP is crossed, the stationary point
becomes unstable via asynchronous subcritical PFB. How-
ever, at the horizontal solid boundary line, it loses its stabil-
ity via synchronous supercritical PDB, and a new stable syn-
chronous orbit of period 2 appears. The 2-periodic orbit is a
symmetric orbit with respect to the inversion symmesy

and its stable region is denoted by SP2 in Fig. 1. When the
horizontal(nonhorizontal short-dashed boundary line of the
SP2 is crossed, the symmetric 2-periodic orbit loses its sta-
bility via synchronougasynchronoussupercritical PFB, and

a pair of new stable synchrono(esynchronousorbits with
period 2 appears. Note that the new pair of synchronous
orbits is a conjugate pair of asymmteric orbits with respect to
the S, symmetry. Its stable region is denoted by ASP2 in
Fig. 1. Unlike the cases of the lower-level stability regions
(SP and SPR the ASP2 idJ-shaped, because a parabolalike
asynchronous PDB line also is a boundary line of the ASP2.
An asynchronous supercritical PDB occurs at the parabola-
like solid line, whereas an asynchronous subcritical PFB I P32
takes place at the nonhorizontal short-dashed line. However,
each synchronous asymmetric 2-periodic orbit becomes un- 10} u
stable via synchronous supercritical PDB when the horizon- P16
tal solid line is crossed, and gives rise to the birth of a new -
synchronous asymmetric 4-periodic orbit. Here we are inter-
ested in such synchronous supercritical PDB’s.

Figure 2 shows the stability diagram of synchronous
asymmetric orbits born by synchronous supercritical PDB’s.
Each synchronous asymmetric orbit of level(period 2, |
n=1,2,3...)loses its stability at the horizontal solid line of (b)/’

1 1
4

-In(Aj-A)

*

-In(A;-A)

P4

its stable region via synchronous supercritical PDB, and ASPZ

gives rise to the birth of a synchronous asymmetric period-

doubled orbit of leveh+ 1. Such an infinite sequence ends
o * oo i

at a finite value ofAT =0.357 709 845 3, which is the first FIG. 2. Stabilty diagram of synchronous asymmetric

period-doubling transition point of the l_mC(_)uP_IEd PF_[DE]' 2"-periodic (h=1,2,3,4,5) orbits of leveh born via synchronous
Consequently, a synchronous quasiperiodic orbit, Whosgupercritical PDB'’s. ASP2 denotes the stable region of an asym-
maximum synchronous Lyapunov exponent is z€t@.,  metric orbit of level 1, and PN also designates the stable region of
01,=0), exists on theA=A7 line. an asymmetric orbit of periotN (N=4,8,16,32). The solid and
We examine the treelike structure of the stability diagramshort-dashed boundary lines represent the same as those in Fig. 1.
in Fig. 2, which consists of an infinite pile dj-shape re- The stability diagram starting from the lgfight) side of the ASP2
gions and rectangular-shape regions. Note that the treelike shown in(a) [(b)]. Note its treelike structure. See the text for
structure is asymptotically the same as that in the coupled 1Bther details.
maps[14]. The U-shape branching is repeated at one side of

eachU-shape region, including the=0 line segment. The y,, \inds of period-doubling routes. The sequence of the

g\r/aerr‘dt‘r']neg j;ﬁgrvgilégeo;eézﬁ?sﬁz aes :Qeigfcsrlg\?v.sl-llicl)(v:a U-shape regions with the zewosides converges to the zero-
' b 9 9 coupling pointc=0 on theA=A7 line. It will be referred to

chimney without any further branchinas an example, see
y y b b as theU route. On the other hand, a sequence of rectangular

the branch starting from the right side of the ASP2 in Fig.”™ . . . . .
2(b)]. As in the coupled 1D magd4], this rule governs the regions in each chimney converges to a critical line segment
A7 line. For examples, the rightmost one in Fig.

asymptotic behavior of the treelike structure, even thougtP" tNeA=AT ples !
there are a few exceptions for lower-level orbits. Other typeZ@ S the line segment joining the left end poi
of U-shape regions without the zemsides[e.g., the left- (=0.3436&...) and the right end point c
mostU-shape region in the third-level stability region in Fig. (<0484 77 ...) on theA=A] line, and the one in Fig.
2(a)] may appear in the lower-level stability regions. How- 2(0) is the infinitely long line connecting the two end points
ever, theU-shape branching for this kind &f-shape region ¢ (=4.407 45 ...) andc, (=) on theA=A7 line. This
ends at some finite level, and then each side ofttfghape kind of route will be called &C route. Note that there are
region grows like a chimney without any further branchings.infinitely manyC routes, while théJ route converging to the
Consequently, an infinite number of successive branchinggero-coupling critical point47,0) is unique. Hence, an in-
occur only for the case of thg-shape region with the zero finite number of critical line segments, together with the
c side. zero-coupling critical point, constitute the critical set.

A sequence of connected stability regions with increasing We now study the critical behaviors on the critical set.
period is called a “period-doubling route['14]. There are First, consider the case of thé route ending at the zero-
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TABLE I. In the U route, we followed a sequence of parameters TABLE Il. For the case of theJ route, the scaling factors
(A, ,cp) at which the pair of residuesR(,,R,,) of the synchro-  u;, andu,, in the two-term scaling for the coupling parameter are
nous orbit of period 2 is (1,0). This sequence converges to the shown in the second and third columns, respectively. A product of
zero-coupling critical pointA},0). The scaling factors of the two them,Min/Mn, is shown in the fourth column.
parameterdA and ¢ are shown in the second and third columns,

respectively. /'Lin
M2,
n S Mn n Min M2n an
2 5.286 —2.96 4 —2.536 6.87 0.94
3 4.692 —201 5 —2.500 2.84 2.20
4 4.665 241 6 —2.500 2.81 2.22
5 4.666 —2.59 7 —2.504 3.09 2.03
6 4.667 —2.43
7 4.670 —2.57
8 4.665 045 wheres;= uq+ u, ands,= uu,. Then,uq, and u, are so-
i i lutions of the following quadratic equation:
. i . . 2 _
coupling critical point. We follow the synchronous orbits of =S u+5,=0. (29)

periodq=2" up to leveln=9 in theU route, and obtain a

self-similar sequence of paramete#s,(c,,), at which each TO evaluateu; and u,, we first obtains; ands, from
orbit of level n has some given residud®, andR, (e.g., AcCx’s using Eq.(28):

R;=1 andR,=0). Then the sequendéA, ,c,)} converges

geometrically to the zero-coupling critical poin&{,0). In s _ACHACH: 1~ ACH-1ACH s :Acﬁ_ACn+1ACn—1

order to see the convergence of each of the two scalar s&* AcZ,,—AcyAc,,, ' 2 Acl.,—AcpAChip’

quencegA,} and{c,}, we define (30
AA, Ac, (25) Note that Eqs(27)—(30) hold only for largen. In fact, the

o= — = .
"AAL, M Ac,.. values ofs;'s and u;'s (i=1,2) depend on the leva.
Therefore, we explicitly denots;’s and u;'s by s; ,’'s and

whereAA,=A,—A,_; andAc,=c,—C,-1. The sequences ;. s respectively. Then, each of them converges to a con-
of 6, andu, are listed in Table I, and converge to their limit giant ag7—so0-

values,s (=4.67) andu (=—2.5), respectively. Hence the

two sequencegA,} and{c,} obey one-term scaling laws lims ,=s, lmw ,=x, i=12. (31)
asymptotically: noo now
AA,~68", Ac,~u~ " for large n. (26)

Three sequence$iuin}, {szn}t, and {ul /uzn} are
As in the coupled 1D mapEl4], the value of the scaling shown in Tablg 1. The.second column_ shqw; rapid conver-
factor & of the amplitudeA agrees well with the Feigenbaum 9ence of the first scaling factqe,, to its limit value s,
constant £4.68 . . . ) of the 1D mag12]. The value of the (=~ 2.50), which agrees well with the first relevant GE
coupling-parameter scaling factar is also close to that (= a). (Its convergence tq is faster than that for the case of
(=—25@®...) of thecoupling-parameter scaling factar the above one-term scaling lawlhe secon_d sc_:al_lng factor
of the coupled 1D maps near the zero-coupling critical poingt2n @lSO seems to converge slowly to its limit valye
[14]. It has been also shown {14] that the scaling factor (=3-1), whose accuracy is lower than thatof. As in the

a is just the first relevant “coupling eigenvalugCE) », of ~ coupled area-preserving maf2], it seems from the third
the zero-coupling fixed map of the renormalization transfor-2nd fourth columns that the second scaling fagigmay be
mation for the case of the coupled 1D maps. In addition tXPressed by a product of two relevant C's(=«) and
v,=«a, the zero-coupling fixed map has another second rel¥2 (=2),

evant CEv, (=2), which also affects the scaling associated )

with coupling in the coupled 1D map&1]. _n (32)

In order to get a correction to the leading scaligg), we < vy
take into account the effect of the second relevant &GGE
(=2) on the scaling of the sequenfa&c,} and extend the |t has been known that every scaling factor in the multiple-
simple one-term scaling la26) to a two-term scaling law  scaling expansion of a parameter is expressed by a product of
[21,22: the eigenvalues of a linearized renormalization operf@B8}.

We also study the coupling effect on the asynchronous
residueR,,, of the synchronous orbit of period"hear the
zero-coupling critical point A7 ,0). Figure 3 shows three
plots of R, (AT ,c) versusc for n=4, 5, and 6. Foc=0,

R, converges to a constaRf (=1.30059. .), called the
Ac,=5S1AC, 11— S2ACH 42, (28 critical asynchronous residue, as-o. However, whert is

n

Ac,~Cyu; "+Cou," for large n, 27

where|u,|>|u4|, andC, andC, are some constants. This is
a kind of multiple scaling law23]. Equation(27) gives
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-0.00075

FIG. 3. Plots of the asynchronous residRg, (A7 ,c) versusc

0.00000
C

0.00075

near the zero-coupling critical point for=4,5,6.

nonzero R,, diverges asn—o,
[E(aRz,n/f9C)|(A’l*,0)] at the zero-coupling critical point di-

verges asi— .

As in the coupled area-preserving maj2], the se-

i.e.,

guence{S,} also obeys a two-term scaling law,

Sn: D1V2+ Dzvg

where|v4|>|v,|. This equation gives

Sy's:

_Sn+1Sn_Sn+ZSn71

fan= S —Sn+1Sn-1

Then, the scaling factors, , andv,, of leveln are given by
the roots of the quadratic equation,

They are listed in Table Ill and converge to constanis
(=-—2.503) andv, (=2) asn—x, whose accuracies are

TABLE Ill. The scaling factorsy;,, and v, in the two-term
scaling for the slopes, of the asynchronous residu,, at the

Sh2=M1S+17 1Sy,

wherer;=v;+ v, andr,=v,v,. As in the scaling for the
coupling parameter, we first obtain andr, of level n from

2 _
v~ MVt r2,=0.

for large n,

r _Sﬁ+1_snsn+2
2 S =Sh1Sh-1

its slope S,

TABLE IV. We followed, in the rightmost route in Fig. Za),
two self-similar sequences of parameteds (c,,), at which the pair
of residues Ry ,,R,,,) of the synchronous orbit with period’2s
(1,0.1). They converge to both ends of the critical line segment.
The scaling factors of the coupling paramter at the left and right
ends are shown in the second and third columns, respectively. In
both cases the scaling factors seem to converge to the same limit
value u=2.

n Mn Mn

5 1.05 3.12
6 1.76 2.55
7 1.85 2.26
8 1.94 2.12

higher than those of the coupling-parameter scaling factors.
Note that the values of; andv, agree well with those of the
two relevant CE'sy; and vs.

We next consider the cases @f routes, each of which
converges to a critical line segment. Two kinds of additional
critical behaviors are found at each critical line segment; the
one critical behavior exists at both ends and the other critical
behavior exists at interior points. In eahroute, there are
two kinds of self-similar sequences of parametets,€,),
at which each synchronous orbit of levelhas some given
residuesR; andR,; the one converges to the left end point of
the critical line segment and the other converges to the right
end point. As an example, consider the rightm@atoute in
Fig. 2(a), which converges to the critical line segment with
two ends A7 ,c;) and (AT ,c,). We follow, in the rightmost
C route, two self-similar sequences of parameters, one con-
verging to the left end and the other converging to the right
end. In both cases, the sequerég} converges geometri-
cally to its accumulation valuA} with the 1D scaling factor
S (=4.67) like the case of thg route,

AA,~& " for large n, (37

whereAA,=A,—A,_;. The sequenceg,} for both cases
also obey the one-term scaling law,

Ac,~u~" for large n, (38

where Ac,=c,—C,_1. The sequence of the scaling factor
un, Of leveln is listed in Table 1V, and converges to its limit
value u (=2). Since the value of the coupling-parameter
scaling factoru is different from that u=«) for the zero-
coupling case, the critical behavior at both ends differs from
that at the zero-coupling critical point. We also note that the

zero-coupling critical point are shown in the second and third coly,g)e of u agrees well with that of the coupling-parameter

umns, respectively.

n Vin Von

4 —2.599 2.783
5 —2.511 1.923
6 —2.503 2.004
7 —2.503 1.998
8 —2.503 1.999

scaling factor ¢=2) of the coupled 1D maps near both ends
of each critical line segmenfi4]. It has been also shown in
[14] that the scaling factor (=2) is just the only relevant
CE of a nonzero-coupling fixed map of the renormalization
transformation for the case of the coupled 1D maps.

Figure 4 shows the behavior of the asynchronous residue
R.n(A7 ,c) of the synchronous orbit of period”hear the
rightmost critical line segment in Fig.(®&. For c=c, and
¢, Ry, converges to a critical residu&; (=0) asn— oo,
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FIG. 4. Plots of the asynchronous residRg,(A} ,c) versusc FIG. 5. Plot of the maximum asynchronous Lyapunov exponent
near the rightmost critical line in Fig.(& for n=5,6,7. 0, of the synchronous quasiperiodic orbit near the rightmost criti-

cal line in Fig. Za). This plot consists of 22@ values, each of
which is obtained by iterating the Poincarap P 20 000 times to
eliminate transients and then averaging over another 5000 itera-
tions. The values ofr, ; at both ends of the rightmost critical line

which is different from that for the zero-coupling case. The
slopesS,’s of R, , at both ends obey well the one-term scal-

ing law, are zero, which are denoted by solid circles.
. on critical behavior was found to be governed by another
Sy forlarge n. (39 nonzero-coupling fixed map with no relevant CE for the case
of the coupled 1D mapfl4].
The two sequences of the scaling factegof leveln at both There exists a synchronous quasiperiodic orbit on the
ends are listed in Table V, and converge to their limit valuesh=A1 line. As mentioned in Sec. I, its synchronous

v=2, which agrees well with that of the only CE£2) of  Lyapunov exponents are the same as the Lyapunov expo-
the nonzero-coupling fixed map governing the critical behavhents of the uncoupled PFDP, ie.g;;=0 and

ior at both ends for the case of the 1D maps. However, for12= —0.27. The coupling affects only the second pair of
any fixed value ofc inside the critical line segmenR,,  a@synchronous Lyapunov exponents,,o ), characteriz-
converges to a critical residuR} (=0.5) asn—o (see Fig. ing the mean exponential rate of divergence of the asynchro-
4). This superstable case Bf =0.5 corresponds to the su- NOUS mode of a nearby orbit. The maximum asy.nchronous
percritical case oh3 =0 (A} : the second critical stability Lyapunov exponendr, , near the rightmost critical line seg-
multiplier) for the coupled 1D mapkL4], because Eq23) ment in Fig. Za) is shown in Fig. 5. Inside the critical line

of R for the case of 2D maps reduces to the equation Oisegment(:|<c<c,), the synchronous quasiperiodic orbit on

R=0.5(1—\) for the case of 1D maps. We also note that aSthe synchronous plane be_comes a synchronous attractor vv_|th
»1<<0. Since the dynamics on the synchronous attractor is

in the case of the coupled 1D maps, there exists no scaling? that of th led PEDP. the critical t
factor of the coupling parameter inside the critical line seg-. € same as that of the uncouple OF, the criical maps &
[terior points exhibit essentially 1D-like critical behaviors,

ment, and hence the coupling parameter becomes an irr - . .
evant one at interior critical points. Thus, the critical behav‘flbecause the critical behavior of the uncoupled PFDP is the

ior inside the critical line segment becomes the same as thgfme as that of the 1D mafisl]. However, as the coupling

of the uncoupled PFDR.e., that of the 1D mayp which will parameterc passes through, andc;, the maximum asyn-
be discussed in more details below. This kind of 1D-likeC"ON0US Lyapunov exponeat, of the synchronous quasi-
periodic orbit increases from zero. Hence, the synchronous

quasiperiodic orbit becomes unstable and ceases to be an
attractor outside the critical line segment. Consequently, the
system of the two coupled PFDP’s is asymptotically at-
tracted to another synchronous or asynchronous attractor out-
side the critical line. For example, the asymptotic state for
¢c=0.343 68 K ¢;) becomes an asynchronous attractor of pe-

TABLE V. The scaling factorg,’s in the one-term scaling for
the slopesS;’s of the asynchronous residiRy , at the left and right
ends of the rightmost critical line segment in Figa)2are shown in
the second and third columns, respectively.

n on v riod 512, while that forc=0.484 79 (>c,) becomes a syn-

4 2.156 1.991 chronous rotational attractor of period 1.

5 1.971 2.003 We also study the critical scaling behaviors of the maxi-
6 2.006 1.999 mum asynchronous Lyapunov exponent; near both ends

7 1.999 2.000 of the rightmost critical line segment in Fig(&2. As shown

8 2.000 2.000 in Fig. 6, o, varies linearly with respect te¢ near both

ends, i.e.,op1~€, e=c—c* (c*=c; or ¢,). The critical



54 PERIOD DOUBLINGS IN COUPLED PARAMETRICALLY ... 1245
0.002 |- I(a) 1 ' 1 i 0004 T T ";. T T T T
.,~"'<—q=2
- 0.002 | { -
o 0.000 - b
b j/
oo0e L 1 * % 0.000 \
J ] 1
-0.001 0.000 0.001 T
& -0.002 - -
0003F ® - \ 1
(a)
0004 — 0 & 0, )
3.15 3.18 3.21 3.24
- A
i 0.000 |- =
©
-0.003 |- B
] 1 1
-0.001 0.000 0.001
€
FIG. 6. Plots of the maximum asynchronous Lyapunov expo-
nentso, ; of the synchronous quasiperiodic orbit near b@ihthe
left end and(b) the right end of the rightmost critical line in Fig.
2(a). Here e=c—c* (c*=c, or c,). Each plot consists of 1@
values, each of which is obtained by iterating the Poincaap P
30 000 times to eliminate transients and then averaging another
6000 iterations. Note that, ; varies linearly with respect te near

both ends.

exponent ofa, ; near both ends can be also obtained from
the only CEv=2 of the nonzero-coupling fixed map gov-

erning the critical behavior near both ends for the case of the £ 7. (q) Bifurcation diagram(plot of x* versusA) in the

coupled 1D maps. Consider a system with nonzergut

vicinity of the first resurrection of the stationary point with

with A=AY) near both ends. It is then transformed into ax* =0; x,=x,=x* for a synchronous orbit. Herg=1(2) denotes
new one of the same form, but with a renormalized paramthe period of a synchronous orbit, born via supercritical RS-
etere’ under a renormalization transformation. Here the pa-<ritical PDB). The solid and short-dashed lines also designate stable

rametere obeys a scaling law,
€' =ve=2e.

(40)

Then the maximum asynchronous Lyapunov exporneit
satisfies the homogeneity relation,

01(€')=20,4(€). (41)
This leads to the scaling relation,
op1~ €7, (42
with critical exponent
n=In2/Inv=1. (43)

and unstable orbits, respectiveljp) Second stability diagram of
synchronous orbits near the=0 line. Here SP, ASP1, and PN
denote the stable regions of the stationary point, an asymmetric
orbit of period 1, and an asymmetili¢-periodic N=2,4,8,16) or-

bit, respectively. The solid and short-dashed boundary lines also
represent the same as those in Fig. 1. For other details see the text.

each case of the resurrections, an infinite sequence of PDB’s
leading to chaos follows. Consequently, the coupled PFDP’s
exhibit multiple transitions to chaos.

As the first example of the multiple period-doubling tran-
sitions to chaos, we consider the first resurrection of the sta-
tionary point shown in Fig. (@&. For A=A/(1)
(=3.1505@...), asynchronous subcritical PDB occurs.
Hence, the unstable stationary point restabilizes with birth of

What happens beyond the first period-doubling transitiora new unstable synchronous symmetric orbit of period 2 for

point A7 is interesting. As in the uncoupled PFIDPL], with
increasing the amplituté further fromA=AY , the station-

ary point[ x;=x,=x*=0,y;=y,=Yy* =0] undergoes a cas-

A>A,(1). As A is increased fromA=A,(1), thestationary
point destabilizes aA=A4(2) (=3.2242® ...) viasyn-
chronous supercritical PFB, which results in the birth of a

cade of “resurrections,” i.e., it will restabilize after it loses conjugate pair of synchronous asymmetric orbits with period

its stability, destabilize again, and so fodH infinitum For

1. Figure 7Tb) shows the stability diagram of the stationary
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point and the synchronous asymmetric orbits of lavépe- — T y T
riod 2", n=0,1,2,3,4) near the=0 line in the A-c plane 0.00006 ]
[24]. Each synchronous asymmetric orbit of lemdbecomes

unstable at the horizontal solid line of its stable region via
synchronous supercritical PDB, and gives rise to the birth of

I
i ; g2
a synchronous asymmetric period-doubled orbit of level
n+1. Such an infinite sequence terminates at a finite value !
* 5 0.00000 $ \
1

f—q=1

of A5=3.2637035..., which is the second period-
doubling transition point of the uncoupled PFDEL]. Note
that the treelike structure of the stability diagram in Figh)7

is essentially the same as that in Figa)2Hence, the critical
set also consists of an infinite number of critical line seg-

ments and the zero-coupling critical point, as in the first -0.00006 | Y

period-doubling transition case. In order to study the critical @, % . !

behaviors on the critical set, we follow the synchronous 10.093 10.095 10.097 10.099
asymmetric orbits up to leval=7 in the U route and the A

rightmostC route. It is found that the critical behaviors are

the same as those for the first period-doubling transition 15 =

case. That is, there exist three kinds of critical behaviors at
the zero-coupling critical point, both ends of each critical
line segment and interior points.

As the second example, we also consider the second res- 12
urrection of the stationary point shown in Figa8 A syn-

chronous subcritical PFB takes place &=A,(2) ?
(=10.093 98 ...). Consequently, the unstable stationary *5_:‘:’
point restabilizes with birth of a pair of new unstable orbits £ 9F

with period 1. AsA is further increased, the stationary point
destabilizes atA=Ay4(3) (=10.09758...) via synchro-
nous supercritical PDB, which results in the birth of a new
synchronous symmetric orbit with period 2. The subsequent
bifurcation behaviors are the same as those for the first
period-doubling transition case. That is, a third infinite se-
guence of synchronous supercritical PDB'’s follows and ends
at a finite valueA3 (=10.0996608...), which is the ¢

third period-doubling transition point of the uncoupled PFDP

[11]. The third stability diagram of synchronous orbits near FIG. 8. () Bifurcation diagram(plot of x* versusA) in the
thec=0 line is shown in Fig. &) [24]. Note that its treelike vicinity of the second resurrection of the stationary point with
structure is essentially the same as that in Fig). Hence, X*=0;X;=Xx;=x" for a synchronous orbit. Herg=1(2) denotes
the critical set is composed of the zero-coupling critical pointthe period of a synchronous orbit, born via subcritical RE&per-
and an infinity of critical line segments. Furthermore, thecritical PDB). As in Fig. 7a), the solid and short-dashed lines also
critical behaviors on the critical set are found to be the sam&esignate stable and unstable orbits, respectiilyThird stability

as those for the first period-doubling transition case. iiggrzam %f snnch_rzn;;:z Oc;bits tnetﬁr thtet?l line. Here fStrT ' Stptg'
In addition to the linear-coupling cas24), we have also » an W=4,8,16) denote the stable regions of the station-

. . - ary point, a symmetric orbit of period 2, an asymmetric
studied other nonlinear-coupling cases, - . ; oo .
2-periodic orbit, and an asymmetric orbit with period

(N=4,8,16) orbit, respectively. The solid and short-dashed bound-
ary lines also represent the same as those in Fig. 1. For other details

c
g(xl,xz)zi[xg—xfl‘], n=2,3. (44) see the text.

IV. EXTENSION TO MANY COUPLED PFDP’S

For the first period-doubling transition case, the stability dia- In this section we study the critical behaviors of the syn-
grams of synchronous orbits near e 0 line for the cases chronous PDB’s irN-coupled (N=3) PFDP’s in which the

of the quadratic and cubic couplings are shown in Figa) 9 coupling extends to thiéth (1<K=<N/2[(N—1)/2] for even

and 4b), respectively. Their treelike structures are essen{odd N) neighbofs) with equal strength. It is found that the
tially the same as that in Fig(@®. Hence, the zero-coupling critical behaviors depend on the coupling range. In the
critical point and an infinite number of critical line segmentsglobal-coupling case, in which each PFDP is coupled to all
constitute the critical set for each nonlinear-coupling casethe other ones with equal coupling strength, the structure of
Moreover, the critical behaviors for these nonlinear-couplingthe critical set and the critical behaviors are the same as
cases are also found to be the same as those for the linedhose for the two-coupled case, independentlyNofHow-
coupling case. ever, for any other nonglobal-coupling cases, the structure of
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FIG. 9. First stability diagrams of synchronous orbits near the!

¢=0 line for the cases dfa) the quadratic an¢b) cubic couplings.

1247
c K
g(xl,---,XN)==§ﬁg;:ih;§K [U(Xy4) —U(X)]
1 K
=0l 3K, 2, U —uta)|,
N—1
K:l, ,T, (47)

wherec is a coupling parameter andis a function of one
variable. Here the coupling extends to tHeh neighbors
with equal coupling strength, and the functigrsatisfies the
condition (46). The extreme long-range interaction for
K=(N—1)/2 is called a global coupling, for which the cou-
pling functiong becomes

N
9(Xg, - XN)= NmE:l [U(Xm) — U(X1)]

N
=C NmE:1 U(Xpm) —u(Xyq) |- (48)

This is a kind of mean-field coupling, in which each element
is coupled to all the other elements with equal coupling
strength. All the other couplings witK<(N—1)/2 (e.g.,
nearest-neighbor coupling with=1) will be referred to as
nonglobal couplings. Th&=1 case forN=3 corresponds
to both the global coupling and the nearest-neighbor cou-
pling.

We next consider the case of eMdr(N=2). The form of
coupling of Eq.(47) holds for the cases of nonglobal cou-
plings with K=1,...,(N—2)/2 (N=4). The global cou-
pling for K=N/2 (N=2) also has the form of Eq48), but
it cannot have the form of E¢47), because there exists only

Here SP2, ASP2, and PNNE4,8) denote the stable regions of a ON€ farthest neighbor fok =N/2, unlike the case of odd
symmetric orbit of period 2, an asymmetric 2-periodic orbit, and anN- TheK=1 case foN=2 also corresponds to the nearest-

asymmetric orbit with period N, respectively.

the critical set becomes different from that for the global-.
coupling case, because of a significant change in the stabili

diagram.

ConsiderN symmetrically coupled PFDP’s with a peri-

odic boundary condition,

5.(m:f(xm!).(m1t)+g(xmlxm+1l e va—l)v

m=1,2,...N. (45

Here the periodic boundary condition
Xm(t) =Xm+n(t) for all m, the functionf(x,x,t) is given in
Eqg. (2), andg(x4, ... Xy) is @ coupling function, obeying
the condition

g(x,...x)=0 for all x. (46)

A general form of coupling for odtll (N=3) is given by

neighbor coupling as well as to the global coupling, like the
N=3 case.
The stability analysis of an orbit in many coupled PFDP’s
conveniently carried out by Fourier-transforming with re-
pect to the discrete spaden} [25]. Consider an orbit
{Xm(t);m=1,... N} of the N coupled PFDP’s(45). The
discrete spatial Fourier transform of the orbit is

1 .
Flxm(D]= 5 2, & 7™M ()= (1),

j=0,1,...N—1. (49

imposes The Fourier transforng;(t) satisfiesé] (t)=é&y—;(t) (* de-

notes complex conjugateand the wavelength of a mode
with indexj is N/j for j<N/2 andN/(N—j) for j>N/2.

To determine the stability of a synchronogsperiodic
orbit [xi(t)=---=xy(t)=x*(t) for all t and x*(t)
=x*(t+q)], we consider an infinitesimal perturbation
{&xm(t)} to the synchronous orbit, i.e.xy(t)=x*(t)
+6Xy(t) for m=1,... N. Linearizing the N-coupled
PFDP’s(45) at the synchronous orbit, we obtain:
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. &f(X* 1)'(* lt) &f(X* ’)'(* ’t) :
Kiy= e X+ ————— OX

m ax* m ax* m
N
+|§l Gi(X*) X+ m-1, (50)
where
ag(xl! ERCE 1XN)
G(x)= o (51
I Xp =+ =XNTX

Hereafter the function&,’s will be called “reduced” cou-
pling functions ofg(Xq, . .. Xn)-
Let 5¢;(t) be the Fourier transform afx(t), i.e.,

N
1 -
SE=F [oxm(t)]= Nm; e 2MMIN S,

j=0,1,...N-1. (52
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other §§;'s with nonzero indiceg are the asynchronous-
mode perturbations. Then the Fourier transform of &€)
becomes:

- af(X* X* L)
S =—— SE +

I (X* X% 1)
ox*

N
+2 GI(X*)eZWi(Il)j/N) 55]1
I=1

j=0,1,...N—1. (53

Note that all the modeé&é;’s become decoupled for the syn-
chronous orbit.
Equation(53) can also be put into the following form:

5\ 5§j) o B
(5;71_)—Lj(t)(5m, j=01,...N—-1, (54

Here §¢, is the synchronous-mode perturbation, and all thevhere

0 1
Li(t)=] af(x*,x*,t) ) ) af(x* ,x* 1) (55)
I *\a2mi(I—=1)j/N _
oX* +§1GI(X )e IX*
|
Note that each L; is a g-periodic matrix, i.e., deﬂ,j:efgtrLjdt:erZqu. (59)

Li(t)=L;(t+q). Let ®;(t)=(¢{"(t),!?(t)) be a funda-
mental solution matrix withd®;(0)=1. Here d)}l)(t) and

i
vector forms, and is the 2<2 unit matrix. Then a general

solution of theg-periodic system has the following form:

5,(1)
(1)

on;(t)
Substitution of Eq(56) into Eq.(54) leads to an initial-value
problem to determineb;(t),

6¢;(0)
67;(0)

i=01,...N—1, (56

d;(1)=L;()d;(t), D;(0)=1I. (57
Each 2<2 matrix¥; [=®;(q)], which is obtained through
integration of Eq.(57) over the periodq, determines the
stability of the g-periodic synchronous orbit against the
jth-mode perturbation.

The characteristic equation
(j=0,1,...N-1) is

of each matri¥;

N —tr¥ )\ +det¥; =0, (58)

where tW; and de¥; denote the trace and determinant of

W, respectively. As shown ifil7], det¥; is given by

i

#(t) are two independent solutions expressed in columri€Nce, all the matrice¥;'s have the same constant Jacobian

determinant(less than unity The eigenvalues);, and

\j 2, of ¥; are called the Floquet stability multipliers, which
are associated with the stability of the synchronous
g-periodic orbit against thgth-mode perturbation. Since the

j =0 case corresponds to the synchronous mode, the first pair
of stability multipliers Qg 1,Ao2) is called the pair of syn-
chronous stability multipliers. On the other hand, all the
other pairs of stability multipliers are called the pairs of
asynchronous stability multipliers, because all the other
cases ofj#0 correspond to asynchronous modes. Like the
two-coupled casgsee Eq(23)], we also associate with a pair
of stability multipliers\j ; andX; , a residueR;,

R = l+det\lfj—tr\lfj

= 2(1+dew,)  1TOL--

N-1. (60)

Here the first ondR, is associated with the stability against
the synchronous-mode perturbation, and hence it may be
called the synchronous residue. On the other hand, all the
other onesR; (j#0) are called the asynchronous residues,
because they are associated with the stability against the
asynchronous-mode perturbations.

It follows from the condition(46) that the reduced cou-
pling functions of Eq(51) satisfy
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N Hence, unlike the global-coupling case, all the asynchronous
E G,(x)=0. (62 residues vary depending on the coupling raKgas well as
=1 on the mode numbej. Since Sy(K,j)=Sy(K,N—j), the

Hence the matrixX55) for j =0 becomes residues satisfy

0 1 Ri=Rn-j, j=01,...N-1 (69)
Lo(t)=| af(x* ,x*,t) af(x* x*,1) |. (62 Thus it is sufficient to consider only the case o&pP<N/2
IX* IX* [(N—1)/2] for even(odd) N. Comparing the expression in

. Eq. (67) with that in Eq.(64) for j#0, one can easily see
ThIS iS just the ”nearized POincamap of the unCOUp|ed that they are the same except for the faﬁQ(K,J) Conse-
PFDP[ll] Hence the synchronous residB@ becomes the quenﬂy, making a Change of the Coup”ng parameter
same as the residue of the uncoupled PFDP, i.e., it depengs. c/S(K,j), the residueR; for the nonglobal coupling

Only on the amplltud@\ While there is no Coupling effect on case of rangé( becomes the same as that for the g|oba|_
Ro, the coupling affects all the other asynchronous residuegoupling case.

R; (j#0). ' Each pair of stability —multipliers X;j1,\;2)
In case of the global coupling of E¢48), the reduced (j=0,1,...N-1) lies either on the circle of radius
coupling functions become: e~ ™9, or on the real axis in the complex plane. The syn-

chronous orbit is stable against thth-mode perturbation
(1=N)G(x) for [=1 (63) when O<R;<1 [i.e.,, the pair of stability multipliers
G(x) for I#1, (X 1,\j ) lies inside the unit circle in the complex plané
o . PDB (PFB) occurs when the residl®, increasesdecreases
whereG(x) = (c/N)u’(x). SubstitutingG,’s into the second  through 1 (0)[i.e., a stability multiplier decreasegn-
term of the (2,1) entry of the matrik;(t) of Eq. (55, we  creasesthrough—1 (1)]. We also note that(a) synchro-

G|(X):{

have: nous (asynchronous bifurcation takes place forj=0
N 0 for i=0 (j#0). For more details on bi.furcatios, refer to Sec. Il. _
2 GI(X)ezmul)uN:k J _ (64) When the synchronous resid&®g of a synchronous peri-
=1 —cu'(x) for j#0. odic orbit increases through 1, the synchronous orbit loses its

. . stability via synchronous PDB, giving rise to the birth of a
Hence all the asynchronous residis(j#0) become the new synchronous period-doubled orbit. Here we are inter-

same, i.e.,R;=---=Ry-;. Consequently, like the two- ested in such synchronous PDB’s. Thus, for each mode with
coupled case, there exist only two independent resi¢es nonzero index we consider a region in tha-c plane, in
andRy, the values of which are also independent\of which the synchronous orbit is stable against the perturba-
We next consider the nonglobal coupling of the fod#®)  tions of both modes with indices 0 afdThis stable region
and define is bounded by four bifurcation curves determined by the
equationsR,=0, 1 andR;=0, 1, and it will be denoted by
_ : Uy.
G0 2K+1" (). €9 For the case of global coupling, those stable regions co-

incide, irrespectively oN andj, because all the asynchro-
where I=K<(N—2)/Z(N~-3)/2] for even(odd N larger g residueR;'s (j#0) are the same, independently of
than 3. Then we have N. The stable region for this global-coupling case will be
denoted byU . Note thatU itself is just the stability re-
gion of the synchronous orbit, irrespectively Nf because
G(x) for 2<I<1+Kor the synchronous orbit is stable against the perturbations of all
for N+1—K<I<N (66) synchronous and asynchronous modes in the reglgn

Thus the stability diagram of synchronous orbits of period
2"(n=1,2,3...) in theA-c plane becomes the same as that

Substituting the reduced coupling functions into the matrix/©f the two-coupled case, independently Mf That is, the

L. th fthe (2.1 t t : stablg regions of the synchronous orbjts form a “stability
i(1), the second term of the (2,1) entry bf(t) becomes tree” in the parameter plange.g., see Figs.(3) and 2Zb)].

N Consequently, the zero-coupling critical point and an infinite

> G(x)e?mI-DiN= _g (K,j)cu’(x), (670 number of critical line segments constitute the critical set.

=1 There exists one kind of critical behavior in thé route
ending at the zero-coupling critical point, while two other
kinds of critical behaviors exist in eadb route ending at a
critical line segment. The three kinds of critical behaviors are

—2KG(x) for I=1
Gi(x)=

0 otherwise.

where

K . sin(2K+1) il the same as those for the two-coupled case, independently of
Sy(K,j)= 4 > sinzlk -1- —N N. For more details on the critical behaviors, refer to Sec. Il
2K+ 1= N K+ 1)si Wl However, the stable regiod varies depending on the
( )S'nﬁ coupling rangeK and the mode numbgrfor the nonglobal-

(68) coupling cases, i.elJy=Uy(K,j). To find the stability re-
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2"-periodic (W=1,2,3,4) orbits. Note that the scaling factor
1/S,4(1,j) has its minimum value} at j=2. However, for
each synchronous orbitl4(1,2) itself cannot be the stability
region, because bifurcation curves of different modes with
nonzero indices intersect one another. We first examine the
structure of the stability diagram in Fig. ), starting from

the left side of the stability region of the synchronous orbit of
level 1 (n=1). For the case of level 2nE2), the zeroc

side 0fU,(1,2) including ac=0 line segment remains un-
changed, whereas the other side becomes flattened by the
bifurcation curve of the asynchronous mode wjithl. Due

to the successive flattening with increasing leweh signifi-

cant change in the stability diagram occurs. Of the infinite
number of period-doubling routes for the global-coupling
case, only thdJ route ending at the zero-coupling critical

c point remains. Thus only the zero-coupling point is left as a

T ' . r . critical point in the parameter plane. However, as shown in
ol i , i Fig. '1(Ib), the rig_htmo;t branch of t'h.e stapility diagram,
- 16EF 167" 16, starting from the right side of the stability region of the syn-
chronous periodic orbit of level 1, is the same as that for the
global-coupling case except that the coupling paramefsr
< iD rescaled with the maximum scaling factor S3(1,1)
gl 8y egf" 8 i (=1.5) of thej =1 mode. Hence, the rightmoStroute end-
ié, ’ ing at a critical line segment is also left. Consequently, the
- I critical set for this linear-coupling case is composed of the
47D ] zero-coupling critical point and one critical line segment.
—aiF  fe—alf 0 Consider a self-similar sequence of parametéys,¢,),
6| . at which the synchronous orbits of perioi Ras some given
i T residues, in th&J route for the global-coupling case. Rescal-
(b) 2P /LZTD oPD ing the coupling parameter with the minimum scaling factor
; . ; : 1'5 - 1/S,(1,2) (=0.75), the sequence is transformed into a self-

similar one for theN=4 case of nearest-neighbor coupling.
Hence, the critical behavior near the zero-coupling critical
o o _ point becomes the same as that for the global-coupling case.

FIG. 10. Stability diagram of synchronous orbits in four linearly o5 mentioned above, the rightmoGtroute in Fig. Zb) for
coupled PFDP’s. Each stable region is bounded by its solid boundy, global-coupling case is also transformed intoGheoute
ary curves. For a synchronous orbit of perigdthe PDB (PFB) in Fig. 10(b) for the nearest-neighbor coupling case by res-
curve of the mode with indeiis denoted byasymbd,PD(PF) The caling. ¢ with the maximum scaling factor $4(1,1)
stal_)il_ity d‘agraf“ starting from the Ie(rig_ht) side of a 2-periodic (=1.5). Hence, the critical behaviors at both ends a|:1d inte-
orbit is shown in(g) [(b)]. For other detals see the text. rior points of the critical line segment are the same as those
for the global-coupling case.

The results for the nearest-neighbor coupling case with
K=1 extends to all the other nonglobal-coupling cases with
1<K<N/2 [(N—1)/2] for even (odd N. For each
nonglobal-coupling case with>1, we first consider a mode
with index j i, for which the scaling factor ${(K,j) be-
comes the smallest one and the stability redibg(K,j min)
including ac=0 line segment. Here the value f;, varies
%iepending on the rang¢. Like the K=1 case, the zero
side ofUy(K,jmin) including thec=0 line segment remains
unchanged, whereas the other side becomes flattened by the
bifurcation curves of the other modes with nonzero indices.
Y hus the overall shape of the stability diagram, starting from
the left zeroc side of the stability region of the synchronous
2-periodic orbit, becomes essentially the same as that for the
nearest-neighbor coupling case. Consequently, onlylthe

9(Xq1, X0, Xz, X4) = %(x2+x4—2x1). (70) rouFe ending_ at the zero-coupling _c_ritical point_ is left as a
period-doubling route, and the critical behavior near the
zero-coupling critical point is also the same as that for the

Figure 10 shows the stability regions of the synchronouglobal-coupling case. We next consider a mode with index

gion of a synchronous orbit ilN coupled PFDP’s with a
given K, one may start with the stability regidog for the
global-coupling case. Rescaling the coupling parametey
a scaling factor By(K,j) for each nonzerd, the stable
regionUg is transformed into a stable regidhy(K,j). Then
the stability region of the synchronous orbit is given by the
intersection of all such stable regiofk’s. An important
change occurs in the stability diagram of the synchronou
orbits of period 2 (n=1,2,...), andconsequently the
structure of the critical set becomes different from that for
the global-coupling case, as will be seen below.

As an example, we consider the nearest-neighbor co
pling case withK=1 in four linearly coupled PFDP’s, in
which the coupling function is given by
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imax for which the scaling factor $(K,j) becomes the haviors are the same as those for the coupled 1D iafs
largest one. Rescaling with the maximum scaling factor To the best of our knowledge, the system of coupled PFDP’s
1/S\(K,jma, the rightmostC route in Fig. 2b) for the is the first real system of coupled oscillators, in which the
global-coupling case is transformed into tBeroute for the  numerical and renormalization results of the critical behav-
nonglobal-coupling case, and the critical behaviors at théors for the abstract system of the coupled 1D maps are ex-
critical line segment are also the same as those for thplicitly confirmed. The results of the two-coupled case have
global-coupling case. been also extended to many coupled PFDP’s, in which the
critical behaviors vary depending on whether or not the cou-
pling is global. In the global-coupling case, the critical be-
N ) ) haviors are the same as those for the two-coupled case, in-
The critical behaviors of PDB's in the real system Nof dependently ofN. However, for any other nonglobal-

coupled PFDP’s have been investigated by varying the tW@oypling cases, the structure of the critical set becomes
parametersA andc. The two-coupled case witN=2 has gifferent from that for the global-coupling case, because of a

been first studied. As in the uncoupled PFOR], with in-  gjgnificant change in the stability diagram df-Reriodic or-
creasingA the coupled PFDP’s exhibit multiple period- pits (n=0,1,2...)

doubling transitions to chaos. We have studied the first three
period-doubling transitions to chaos. For each period-
doubling transition to chaos, the zero-coupling critical point
and an infinity of critical line segments constitute the critical
set in theA-c plane. Three kinds of critical behaviors asso-  This work was supported by the Exchange Program of the
ciated with scaling of the coupling parameteare found on  Senior Scientist, the Korea Science and Engineering Foun-
the critical set, while the critical scaling behavior of the am-dation. One of u¢S.Y.K.) thanks Professor R. Fox and Ms.
plitude A is always the same as that of the uncoupled PFDPM. Choi for their hospitality during his visit to the Georgia
Note that the structure of the critical set and the critical bednstitute of Technology.

V. SUMMARY
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