Bicritical Behavior in Unidirectionally
Coupled Systems

Woochang Lim ! and Sang-Yoon Kim 2

Department of Physics
Kangwon National University
Chunchon, Kangwon-Do 200-70!, Korea

Abstract. We study the scaling behavior of period doublings in two unidirection-
ally coupled one-dimensional maps near a bicritical point where two critical lines of
period-doubling transition to chaos in both subsystems meet. Note that the bicritical
point corresponds to a border of chaos in both subsystems. For this bicritical case, the
second respounse subsystem exhibits a new type of non-Feigenbaum critical behavior,
while the first drive subsystem is in the Feigenbaum ecritical state. In order to make
an analysis of the bicritical behavior, we develop a new version of the renormalization
group method based on the eigenvalue matching, and obtain the bicritical point, the
parameter and orbital scaling factors with remarkably high numerical precision. These
scaling results obtained in the abstract system are also confirmed in the real system of
two parametrically forced pendulums with a one-way coupling.

Period-doubling transition to chaos has been extensively studied in a one-
parameter family of one-dimensional (1D) unimodal maps,

Ty =1—Ag;, (1)

where z, 15 a state variable at a discrete time t. As the control parameter 4 is in-
creased, the 1D map undergoes an infinite sequence of period-doubling bifurcations
accumulating at a critical point 4., beyond which chaos sets in. Using a renor-
malization group (RG) method, Feigenbaum [1] has discovered universal scaling
behavior near the critical point A..

Here we are interested in the period doublings in a system consisting of two 1D
maps with a one-way coupling,

Tt = 1= Ak, ypp=1— By - Cz?, (2)

where z and y are state variables of the first and second subsystems, 4 and B are
control parameters of the subsystems, and C i1s a coupling parameter. Note that
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the first (drive) subsystem acts on the second (response) subsystem, while the sec-
ond subsystem does not influence the first subsystem. This kind of unidirectionally
coupled 1D maps have been used as a model for open flow systems [2]. In partic-
ular, such systems with unidirectional coupling are actively discussed recently in
application to secure communication using synchronous chaos [3].

A new kind of non-Feigenbaum scaling behavior was first found in the
unidirectionally-coupled 1D maps (2) near a bicritical point (A, B.) where two
critical lines of period-doubling transition to chaos in both subsystems meet [4].
For this bicritical case, a RG analysis was also developed and the corresponding
fixed point, governing the bicritical behavior, was numerically obtained by directly
solving the RG fixed-point equation using a polynomial approximation [5]. In
this paper, we develop a new version of the RG approach based on the eigenvalue
matching, and make an analysis of the bicriticality. Thus we numerically obtain
the bicritical point, the parameter and orbital scaling factors with remarkably high
numerical precision. In order to confirm the scaling results obtained in the unidi-
rectionally coupled maps, we also study a real system of two parametrically forced
pendulums with an unidirectional coupling, and find the same bicritical scaling
behavior. In addition, this kind of bicritical behavior was also found both in an
electronic system of two periodically driven nonlinear LC-circuits with an unidirec-
tional coupling [4] and in a system of two unidirectionally-coupled Chua’s circuits
[6]. It is thus believed that the bicriticality in the abstract system of the unidi-
rectionally coupled 1D maps may be observed in a real system consisting of two
period-doubling subsystems with an unidirectional coupling.

Figure 1 shows the stability diagram of periodic orbits in the unidirectionally
coupled 1D maps for €' = 0.45. The numbers inside the different regions denote
the period of the oscillation in the second subsystem. Stability of an orbit with
period ¢ 1s determined by its stability multipliers,

if q

A= J[(-24x,), M= H(—'.?Byt}, (3)

=1 =1

Here A; and A, determine the stability of the first and second subsystems, respec-
tively. As the parameter A is increased, the first subsystem exhibits a sequence of
period-doubling bifurcations at the vertical straight lines, where A\, = —1, accu-
mulating at a critical line, denoted by a vertical dashed line. When crossing the
vertical critical line, a transition to chaos occurs in the first subsystem. For small
values of the parameter B, the period of oscillation in the second subsystem is the
same as that in the first subsystem, as in the case of forced oscillation. As B is
increased for a fixed value of 4, the second subsystem also undergoes a sequence
of period-doubling bifurcations at the non-vertical lines where Ay = —1. accumu-
lating at a critical line, denoted by a non-vertical dashed line. When crossing the
non-vertical critical line, a transition to chaos takes place in the second subsystem.
Note that these two critical lines meet at a bicritical point, denoted by a solid circle,
corresponding to a border of chaos in both subsystems,
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FIGURE 1. Stability diagram of the periodic orbits born via period-doubling bifurcations in the
unidirectionally coupled 1D maps for C = 0.45. The numbers in the different regions represent.
the period of motion in the second subsystem. The vertical and non-vertical dashed lines denote
the critical lines for the first and second subsystems, respectively. These two critical lines meet at
a bicritical point, denoted by a solid circle, corresponding to a border of chaos in both subsystems.
For other details, see the text.

To locate the bicritical point with a satisfactory precision, we numerically follow
the orbits of period ¢ = 2" up to level n = 21 in a quadruple precision, and
obtain the “self-similar” sequences of both the parameters (A,, B,) converging to
the bicritical point and the orbit points (z,,y,) approaching the origin. We first
note that the sequences of A,, and z,, in the first subsystem are the same as those
in the 1D maps. Hence the scaling behavior in the first subsystem becomes the
same as that in the 1D maps [1]. That is, the sequences {4, } and {z,} accumulate
to their limit values, A = 4, (= 1.401155189092- --) and x = 0, geometrically as
follows:

An— Aer~ 07" Zp~a™ forlargen. (4)

The scaling factors 6; and e are just the Feigenbaum constants § (= 4.669 - - -) and
e (= —2.502---) for the 1D maps, respectivelv. However, the second subsystern
exhibits a non-Feigenbaum critical behavior, unlike the case of the first subsystem.,
The two sequences { B, } and {y,} also converge geometrically to their limit values
B = B, (= 1.090094 348 701) and y = 0, respectively:

B, — B, ~ 6", yn~a;" forlarge n. (5)

Here the two scaling factors d, and a, are given by
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0y ~ 2.3928, @, =~ —1.5053. (6)

Note that these scaling factors are completely different from those in the first
subsystem (i.e., the Feigenbaum constants for the 1D maps). For more details on
the scaling results obtained by a direct numerical method, refer to Ref. [7].

We now employ the eigenvalue-matching method [8] and numerically make the
RG analysis of the bicritical behavior in the unidirectionally-coupled map T of
Eq. (2). The basic idea is to associate a value (A', B') for each (A, B) such that
Tﬁ’ ,;2 locally resembles T 43}, where 70" is the 2"th-iterated map of T (i.e.,
T = T2"). A simple way to implement this idea is to linearize the maps in
the neighborhood of their respective fixed points and equate the corresponding
eigenvalues.

Let {z} and {2/} be two successive cycles of period 2* and 2°+!, respectively,
L

(m) (n+1)

Ty F{—I B}( ) Z; = T(-—’n' ' (‘3;)1 Zp = [::rfu Uﬁ) (7)

Here z, depends only on A, but y; is dependent on both A and B, ie., z;, = x(A)
and y, = (A, B). Then thelr linearized maps at z; and z, are given bv

31 211-:-1

DT(3g) = [ DTt (=), DTG, = T] DT my(z)). (8)
i—1 =1

(Here DT is the linearized map of T'.) Let their eigenvalues, called the stability
multipliers, be (A 4 (A), Adan (A4, B)) and (A 5q1 (A7), Aong1 (A, B)). The recurrence
relations for the old and new parameters are then given by equating the stability
multipliers of level n, Ay ,(4) and Ay, (A, B), to those of the next level n + 1,
)'I,n-lhl(ffj and )\2:',1_.:_;(;11;, B;): i.ev,

Al.'.l'I(*;;‘:] 5 )‘l,n-é-l(-'q‘lf)r }‘21?1(=4:\ B) E= AE,TJ.+1(-4,1 ‘_(3’) (9)

The fixed point (A%, B*) of the renormalization transformation (9), gives the
bicritical point (A., B.). By linearizing the renormalization transformation (0) at
the fixed point (A", B*), we have a linearized matrix A,

AA AA
(AB)wn(M): (10)

where AA = A - A", AB = B— B* AA' = A' — A*, AB' = B' — B*. After
some algebra, we obtain the analytic formula.s for the elgenvalueﬁ & o and 6, , of
the matrix A,

d)\l.ﬂ—!—l 3/‘\1“_‘_1
; dA’ : oB!
d = — % — * I
hn dA1 ! d?‘n T o ) (1lj
a4 |, 88 |.
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Here the asterisk denotes the fixed point (A%, B*). As n — oo, 01, and &,
approach 9, and d,, which are just the parameter scaling factors in the first and
second subsystems, respectively. Note also that as in the 1D case, the local rescaling
factors of the state variables are simply given by

1
dz
Qin = 5| Qog =

' dz'
k3

du

i (12)

Here o), and a,, also converge to the orbital scaling factors, a; and «,, in the
first and second subsystems, respectively.

With increasing the level up to n = 13, we first solve the fixed- point equation of
the renormalization transformation (9) and obtain the bicritical point,

(4%, B*) = (1.401155 189 092 050 6, 1.090 094 348 701). (13)

Next, we use the formulas of Egs. (11) and (12) and obtain the parameter and
orbital scaling factors,

=1

§) = 4.6692016091, &, = 2.39273, (14)
@y = —2.5029078748, a2 = —1.505 31. (15)

Note that these RG results agree well with those obtained by a direct numerical
method. For more details on the RG results, refer to Ref. [7)].

In order to confirm the above bicritical scaling behavi 1or, we also study a real sys-
tem of two parametrically-forced pendulums with a one-way coupling. Its dynamics
1s governed by the equations,

T =y, Y= falz, y,t), (16a)
Ty = Y + C'fl'z — 1), Y2 = fp(x2, vo, t) + C(E’fz — :Ul)-, (15}-3)
where fu(z,2,t) = —278Q% — 2m(Q% — A cos 27¢) sin 27z Using both the direct

numerical method and the eigenvalue-matching RG method, we investigate the
scaling behavior near a bieritical point (A,, B.) [= (0.798 049 1824519, 0.802 377 2)]
for 3 = 1.0, 2 = 0.5 and C' = —0.2. The bicritical scaling behavior is thus found
to be the same as that in the unidirectionally coupled 1D maps [9].

As an evidence of scaling, we present a simple example for the case of unidirec-
tionally coupled pendulums. Figure 2 shows the attractors for the three values of
(4, B) near the bicritical point (A,, B,). All these attractors are the hyperchaotic
ones with two positive Lyapunov exponents [10],

e

1
= lim — Zln 124xy|, oy = lun — Zini‘)Bgc (17)

TTI—LOO
T Ba

Here the first and second Lyapunov exponents o, and o, denote the av erage ex-
ponential divergence rates of nearby orbits in the the first and second subsystems,
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FIGURE 2. Hyperchaotic attractors near the point (z],z3) [= (0.10054553,0.100111)] in
the unidirectionally coupled pendulums for the three values of (4, B) near the bicritical point
(Ae, Be); in (a) (A, B) = (Ae + A4, B, + AB) (A4 = 0.00085, AB = 0.0037), in (b) and (c)
(A, B) = (4Ac + A4/6, B: + AB/d:), and in (d) and (e) (4, B) = (A, + AA/6}, B, + ABJ83).

For other details, see the text.

respectively. Figure 2(a) shows the hyperchaotic attractor with o, ~ 0.107 and
o2 2 0.045 around the point (z7,z3) [= (0.10054553,0.100111)] in the z; — 2,
plane for A = A.+AA and B = B.+ AB, where A4 = 0.00085 and AB = 0.0037.
To see scaling, we first rescale AA and AB with the parameter scaling factors 4, and
d,, respectively. The attractor for the rescaled parameter values of A = A, +A4/§,
and B = B, + AB/4, is shown in Fig. 2(b). It is also the hyperchaotic attractor
with oy = 0.055 and 03 >~ 0.023. We next magnify the region in the small box by
the scaling factor a; for the x; axis and a, for the z, axis, and then we get the
picture in Fig. 2(c). Note that the picture in Fig. 2(¢) reproduces the previous one
in Fig. 2(a) approximately. Repeating the above procedure once more, we obtain
the two pictures in Figs. 2(d) and 2(e). That is, Fig. 2(d) shows the h}-‘perchaotic
attractor with o) = 0.027 and 02 ~ 0.012for A = 4.+ AA/6? and B B.+AB/é3
I\»Idvmfvm&, the region in the small box with the s(dlmﬂ factors a2 for the x-axis
and a2 for the z,-axis, we also obtain the picture in Fig. 2(e), Wthl’l reproduces the
previous one in Fig. 2(c) with an increased accuracy. The details on the bicritical
behavior in the unidirectionally coupled pendulums will be given elsewhere [9].

To sum up, we have studied the bicritical behavior of period doublings in unidi-
rectionally coupled 1D maps by using both the direct numerical method and the
eigenvalue-matching RG method. It has been thus found that for the bicritical case,
a new type of non-Feigenbaum critical behavior appears in the second (response)



subsystem, while the first (drive) subsystem is in the Feigenbaum critical state.
We have also confirmed this kind of bicritical behavior in a system of parametri-
cally forced pendulums with an unidirectional coupling. It is thus believed that
the bicriticality in the abstract system of unidirectionally-coupled 1D maps may
be observed in a real system consisting of two period-doubling subsystems with a
one-way coupling.
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