두 우물 다평 진동자의 불안정 도수의 안정화

이상열 · 김영태
아주대학교 물리학과, 수원 442-749
김 상윤
강원대학교 물리학과, 춘천 200-701
(1999년 12월 11일 발송)

\[
\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + ax + bx^3 = f(t)
\] (1)

여기서 감쇠상수 \(\gamma > 0 \) 이고, 외력은 주기 \(T = \frac{2\pi}{\alpha} \)을 갖고 \(f(t) = F \sin(\omega t) \)으로 표시된다. 식 (1)은 계수의 형태에 따라 크게 3가지의 포텐셜 우물형태로 구분된다.

1. \(a < 0, b > 0 \): 두 우물 (double-well) 포텐셜. \((x = \pm \sqrt{a/b} : \) 안정 평형점, \(x = 0 : \) 불안정 평형점)

2. \(a > 0, b > 0 \): 한 우물 (single-well) 포텐셜. \((x = 0 : \) 안정 평형점)

3. \(a > 0, b < 0 \): Double-hump 포텐셜. \((x = \pm \sqrt{a/b} : \) 불안정 평형점, \(x = 0 : \) 안정 평형점)

본 논문에서는 두 우물 포텐셜을 가진 다평 진동자의 특성에 대하여 연구하였다. 두 우물 다평 진동자는 여러 학문의 분야에서 이용되어 왔으며, 특히 공학 및 물리학에서 중요한 역할을 한다.

I. 서 론

\[
\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + ax + bx^3 = f(t)
\]

여기서 감쇠상수 \(\gamma > 0 \) 이고, 외력은 주기 \(T = \frac{2\pi}{\alpha} \)을 갖고 \(f(t) = F \sin(\omega t) \)로 표시된다. 식 (1)은 계수의 형태에 따라 크게 3가지의 포텐셜 우물형태로 구분된다.

1. \(a < 0, b > 0 \): 두 우물 (double-well) 포텐셜. \((x = \pm \sqrt{a/b} : \) 안정 평형점, \(x = 0 : \) 불안정 평형점)

2. \(a > 0, b > 0 \): 한 우물 (single-well) 포テン셜. \((x = 0 : \) 안정 평형점)

3. \(a > 0, b < 0 \): Double-hump 포텐셜. \((x = \pm \sqrt{a/b} : \) 불안정 평형점, \(x = 0 : \) 안정 평형점)

본 논문에서는 두 우물 포텐셜을 가진 다평 진동자의 \(a < 0, b > 0 \)의 동적인 특성에 대하여 연구하였다. 두 우물 다평 진동자는 이야기 bucketed beam이나 플라즈마 진동자의 수학적 모델로 사용되어 왔으며 [2,3] 다양한 흥미로운 동역학적 특성을 보인다고 알려져 있다. 그 예로 많은 공명(resonance)역이 존재하고, 같은 조건 상수 \(\gamma, a, b \)에서 여러 갈래(attractor)가 존재하며, Feigenbaum 경로를 따른 불안정과 crisis 및 hopping 현상을 보인다 [4]. 그림에도 불구하고 \(\omega \)와 \(F \)가 큰 영역에서는 두 우물 다평 진동자의 특성에 대하여는 별로 알려진 것이 없다. 이 논문에서는 컴퓨터를 이용한 수치 계산 및 아날로그 회로 시뮬레이션을 통하여 이 영역에서의 불안정 평형점에서 생긴 불안정 주기궤도의 안정화 기구를 조사하였다.

II. 본 론

다평 진동자의 운동방정식을 만족하는 회로를 구현하기 위해 그림 1에 보인 아날로그 회로를 제작하였다. 이 회로는 Op amplifier(μA741)을 이용한 적분기와 곱선기(Multiplier, MPV100)를 이용하여 구현하였다 [5]. 이 회로의 구조는 피크버스터기(HP3325)의 sine 피험을 이용하였다. 이 회로의 회로방정식은 두 적분기의 출력을 \(v_1, v_2 \)라고 했을 때

\[
-C_1 \frac{dv_1}{dt} = f(t) - R_1 \frac{v_2^3}{R_2} + \frac{P_2 v_2}{R_3} + P_1 v_1 v_2 + P_1 v_1 (2)
\]

그림 1. 두 우물 다평 진동자의 아날로그 구현회로.
\[-C_2\frac{dv_2}{dt} = \frac{v_1}{R_5} \]

(3)

으로 표시하고 \(v_1\)을 소거하면

\[C_1C_2R_4R_5\frac{dv_2}{dt^2} = \frac{R_4f(t)}{R_1} - 0.1\frac{R_4p_3v_2^3}{R_2} - p_1R_3C_2\frac{dv_2}{dt} + \frac{p_2R_4v_2}{R_5} \]

(4)

를 얻게 된다. 여기서 \(f(t) = f_0\sin(\omega't)\)이다. 식 (4)를 \(\tau = (R_1C_1)^{-1}t, v_2 = x\)로 치환하면

\[\frac{d^2x}{dt^2} + \gamma \frac{dx}{dt} + ax + bx^3 = F\sin(\omega t) \]

(5)

가 되고 이때 \(\gamma = \frac{R_2p_1}{R_5}, a = -\frac{C_1R_2^2p_1}{C_2R_5R_3}, b = 0.1\frac{C_1R_2^2p_3}{C_2R_5R_3}, F = \frac{C_1R_2}{R_5f_0}, \omega = R_1C_1\omega'\)가 된다. 최로 수압을 \(R_1 = R_3 = R_4 = R_5 = R_6 = 100\ k\Omega, R_2 = 10\ k\Omega, C_1 = C_2 = 0.01\ \mu F, p_1 = 0.1, p_2 = 1.0, p_3 = 1.0\)로 잡아 \(\gamma = 0.1, a = -1.0, b = 1.0, F = f_0\)가 되게 조정하였다. 동일한 초기조건을 가진 \(\omega' = 0.1, a' = -1.0, b' = 1.0\),에 대하여 수치계산은 동상적인 미분 방정식의 수치해석 방법을 이용하였다.

다음과 같은 비선형 동도자와 마찬가지로 동도자의 운동이 초기값에 의하여 결정된다. 따라서 이 초기값들의 집합은 각 각의 basin of attraction을 이룬다 [6]. 그림 2는 주어진 상수값 \(F, \omega\)에서 초기값의 변화에 따른 극한의 모양을 보여주고 있다. 이것은 보다 한 과정상수에서 다양한 서로 다른 극한이 공존함을 확인하였다.

그림 3. 두 우물 동도자 간의 상호간도. (a) 최적실험, (b) 수치해석. (a)에서 점선은 예상되는 양각이 객설을 표시한 것이다.

각 극한의 양각상(bifurcation)은 관찰하기 위해 입력신호와 동일한 주기로 생물학적 회로를 사용하였다. 동도자 과정 주파수 영역 \(\omega = 1, F < 1\)에서 이미 잘 알려 진 공명뿔 (resonance horn) 구조가 관찰되었다. 반면 본 논문의 연구대상은 \(\omega > 3.0\) 이상인 영역에서는 비교적 단순한 동적 운동을 보였다. 컴퓨터 수치해석 및 최로 실험으로 조 사한 조건상수 \(\omega\)와 \(F\) 값에 따른 상전이도를 그림 3에 나타내었다.

그림 3을 보면 \(F\)를 증가시킴에 따라 \(\omega > 3.0\)에서 붓안정 구조가 얻겨지는 과정이 다음 2가지 경우가 될 수 있다.

1. \(\omega \geq 3.3\)

두 개의 안정 평행줄에서 출발한 붓안정은 안정 구조를 둔 그림 4(a)와 4(b)에서와 같이 균속의 크기가 커지다가, \(F\) 가 그림 3의 pitchfork (PF) 양각상 구성을 동과할 때 그림 4(c)와 같이 서로 일치하게 된다. 동서로 이들 안정 구조를 둔 안정성을 얻고 붓안정해진다. 반면 붓안정 평행줄에서
시작한 불안정 주기궤도 역시 적절의 크기가 점차 증가하여 pitchfork 방갈럼 구선에서 안정 주기궤도와 얽히고, 다시 안정화를 얻게 된다. 다시 말해서 pitchfork 방갈럼을 통해 불안정 평형점 (0,0)에서 생겨난 불안정 주기궤도는 안정 평형점에서 생겨난 안정 주기궤도를 흡수하면서 안정 주기궤도로 변화된다.

이름 좀더 자세히 알아보기 위하여 F를 증가시키면서 주기궤도의 포영각이 단단을 실험적으로 측정한 것이 그림 5이다. 그림 5는 전형적인 supercritical pitchfork bifurcation이 나타나고 보여주고 있다. 그림 5의 방갈럼 구선을 보면 공존하는 두 개의 안정 주기궤도가 만나 불안정화하고 대신 새로운 주기궤도를 안정화시키는 것을 알 수 있다.

2. \(3.1 \leq \omega \leq 3.3 \)

이 경우 안정 평형점에서 출발한 주기궤도는 우선 그림 4(d)에서와 같이 주기배등을 한 후, 역주기배등 방갈럼을 통해 주기 1인 궤도로 바뀌게 된다. 이후 \(F \)가 증가하면서 \(\omega \geq 3.3 \)인 경우와 동일하게 pitchfork 방갈럼을 통하여 불안정 평형점에서 생겨난 불안정 주기궤도가 안정화된다.

동적 안정화 기구를 통하여 안정화된 불안정 주기궤도는 \(F \)를 더 증가시킬 경우 saddle-node(SN) 방갈럼을 통하여 다시 불안정해지고, 대신 두 안정 평형점을 포함하는 대칭적인 큰 궤도(large orbit)가 생겨나게 된다. 그림 6의 방갈럼 구선은 \(F \)가 클 경우 PF 방갈럼을 통하여 안정화된 주기궤도가 다시 SN 방갈럼을 통하여 \(F \sim 16 \)에서 큰 궤도로 변화되는 것을 보여주고 있다. 이때 주기궤도의 포영각이 단단히 감소가 증가하는 현상이 나타난다. \(F \)가 매우 클 때 나타 나는 큰 궤도의 운동은 한 우물 타락 전동자의 주기궤도 운동과 일치한다. 따라서 \(F \)가 충분히 클 경우 두 우물 포영각의 불안정 평형점 (0,0)의 영향은 무시되어 두 우물 타락 전동자가 한 우물 타락 전동자와 동일한 운동을 보이는 것으로 해석할 수 있다.

또한 large orbit이 생긴 후 \(F \)를 감소시키면 \(F \)을 증가시켰을 때 보였던 방갈럼 과정을 따르지 않고 매우 작은 \(F \)에서 또 다른 SN 방갈럼을 통하여 안정 주기궤도로 변화하는 hysteresis 현상이 관찰할 수 있다. 그림 6의 \(F \)을 감소시켰을 경우와 감소시켰을 경우 큰 궤도의 변화가 다른 \(F \)값에서 일어나는 것을 보여주고 있다.

III. 결론

두 우물 타락 전동자에 대한 컴퓨터 수치해석과 아날로그 회로 실험을 통해 구동신호의 진폭이 증가함에 따라 pitchfork 방갈럼을 통해 불안정 평형점에서 출발한 불안정 궤도가 안정 주기궤도를 흡수하면서 안정화됨을 확인하였다. 이러한 불안정 주기궤도의 동적 안정화는 안정 평형점과 불안정 평형점이 같이 존재하는 비선형계를 외부에서 자세 주기 신호를 가하여 구동시킬 경우 나타날 수 있는 보편적인 현상으로 볼 수 있고 이는 반전(inverted) 강제구동 단선자에서
Stabilization of an Unstable Orbit in a Double-Well Duffing Oscillator

Sang Yeol LEE and Youngtae KIM

Department of Physics, Ajou University, Suwon 442-749

Sang-Yoon KIM

Department of Physics, Kangwondo National University, Chunchon 200-701

(Received 11 December 1999)

A double-well Duffing oscillator has one unstable equilibrium point and two stable equilibrium points. Using a numerical and analog simulation, we investigated the stabilization mechanism of an unstable orbit arising from the unstable equilibrium point of the potential. It was confirmed by a study of the phase diagram in a space consisting of the frequency ω and the amplitude F of the driving force that the unstable periodic orbit was stabilized by absorbing stable periodic orbits through subcritical pitchfork bifurcations. It is suggested that this dynamic stabilization of the unstable orbit may be a generic property of nonlinear dynamical systems.