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INTERMITTENT TRANSITIONS
IN THE QUASIPERIODICALLY FORCED MAPS

Sang-Yoon Kim, Woochang Lim, Alexei Jalnine

We siudy the mechanisms of dynamical transitions accompanied by intermittent
behavior in the quasiperiodically forced Henon map. In terms of rational approximations, we
show that the intermittent transition from smooth attracting invariant curve 1o a sirange
nonchactic attractor occurs via phase-dependent saddie-node bifurcation between the
invariant curve and a new kind of imvariant «ring-shaped» unstable (saddle} set. We also
investigate the mechanisms of interior and basin-boundary crises occurring to the strange
nonchactic and chaotic attractors in the model system. It is shown that a collision of the
strange nonchaotic attractor or chaotic attractor with the ring-shaped unstable set may cause
an interior or basin-boundary crisis, depending upon the present structure of the basin of the
aftractor,

Introduction

In recent years, dynamical transitions in the quasiperiodically forced systems have
become the topic of instant interest of the researches. Much atiention has been paid to
investigation of different routes of transition from regular quasipericdic motion to strange
nonchaotic attractor (SNA) [1,2] and observation of crises of the SNAs and chaotic
attractors {CAs). However, until the recent moment, the mechanisms of many dynamical
transitions still remained unclear.

An intermittent route from smooth torus to SNA was first reported in the work [3],
where the quasiperiodically forced logistic map was considered as a representative model.
The mechanism of this transition was explained in the recent work {4]. In the last paper,
authors used the methods of rational approximations (RAs) as the tool of investigation. In
terms of RAs, they observed a new kind of invariant «ring-shaped» unstable sets, which
are different from smooth unstable tori of the system. It was shown, that the intermittent
transition from smooth torus to SNA in the quasiperiodically forced noninvertible 1D
maps occurs via phase-dependent saddle-node bifurcation (SNB) between the invariant
curve and the ring-shaped unstable set. Authors also discussed a possible role of the ring-
shaped unstable sets in the mechanisms of the band-merging, interior and basin-boundary
crises of strange atiractors, which were observed in ref. [5].

In present paper we consider the quasiperiodically forced Henon map [5], which
can be regarded as the model of Poincare map of a hypothetical nonlinear oscillator
driven by external biharmonic signal with irrational rate of frequencies. We investigate
the underlying mechanisms of the intermittent transition to SNA and interior and basin-
boundary crises, which occur to regular and strange attractors in this system.
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1. Ring-shaped unstable sets and intermittent route to SNA

We consider the model system in the form as in ref. [5]:

- 2
x  =l-ax*+y +ecosZng,

Voo = 02X, (1)
8, =8+, (modl),

where 8€S'. The frequency w is traditionally set to be the reciprocal of the golden mean
value: w=(512-1)/2.

The phase diagram of the system (1) is shown in the fig. 1, a. In order to
characterize the dynamical regimes in any point of the diagram, we compute the
nontrivial Lyapunov exponents k,, and the phase sensitivity exponent 8, the last one
measures sensitivity with respect to the phase of the quasiperiodic forcing and
characterizes strangeness of the attractor [6]. A smooth attracting invariant curve is
characterized by the values &, ,<0 and 8=0. The region where it exists is denoted by T.
The region of double attracting curve is denoted by 27. On the other hand, the chaotic
attractor has one positive Lyapunov exponent A,>0 (h,<0); its region is shown in black.
On the border between regions of regular and chaotic dynamics, SNA exists, which has
negative Lyapunov exponents (x, ,<0} and positive phase sensitivity exponent (&>0). The
corresponding regions are denoted in gray and dark gray. In the thin gray region SNA
appears due 10 intermitient mechanism, while in the dark gray regions other scenarios of
transition to SNA {(gradual fractalization or tori collision) take place. Note, that the
chaotic region is separated into two parts by «tongue» of quasiperiodic regimes. Such
structure is typical for the phase diagrams of the quasiperiodically forced period-doubling
systems [4]. The intermittent transition to SNA (denoted by route a in the fig. 1, @) occurs
along the border of the upper chaotic region.

At @=0.95 and £=0.4761 the system (1) has a smooth attracting invariant curve,
shown in fig. 1, b. Besides this attracting curve, there is a saddle invariant curve, which
originally appeared together with the attracting one due to quasiperiodic saddle-node
bifurcation. The structure of the phase space is determined by the 2D invariant manifolds
associated with the saddle curve. In the fig. 1, ¢ we see the section of the phase space by
the plane Bo=0.2. The stable manifold W3 of the saddle invariant curve determines the
boundary for the basin (shown in gray) of the attracting curve.

Let us proceed to the mechanism of the intermittent transition to SNA, As the
parameter ¢ passes critical value ¢"=0.476148155, the smooth attracting curve suddenly
disappears, and SNA arises in some wide area of the phase space (see fig. 1, d for
£=0.476149). Now, the dynamics consists of laminar phases of motion in vicinity of the
destroyed invariant curve and bursts away from it. Note, that the profile of the newly-
born intermittent SNA is determined by the unstable manifold WY of the saddle invariant
curve. In order to illustrate this, in fig. 1, ¢ we consider a section of the phase space by the
plane 8,=0.2, and draw a projection of the segment of SNA from the interval
8€([0,-0.01,0,+0.01] upon this section. One can see, that the points of attractor {denoted
by black dots in the fig. 1, ) are disposed along the unstable manifold WV,

In order to explain the underlying mechanisms of the transition described above,
we use the method of rational approximations {(RAs). For the case of golden mean value
of w, the RAs can be obtained as the ratios of the Fibonacei numbers: w,=F, /F,, where
the sequence of [F,] is determined as F, =F +F,  with Fy;=0 and F =1. Instead of the
Quasiperiodically forced system (1), we consider an infinite sequence of periodically
forced maps with rational frequencies w,; the properties of the original system can be
obtained in the quasiperiodic limit at k—«. For the RA of level &, each periodically
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Fig. 1. @ - The phase diagram of the system (1} (here and thereafter we set the parameter 4=0.1). Reguiar,
chaolic, SNA, and divergence regimes are shown in light gray, black, gray (or dark gray), and white,
respectively. To show the existence of intermittent SNA (gray), a small segment near { a£)=[0.95,7] is
magnified. Solid line denotes the doubling bifurcation of invariant curve. Due fo interaction with the ring-
shaped unstable sets borm when passing the dashed line L, different dynamical transition such as
intermitlency {route a), interior (routes b and ¢), and basin-boundary {routes d, e and ) crises can occur,
& - The smooth attractor (black) and saddle invariant curve {gray} ate=0.953 and e=0.4761; ¢ - the section
of the phase space by plane 8,=0.2 at the sume parameter values; the basin of atractor is shown in gray;
the black dot embedded into unsiable manifold WV is a section of smooth attractor. d - SNA at a=0.95
and £=0.476149; ¢ - the plane B,=0.2 at thc same parameter values. Black dots distributed along
denote projection of SNA from the mnterval GE[GO—O.OI,B(ﬁU‘Ol] on the plane
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Fig. 2. The level 7 of RAs (,=8/13); the value of parameter a is always set to be @=0.95. a - The

attracting invariant curve and the newly-born «ring-shaped» unstable set at £=0.3795. Here and thereafter

the stable periodic orbits are shown in black, while the unstable ones are shown in gray. b - The typical

structure of the ring-shaped unstable set after appearance of a chaotic component at €=0.383. ¢, d - The

smooth aitracting invariant curve and the ring-shaped unstable set on the threshold of phase-dependent
SNB at €=0.4585; e, f - the destruction of the smooth attractor via phase-dependent SNB (£=0.4588);

&, h - the appearance of intermittent chaotic component of approximation of the SNA §=0.4610)
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forced map has periodic or chaotic orbits, which depend upon the initial phase 8,. As 6,
varies within the interval [0, 1/F,), the union of such orbits forms full approximations of
the attractors and saddles of the system (1). For instance, an approximation of a smooth
attracting invariant curve at k-th level represents a uniform set of stable periodic orbits of
period F,. For the case of SNA, the rational approximation may contain orbits of different
periods and even chaotic ones. An existence of bifurcations in the structure of rational
approximation is a characteristic of strangeness of the attractor.

In terms of RAs, we observe invariant «ring-shaped» unstable sets [4], which are
different from smooth unstable invariant curves of the system (1). When passing the
dashed curve L in fig. 1, a, the ring-shaped unstable set of periodic orbits appears due to
phase-dependent saddle-node bifurcation (SNB). At the level of approximation k=7 such
set is composed of F,=13 small rings (see fig. 2, a). These rings are formed by stable
(black) and saddle (gray) F,-periodic orbits. Originally, the rates of stable and unstable
periodic orbits in the ring-shaped set are equal. However, as the parameter ¢ slightly
increases, the chaotic attractor appears via period-doubling of stable periodic orbits, and
then it disappears due to collision with the saddle F.-periodic orbit, see fig. 2, b. In the
last figure one can see that the rate of stable periodic orbits in the ring-shaped set has
contracted, and the unstable (saddle) orbits have become dominant. Therefore we refer
such set to as the ring-shaped unstable set of orbits. At sufficiently large values of ¢, the
shape of the rings changes and becomes more complicated (see fig. 2, c; more details on
the ring-shaped unstable sets are given in ref. [4]).

As we approach the border of intermittent transition on the diagram, the ring-
shaped unstable set come closer to the attracting invariant curve (fig. 2,c). Then, at some
critical value e=¢,(V [¢,(1)= 0.458706], the phase-dependent SNB between invariant
curve and the saddle component of the ring-shaped unstable set occurs, as it is shown in
fig. 2, d. This bifurcation destroys the invariant curve. From this moment, the attractor of
the system becomes nonsmooth, since its approximation contains bifurcations and chaotic
regimes. As the parameter e increases further, the chaotic attractor, which was originally
associated with the ring-shaped unstable set, undergoes interior widening at next critical
value e=¢,@[e,P=0.459639], and the intermittent chaotic component of the
approximation appears, as it is shown in fig. 2, e. Thus, in terms of RAs the intermittent
transition to SNA consists of two stages: the phase-dependent SNB and widening of the
chaotic component of approximation of the SNA. However, in the quasiperiodic limit (at
k—) the distance Ae [=¢, -, ?] between two transition points tends to zero as Ae,|~F %,
where a=0.8, and the both values ¢,(?) converge to ¢".

2. The new mechanisms of basin-boundary and interior crises

Collision of the attractor with unstable orbit lying on the basin boundary causes
crisis, which destroys the attractor [5]. On the other hand, collision with unstable orbit
inside the basin gives rise to abrupt widening of the attractor known as «interior» crisis.
Previously, the mechanisms of basin-boundary and interior crises due to interaction with
periodic and quasiperiodic orbits [5] were known. We found new mechanisms of crises of
SNAs and CAs in the quasiperiodically forced maps due to collision with the ring-shaped
unstable set. The dynamical transitions a-c¢ near the «tongue» of quasiperiodic regimes
(fig. 1, a) are associated with interior crises of the attractors: when a smooth attractor,
SNA or CA collides with the ring-shaped unstable set lying inside the basin, then
intermittency or widening crisis occurs. On the other hand, routes d, e, and f in the
«tongue» correspond to the basin-boundary crises of a smooth attractor, SNA and CA,
respectively.

For illustration, we consider the mechanism of basin-boundary crisis corresponding
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Fig. 3. a - The SNA on the threshold of crisis (route e) at paramter values a=1.0925,¢£=0.41; b - section of
the phase space by plane 8,=0.41 at the same parameter values; black dots distributed alongW U denote
projection of SNA from interval 6€[6,-0.01,8,+0.01] on the section. The rational approximation of level
k=7 for ¢ - the SNA and the ring-shaped unsta%lc set on the threshold of crisis ata=1.067, ¢é=0.41, and e -
the «remnant» of SNA after crisis at @=1.069, £=0.41. The figures 4 and f represent the enlarged
fragments of ¢ and e, respectively

to route e. The SNA (fig. 3, a) is disposed along the unstable manifold WY, while the
stable manifold W5 determines its basin (fig. 3, ). Due to homoclinic intersection of W*
and WY, the SNA has fractal-like basin boundary. In terms of RAs, the crisis occurs due
to collision of the chaotic component of approximation of SNA with the ring-shaped
unstable set (see fig. 3, c-f). After such collision, the «gap» in approximation opens,
where the trajectories exhibit divergence.

3. Conclusion

We studied dynamical transitions associated with intermittent behavior in the
quasiperiodically forced Henon map, using the method of rational approximations. It was
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shown, that intermittent transition to SNA, as well as the interior and basin-boundary
crises of strange attractors, typically occur due to collision of the attractor with a new
kind of invariant «ring-shaped» unstable sets. These sets, which in the quasiperiodic limit
apparently correspond to a fractal set of chaotic saddles, play a central role in dynamical
transitions in the quasiperiodically forced systems.
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O INIEPEXOIJAX YEPE3 HEPEMEXAEMOCTD
B KBASHINNEPHOJUYECKH BO3BYXKIAEMBIX OTOBPAXEHHUAX

Sang-Yoon Kim, Woochang Lim, Axexceli Kaanun

Hccnenyrorcs MeXaHusMbl JIMHAMMYECKHMX MEPEXOfOB, CONPOBOXMIAIOLIMXCH
nepeMekaiolMMcs NIOBEIeHHEM, B KBa3HIEPHOLHYECKH BO30YXKAaeMOM OTOOpaXKeHHH
PHo. Ha ocHoBe MeToua pallMOHAJILHON AMNPOKCHMALMK [MOKA3aHO, YTO Mepexoj OT
rnajkol MNpPUTATHBANONIEH HHBAPHAHTHOH KPHBOM K CTPAaHHOMY HCXAOTHYECKOMY
ATTPAKTOPY Hepe3 MepeMeskaeMOCTh NPOUCXOIUT Orarofaps Ha3o3aBHCHMOM CEMIO-
y3n10BOH GUbypKauMK¥ MEXKIY HHBAPMaHTHOH KPHBOl M HEYCTONYHBBEIM (CEIIOBLIM)
WHBAPHAHTHBIM MHOXECTBOM, HMEHYEeMLIM B COOTBETCTBMM CO CBOEH TONOIOrHew
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«KOABLLEOOpa3HbIM MHOXKECTBOM HEYCTOH4YMBLIX opbuT». Mccnenosanbl GugypKalMoH-
HbI€ MEXaHH3Mbl KPU3UMCOB CTOJKHOBEHHKA ¢ TpaHuLel 6acceiHa M BHYTPEHHHX KPH3HCOB
JUIS CTPAHHBIX HEXAOTHYECKHX M XaOTHYECKHX aTTpakKTOPOB MOJENLHOH CHCTEMBI.
TToxa3zaHo, 4YTO CTONKHOBEHHE aTTpakTopa ¢ KOAbUEOOpa3HbIM MHOXECTBOM
HEYCTOMYHRLIX OpPOMT MOXET BBI3BaTh BHYTPEHHHMH KpH3UC HIH paspylleHHe
aTTPAaKTOpa B 3aBUCHMOCTH OT YCTPORCTBA ero 6acceia NPUTAXEHHUS.
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