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On the Consequence of Blow-Out Bifurcations
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We investigate the consequence of a blow-out bifurcation of a chaotic attractor in an invariant
line in a family of piecewise linear planar maps by changing a positive parameter β controlling
the reinjection. Through a supercritical blow-out bifurcation, a chaotic or hyperchaotic attractor,
exhibiting on-off intermittency, is born, depending on the value of β. For large β, a hyperchaotic
attractor with a positive second Lyapunov exponent appears. However, as the parameter β decreases
and passes a threshold value β∗, a transition from hyperchaos to chaos occurs. Hence, for 0 < β < β∗

a chaotic attractor with a negative second Lyapunov exponent is born. The sign of the second
Lyapunov exponent of the newly-born intermittent attractor is found to be determined through
competition between its laminar and bursting components. When the “strength” (i.e., a weighted
second Lyapunov exponent) of the bursting component is larger (smaller) than that of the laminar
component, a hyperchaotic (chaotic) attractor appears.
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I. INTRODUCTION

Many dynamical systems of interest possess an invari-
ant subspace of the whole phase space and exhibit in-
teresting dynamical behavior. For example, this situa-
tion occurs naturally in the synchronization of chaotic
oscillators [1–4] and in systems with spatial symmetries
[5]. Particularly, the phenomenon of chaos synchroniza-
tion has attracted much attention because of its potential
practical applications (e.g., see Ref. 6).

An important problem in the field of chaos synchro-
nization concerns the stability of a chaotic attractor in
the invariant subspace S [7,8]. When the Lyapunov ex-
ponents corresponding to perturbations transverse to S
are all negative, the chaotic state in S is stable and is an
attractor in the whole phase space. However, as a cou-
pling parameter passes a threshold value, the chaotic at-
tractor can become transversely unstable (i.e., its largest
transverse Lyapunov exponent becomes positive) via a
blow-out bifurcation [5,9–11]. Depending on the global
dynamics, two kinds of blow-out bifurcations may oc-
cur. For the case of a supercritical (or soft) blow-out
bifurcation, a new attractor appears and exhibits inter-
mittent bursting, called on-off intermittency [12–20];
long periods of motion near S (off state) are occasion-
ally interrupted by short-term burstings away from S (on
state). On the other hand, for the case of a subcritical
(or hard) blow-out bifurcation, an abrupt disappearance
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of the chaotic state occurs, and typical trajectories start-
ing near S are attracted to another distant asynchronous
attractor (or infinity).

Here, we are interested in the type of intermittent at-
tractors born via supercritical blow-out bifurcations. In
particular, we are interested in whether the intermittent
bursting attractor born at the blow-out bifurcation is
hyperchaotic (i.e., has more than one positive Lyapunov
exponent) or not. Examples of both hyperchaotic attrac-
tors [9,21,22] and chaotic attractors (i.e., an attractor
with only one positive Lyapunov exponent) [9,23] were
given in previous works. However, the dynamical ori-
gin for the appearance of such hyperchaotic and chaotic
bursting attractors remains unclear.

In this paper, we study the consequence of blow-out bi-
furcations in a family of piecewise linear planar maps by
changing a parameter β (> 0) controlling the reinjection.
For large β, a hyperchaotic attractor is born through a
supercritical blow-out bifurcation. However, for a value
of β smaller than a threshold value β∗, a chaotic attrac-
tor appears. In Sec. II, we investigate the mechanism
for the transition from hyperchaos to chaos. A typical
trajectory on the newly-born attractor, exhibiting on-
off intermittency, may be decomposed into laminar (i.e.,
nearly constant) and bursting components. The type
of the intermittent attractor is found to be determined
through competition between its laminar and bursting
components. When the “strength” (i.e., its weighted
second Lyapunov exponent) of the bursting component
is larger (smaller) than that of the laminar component,
an intermittent hyperchaotic (chaotic) attractor appears.
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Finally, a summary is given in Sec. III.

II. TYPE OF INTERMITTENT
ATTRACTORS BORN VIA BLOW-OUT

BIFURCATIONS

We investigate the type of intermittent attractors born
through blow-out bifurcations in a three-parameter fam-
ily of piecewise linear planar mappings of [0, 1] × R to
itself [9]:

T : xn+1 = f(xn), yn+1 = g(xn, yn); (1)

f(x) =
{
x/α for 0 ≤ x ≤ α,
(x− α)/(1− α) for α < x ≤ 1, (2)

g(x, y) =

 γy for y < 1 and 0 ≤ x ≤ α,
y/γ for y < 1 and α < x ≤ 1,
1 + β(1− y) for y ≥ 1,

(3)

where xn and yn are state variables of the driving and the
response subsystems at a discrete time n, respectively,
and the parameters are α ∈ (0, 1), γ > 0, and β ∈ R.
We also assume a symmetry y → −y to define the map
in the lower half plane.

We note that the map T has an invariant line y = 0,
on which a chaotic attractor exists. The longitudinal
stability of trajectories on the chaotic attractor against a
perturbation along the invariant line y = 0 is determined
by its longitudinal Lyapunov exponent,

σ|| = −α lnα− (1− α) ln(1− α), (4)

which is just the Lyapunov exponent in the uncoupled
1D map f . On the other hand, the transverse stability
of the chaotic attractor against a perturbation across the
invariant line y = 0 (i.e., a perturbation along the y-axis)
is determined by its transverse Lyapunov exponent,

σ⊥ = ε ln γ, ε = 2α− 1. (5)

Without loss of generality, we can assume that γ > 1.
Then, for negative ε, the chaotic attractor on the in-
variant line y = 0 becomes transversely stable because
its transverse Lyapunov exponent σ⊥ is negative. How-
ever, as ε is increased and passes a threshold value ε∗
(= 0), the transverse Lyapunov exponent σ⊥ becomes
positive. Consequently, when passing ε∗, the chaotic at-
tractor becomes transversely unstable; then, a supercrit-
ical (subcritical) blow-out bifurcation occurs for positive
(negative) β [9]. Hereafter, we investigate the conse-
quence of supercritical blow-out bifurcations by varying
the parameter β (> 0) controlling the reinjection.

To determine the type of an attractor born through
a supercritical blow-out bifurcation, its Lyapunov expo-
nents are numerically calculated as follows. We choose
a random initial orbit point with uniform probability in
the range of x ∈ (0, 1) on a line y = δ (= 10−3) near

Fig. 1. Plots of the (a) first (σx) and the (b) second (σy)
largest Lyapunov exponents of the intermittent attractors
newly born through supercritical blow-out bifurcations versus
ε for γ = 1.25 with β = 1.4 (up triangles), 0.9 (squares), 0.8
(crosses), 0.7 (circles), and 0.5 (down triangles). The length
of a trajectory segment for the calculation of σx and σy is
L = 5×107. For reference, the longitudinal and the transverse
Lyapunov exponents of the chaotic attractor on the invariant
line y = 0, σ|| and σ⊥, are represented by dashed lines in (a)
and (b), respectively. The data for σy are well fitted with
the straight solid lines, and their slopes for β = 1.4, 0.9, 0.8,
0.7, and 0.5 are 0.45, 0.15, 0, −0.13, and −0.46, respectively.
For ε = 0.02, examples of (c) hyperchaotic (σx = 0.693 and
σy = 0.009) and (d) chaotic (σx = 0.693 and σy = −0.0092)
attractors are given for β = 1.4 and 0.5, respectively. In both
(c) and (d), (x0, y0) = (0.5, 0.01), 5×103 points are computed
before plotting, and the next 5× 104 points are plotted.

the invariant line y = 0 and follow the trajectory until
its length L becomes 5 × 107 [24]. Then the Lyapunov
exponents, σx and σy, of the trajectory segment with
length L against perturbations along the x and y direc-
tions are given by

σx =
1
L

L−1∑
n=0

r(x)
n , r(x)

n = ln |fx(xn)|, (6)

σy =
1
L

L−1∑
n=0

r(y)
n , r(y)

n = ln |gy(xn, yn)|, (7)

where the subscript i (i = x, y) in f and g denotes a
partial derivative with respect to the variable i.

Figures 1(a) and 1(b) show σx and σy of the attrac-
tors born through blow-out bifurcations for β = 1.4 (up
triangles), 0.9 (squares), 0.8 (crosses), 0.7 (circles), and
0.5 (down triangles). Note that the Lyapunov exponents
σx and σy correspond to the first and the second largest
Lyapunov exponents, respectively. (Hereafter, σx and
σy will be referred to as the first and the second Lya-
punov exponents, respectively.) Due to the skew-product
structure of the map T , the first Lyapunov exponent σx
is just the longitudinal Lyapunov exponent σ|| of the
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Fig. 2. Time series of the transverse variable y, repre-
senting the deviation from the y = 0 line, for γ = 1.25 and
ε = 0.02 with (a) β = 1.4 and (b) β = 0.5. In both cases, the
initial orbit point is (x0, y0) = (0.5, 0.01).

chaotic attractor on the invariant line y = 0, indepen-
dently of β. For this case, the type of the newly born
attractor is determined through the sign of the second
Lyapunov exponent σy. The data for σy are well fit-
ted with straight lines; hence, they scale linearly with
ε [9]. For β = 1.4, the attractor is hyperchaotic with
σy > 0. On the other hand, as β is decreased the magni-
tude of the slope of σy decreases, eventually it becomes
zero for a threshold value β∗ (= 0.8), and then the slope
becomes negative [see Fig. 1(b)]. Hence, a chaotic at-
tractor with σy < 0 appears for β < β∗. As examples
for ε = 0.02, Figs. 1(c) and 1(d) show the hyperchaotic
(σx = 0.693 and σy = 0.009) and the chaotic (σx = 0.693
and σy = −0.0092) attractors when β = 1.4 and 0.5, re-
spectively.

As shown in Fig. 2, the time series of the trans-
verse variable y of typical trajectories on the newly born
attractors exhibits on-off intermittency, in which long
episodes of nearly constant evolution are occasionally
interrupted by short-term bursts. To characterize the
on-off intermittent time series, we use a small quantity
y∗ for the threshold value of y such that for y < y∗,
the signal is considered to be in the laminar (off) state
and for y ≥ y∗, it is considered to be in the bursting
(on) state. So far, the statistical properties of such on-
off intermittent attractors have been well characterized

through investigation of the distribution of the laminar
lengths and the scaling of the average laminar length and
the average bursting amplitude [14–20].

However, although examples were given in previous
works (e.g., see Refs. 9 and 21-23), the dynamical origin
of the hyperchaotic and chaotic intermittent attractors
through blow-out bifurcations remains unclear. Hence,
we investigate the mechanism for the transition from hy-
perchaos to chaos by varying the parameter β. As ex-
plained above, a typical trajectory, exhibiting on-off in-
termittency, may be decomposed into its laminar and
bursting components. Then, the second Lyapunov ex-
ponent σy of an attractor [see Eq. (7) for the second
Lyapunov exponent σy of a trajectory segment] can be
given by the sum of the two weighted second Lyapunov
exponents of the laminar and the bursting components,
Λly and Λby:

σy = Λly + Λby (8)

= Λby − |Λly|, (9)

where the laminar component always has a negative
weighted second Lyapunov exponent (Λly < 0). Here, the
weighted second Lyapunov exponent Λiy for each compo-
nent (i = l, b) is given by the product of the fraction,
µi, of time spent in the i state and its second Lyapunov
exponent σiy, i.e.,

Λiy = µiσ
i
y; µi =

Li

L
,

σiy =
1
Li

∑
n∈ i state

′
r(y)
n (i = l, b), (10)

where Li is the time spent in the i state for a trajectory
segment of length L and the primed summation is per-
formed in each i state. As can be seen in Eq. (9), the
sign of σy is determined through competition between
the laminar and the bursting components. Hence, when
the “strength” (i.e., the weighted second Lyapunov ex-
ponent Λby) of the bursting component is larger (smaller)
than that (i.e., |Λly|) of the laminar component, an in-
termittent hyperchaotic (chaotic) attractor appears. We
also note that the weighted Lyapunov exponents Λly and
Λby depend on the threshold value y∗, although σy is
independent of y∗. With decreasing y∗, Λly decreases
to zero because the time µl spent in the laminar state
goes to zero; thus, Λby [= |Λly| + σy] converges to σy.
Here, we again emphasize that σy, determining the type
of intermittent attractors, depends only on the differ-
ence between Λby and |Λly|, which is independent of y∗

[see Eq. (9)]. Hence, although Λl(b)y depends on y∗, the
conclusion as to the type of intermittent attractors is
independent of y∗. Hereafter, we fix the value of the
threshold value of y at y∗ = 10−2.

Figures 3(a) and 3(b) show the weighted second Lya-
punov exponents of the laminar and the bursting compo-
nents, Λly and Λby, respectively. As mentioned above, the
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Fig. 3. Plots of the weighted second Lyapunov exponents
Λly and Λby of the (a) laminar and the (b) bursting compo-
nents versus ε for γ = 1.25 and y∗ = 10−2 with β = 1.4 (up
triangles), 0.9 (squares), 0.8 (crosses), 0.7 (circles), and 0.5
(down triangles). Straight line segments between neighboring
data symbols are plotted only to guide the eye. For small ε
Λly is nearly the same, independently of β, while Λby decreases

with decreasing β. Eventually, for β = β∗ (= 0.8) Λby = |Λly|.
Hence, for β > β∗ Λby > |Λly|, while for β < β∗ Λby < |Λly|.

type of newly born intermittent attractor is determined
through competition between the laminar and the burst-
ing components as follows. We first note that for small
ε, Λly is nearly the same, independently of β. On the
other hand, Λby decreases with decreasing β. Eventually,
for a threshold value β = β∗ (= 0.8), the strength of
the laminar and bursting components becomes balanced
(i.e., Λby = |Λly|). Consequently, for β > β∗, there is a
hyperchaotic attractor with σy > 0 because the burst-
ing component is dominant (i.e., Λby > |Λly|), while for
β < β∗, there is a chaotic attractor with σy < 0 because
the laminar component is dominant (i.e., Λby < |Λly|).

The fraction µl(b) of the laminar (bursting) time (i.e.,
the time spent in the laminar (bursting) state) and the
second Lyapunov exponent σl(b)y of the laminar (burst-
ing) component are also given in Fig. 4. For small ε
both µl and σly are nearly independent of β, and hence
the weighted second Lyapunov exponent Λly (= µlσ

l
y)

becomes nearly the same, independently of β. On the
other hand, σby decreases with decreasing β, although
its fraction µb (= 1 − µl) of the bursting time is nearly
independent of β. Consequently, the weighted second
Lyapunov exponent Λby (= µbσ

b
y) decreases with decreas-

ing β. Thus, for a threshold value β∗, Λby = |Λly|; then,

Fig. 4. Plots of (a) [(c)], the fraction µl(b) of the laminar
(bursting) time, and (b) [(d)], the second Lyapunov exponent

σ
l(b)
y of the laminar (bursting) component, versus ε for γ =

1.25 and y∗ = 10−2 with β = 1.4 (up triangles), 0.9 (squares),
0.8 (crosses), 0.7 (circles), and 0.5 (down triangles). Straight
line segments between neighboring data symbols are plotted
only to guide the eye.

a transition from hyperchaos to chaos occurs.
We believe that the transition we have found from a

hyperchaotic to a chaotic intermittent attractor can be
understood as follows: After the blow-out bifurcation,
the intermittent attractor includes an infinite number of
unstable periodic orbits that are off the invariant line
y = 0. Some of these unstable periodic orbits have two
positive Lyapunov exponents, and some others have only
one positive Lyapunov exponent. We conjecture that
as β is decreased, the “strength” of the group of asyn-
chronous unstable periodic orbits with negative second
Lyapunov exponents might increase, which may result in
the observed decrease in σby.

III. SUMMARY

We have investigated the type of intermittent attrac-
tors born via blow-out bifurcations in a family of piece-
wise linear planar maps by varying the parameter β con-
trolling the reinjection. When β is larger than a thresh-
old value β∗, an intermittent hyperchaotic attractor with
a positive second Lyapunov exponent is born, while for
β < β∗ an intermittent chaotic attractor with a nega-
tive second Lyapunov exponent appears. The type of
a newly-born on-off intermittent attractor is found to
be determined via competition between its laminar and
bursting components. If the bursting (laminar) com-
ponent becomes dominant, then an intermittent hyper-
chaotic (chaotic) attractor appears.
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