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Global Effect of Transverse Bifurcations in Coupled Chaotic Systems
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We investigate the global effect of transverse bifurcations in symmetrically coupled one-
dimensional maps. A transition from strong to weak synchronization occurs via a first transverse
bifurcation of a periodic saddle embedded in a synchronous chaotic attractor (SCA). For the case
of a supercritical transverse bifurcation, a soft bubbling transition occurs. On the other hand, a
subcritical transverse bifurcation leads to a hard transition. The global effect of such subcritical
hard bifurcations are found to depend on whether they may or may not induce a “contact” be-
tween the SCA and its basin boundary. For the case of a “contact” bifurcation, an absorbing area,
surrounding the SCA and acting as a bounded trapping vessel, disappears; hence, basin riddling
occurs. However, for the case of a “non-contact” bifurcation, such an absorbing area is preserved;
hence, hard bubbling takes place. Through a detailed numerical analysis, we give explicit examples
for all kinds of transverse bifurcations leading to bubbling and riddling.
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I. INTRODUCTION

Recently, the phenomenon of synchronization in cou-
pled chaotic systems has become a field of intensive re-
search. When identical chaotic systems synchronize, a
chaotic motion occurs on an invariant subspace of the
whole phase space [1–4]. Particularly, this type of chaos
synchronization has attracted much attention because of
its potential practical applications (e.g., see Ref. 5).

An important problem in this field concerns stability
of chaos synchronization with respect to a perturbation
transverse to the invariant subspace [6]. If a synchronous
chaotic state on the invariant subspace is transversely
stable, then it may become an attractor in the whole
phase space. The properties of the transverse stability of
a synchronous chaotic attractor (SCA) are intimately as-
sociated with transverse bifurcations of periodic saddles
embedded in the SCA [7–13]. If all such periodic saddles
are transversely stable, then the SCA becomes asymptot-
ically stable (i.e., Lyapunov stable and attracting in the
topological sense); hence, we have “strong” synchroniza-
tion. However, as the coupling parameter passes through
a threshold value, a periodic saddle first becomes trans-
versely unstable through a local bifurcation. After this
first transverse bifurcation, trajectories may be locally
repelled from the invariant subspace when they visit the
neighborhood of the transversely unstable periodic re-
peller. Thus, loss of strong synchronization begins with
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such a first transverse bifurcation of an embedded peri-
odic saddle; then, we have “weak” synchronization.

However, the fate of locally repelled trajectories
through the first transverse bifurcation depends on
whether there exists an absorbing area, controlling the
global dynamics, inside the basin of attraction [10–14].
If there exists an absorbing area, surrounding the SCA
and acting as a bounded trapping vessel, locally repelled
trajectories are restricted to move within the absorbing
area and exhibit intermittent bursting from the invariant
subspace. For this case, the SCA is transversely stable
because its transverse Lyapunov exponent is negative.
Hence, the burst will tend to stop. However, in a real
situation, a small parameter mismatch or noise results
in a continual sequence of intermittent bursts, called at-
tractor bubbling [15–17]. Thus, in the presence of an
absorbing area, a bubbling transition occurs through the
first transverse bifurcation. For a soft bubbling transi-
tion, the maximum bursting amplitude increases gradu-
ally from zero with increasing coupling parameter, while
for a hard bubbling transition the bursts appear abruptly
with large amplitude [16]. However, if such an absorbing
area does not exist, the locally repelled trajectories will
go to another attractor (or infinity). Consequently, the
basin of attraction becomes riddled with a dense set of
“holes” belonging to the basin of another attractor (or
infinity) [18]. Thus, in the absence of an absorbing area,
a riddling transition takes place via the first transverse
bifurcation. Furthermore, in the presence of parame-
ter mismatch or noise, the SCA with a riddled basin is
transformed into a chaotic transient with a finite lifetime
[16]. Note that the weakly stable SCA exhibiting bub-
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bling or riddling is sensitive to parameter mismatch and
noise. Recently, we characterized such parameter and
noise sensitivity by introducing new quantifiers, called
the parameter and noise sensitivity exponents [19].

For the study of chaos synchronization, two coupled
identical one-dimensional (1D) logistic maps, exhibiting
period doublings, are often used as a model [9–13]. Both
the symmetric [9–11] and the asymmetric [12, 13] cou-
pling cases have been considered. In this paper, we inves-
tigate the global effect of the first transverse bifurcations
in two symmetrically coupled 1D maps. In Sec. II. 1, we
first introduce two symmetrically coupled 1D maps and
discuss the overall transverse stability of the SCA based
on a phase diagram obtained through a detailed numer-
ical analysis. Then, we investigate the global effect of
the first transverse bifurcation of an embedded periodic
saddle through which a transition from strong to weak
synchronization occurs. For the case of a supercritical
transverse bifurcation, the unstable manifold of an asyn-
chronous saddle born via the supercritical bifurcation
forms an absorbing area within which locally repelled
trajectories from the diagonal are restricted. Hence, a
supercritical transverse bifurcation leads to soft bubbling
[10], as discussed in Sec. II. 2. On the other hand, for the
case of a subcritical transverse bifurcation, a hard tran-
sition occurs [10]. In order to see the global effect of the
subcritical hard bifurcation, we try to find a simple cri-
terion for determination of whether or not an absorbing
area is preserved via the subcritical transverse bifurca-
tion.

Two kinds of subcritical transverse bifurcations are
thus found, depending on where the asynchronous re-
peller (with two unstable directions) that causes trans-
verse instability of a synchronous saddle lies. For the
first case, such an asynchronous repeller lies at the basin
boundary of the SCA. The unstable manifold of the asyn-
chronous repeller forms an absorbing area surrounding
the SCA. When a control parameter passes a threshold
value, a synchronous saddle becomes transversely unsta-
ble by absorbing the asynchronous repeller lying at the
basin boundary. Then, the SCA makes contact with its
basin boundary at the point(s) of the synchronous sad-
dle, and the absorbing area disappears. Hence, a riddling
transition occurs. Hereafter, these bifurcations will be
referred to as subcritical “contact” bifurcations. For the
second case, an asynchronous repeller, associated with
the transverse destabilization of the synchronous saddle,
lies strictly inside an absorbing area, in contrast to the
first case. As a control parameter passes a threshold
value, a synchronous saddle loses its transverse stabil-
ity through absorption of the asynchronous repeller ly-
ing inside the absorbing area. For this case, the origi-
nal absorbing area with a finite transverse width is pre-
served because there is no contact between the SCA and
its basin boundary. Hence, a hard bubbling transition
takes place. Hereafter, these bifurcations will be called
subcritical “non-contact” bifurcations. Using this simple
“contact” criterion, we investigate the global effect of the

subcritical transverse bifurcations in Sec. II. 3. Finally,
a summary is given in Sec. III.

II. GLOBAL EFFECT OF THE FIRST
TRANSVERSE BIFURCATIONS

We first introduce two symmetrically coupled 1D maps
and discuss the overall transverse stability of the SCA
based on the phase diagram for chaos synchronization in
Sec. II. 1. Then, the global effect of the first trans-
verse bifurcations leading to a transition from strong
to weak synchronization is investigated. A supercriti-
cal transverse bifurcation leads to soft bubbling. On the
other hand, through a subcritical transverse bifurcation,
a hard transition occurs. Here, we present a simple con-
tact criterion to determine the global effect of such sub-
critical hard bifurcations. For the case of a contact bifur-
cation, a riddling transition occurs while for the case of a
non-contact bifurcation, a hard bubbling transition takes
place. With explicit examples, we investigate the global
effect of the supercritical and the subcritical transverse
bifurcations in Secs. II. 2 and II. 3, respectively.

1. Transverse Stability of the SCA

We consider two symmetrically coupled identical 1D
maps T ,

T :
{
xt+1 = f(xt) + c (yt − xt),
yt+1 = f(yt) + c (xt − yt),

(1)

where xt and yt are state variables of the subsystems at
a discrete time t, the uncoupled dynamics (c = 0) in each
subsystem is governed by the 1D map f(x) = 1− ax2, a
is the control parameter of the 1D map, and c is a cou-
pling parameter. This coupled map T has an exchange
symmetry because it is invariant under the exchange of
coordinates x↔ y. The set of points which are invariant
under the exchange operation forms an invariant sym-
metry line y = x. If an orbit lies on the invariant line, it
is called a synchronous orbit because the two state vari-
ables xt and yt become same for all t; otherwise, it is
called an asynchronous orbit.

We also note that the coupled map T is non-invertible
because its Jacobian determinant det(DT ) (DT is the
Jacobian matrix of T ) becomes zero along the critical
curve L0 = {(x, y) ∈ R2 : (2ax + c)(2ay + c) − c2 = 0}.
Critical curves of rank k, Lk (k = 1, 2, . . .), are then
given by the images of L0 [i.e., Lk = T k(L0)]. Segments
of these critical curves can be used to bound a com-
pact region of the phase space that acts as a trapping
bounded vessel, called an absorbing area A, inside which
trajectories starting near the diagonal are confined [14].
Furthermore, the boundary of an absorbing area can be
obtained by the union of segments of the critical curves
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Fig. 1. Phase diagrams for (a) the first and (b) the second
largest regions of chaos synchronization in symmetrically cou-
pled 1D maps. The SCA appears when crossing the critical
lines denoted by the horizontal solid lines on the a = a∞ line.
Note that the SCA is strongly stable in the hatched region
with vertical lines. The non-horizontal boundary curves Dq
and Pq of the hatched region correspond to the first trans-
verse period-doubling and pitchfork bifurcation curves of sad-
dles with period q embedded in the SCA, respectively. The
boundary curves Dw

6 and D4 in (a) [Dw
24 and D16 in (b)] con-

nect at a point denoted by a small solid circle. On the other
hand, the horizontal boundary curve Sq represents the syn-
chronous saddle-node bifurcation opening a periodic window.
Here, the superscript “w” in Sq or Dq denotes that the bifur-
cation is associated with a periodic window. When passing a
solid or a dotted part of the boundary, a bubbling transition
occurs while a riddling transition takes place when passing a
dashed part. Such bubbling and riddling regions are shown
in light gray and gray, respectively. Finally, the weakly stable
SCA becomes transversely unstable via a blowout bifurcation
when passing the boundary curve denoted by solid circles.
For more detail, see the text.

and portions of the unstable manifold of an unstable pe-
riodic orbit. For this case, A is called a mixed absorbing
area.

With increasing control parameter a, the coupled
map T exhibits an infinite sequence of period-doubling
bifurcations of synchronous attractors with period 2n
(n = 0, 1, 2, . . .), ending at the accumulation point a∞

(= 1.401 155 · · ·) in some region of c. When crossing a
critical line in the a− c plane, a transition from periodic
to chaotic synchronization occurs. Figures 1(a) and 1(b)
show the phase diagrams for the first and the second
largest synchronization regions, respectively. The SCA
appears when crossing the critical lines, denoted by the
horizontal solid lines on the a = a∞ line. With further
increases of a from a∞, a sequence of band-merging bi-
furcations of the SCA takes place. For a = an, the 2n+1

bands of the SCA merge into the 2n bands; the a = a0

(= 1.543 689 . . .), a = a1 (= 1.430 357 · · ·), a = a2

(= 1.407 405 · · ·), and a = a3 (= 1.402 492 · · ·) lines are
shown in the figures.

For the chaotic values of a, the SCA is at least weakly
stable inside the region bounded by the solid circles in
Figs. 1(a) and 1(b) because its transverse Lyapunov ex-
ponent

σ⊥ = lim
N→∞

1
N

N∑
t=1

ln |2axt + 2c| (2)

is negative. We note that the SCA becomes strongly
stable in the hatched region with vertical lines because
there all periodic saddles embedded in the SCA are
transversely stable. When crossing the boundary of this
hatched region, a transition from strong to weak synchro-
nization occurs. The non-horizontal boundary curves Dq

and Pq of the hatched region represent the first trans-
verse period-doubling (PD) and pitchfork (PF) bifurca-
tions of an embedded saddle with period q, which occur
when the transverse Floquet (stability) multiplier,

λ⊥ =
q∏
t=1

(−2axt − 2c), (3)

passes through −1 and +1, respectively. These trans-
verse PD and PF bifurcations may be supercritical
or subcritical. The solid curves denote supercritical
transverse bifurcations while the dashed and the dot-
ted curves represent subcritical transverse bifurcations.
When crossing a supercritical curve, a soft bubbling tran-
sition occurs. However, a hard transition takes place
when passing a subcritical curve. The global effect
of subcritical hard bifurcations is found to depend on
whether they may or may not induce a contact between
the SCA and its basin boundary. When crossing a con-
tact bifurcation curve, denoted by a dashed line, a rid-
dling transition occurs. On the other hand, a hard bub-
bling transition takes place when crossing a non-contact
bifurcation curve, denoted by a dotted line. Besides
these transverse bifurcation curves, a horizontal bound-
ary curve Sq, representing a synchronous saddle-node bi-
furcation through which a periodic window opens, exists.
When crossing a dotted or dashed part of this horizontal
boundary curve, a hard bubbling or riddling transition
occurs, respectively. In the phase diagrams, the bub-
bling and the riddling regions are shown in light gray
and gray, respectively. For the bubbling case, an absorb-
ing area, restraining bursting from the diagonal, exists.
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However, in the riddling case, no such an absorbing area
exists; hence, the basin of the SCA becomes riddled with
a dense set of holes belonging to the basin of another at-
tractor (or infinity).

In the region of weak synchronization, two types of
transitions from bubbling to riddling occur. When an
absorbing area makes contact with the basin boundary,
it breaks up; then, a dense set of holes, leading to di-
vergent orbits, fills the basin of the SCA [10]. This
boundary crisis of the absorbing area occurs when pass-
ing the curve denoted by open circles. Such a transition
from bubbling to riddling may also occur via stabilization
of an asynchronous saddle inside the absorbing area [9].
Then, the basin of the SCA is riddled with a dense set of
holes belonging to the basin of the asynchronous attrac-
tor stabilized via a subcritical pitchfork bifurcation. This
kind of basin riddling takes place when crossing a dash-
dotted curve. Thus, in the dark gray region, the basin of
the SCA becomes riddled with two dense sets of holes be-
longing to the basin of the attractor at infinity and to the
basin of an asynchronous attractor inside the absorbing
area. Note also that the asynchronous chaotic attractor
developed from the stabilized asynchronous periodic at-
tractor disappears via a boundary crisis when crossing
a curve denoted by open squares. Then, a reverse tran-
sition from riddling to bubbling occurs. Finally, when
crossing the boundary denoted by solid circles, the SCA
becomes transversely unstable through a blowout bifur-
cation [20]; then, a complete desynchronization occurs.

2. Consequence of Supercritical Transverse Bi-
furcations

In this subsection, we study the global effect of the
first supercritical transverse PD and PF bifurcations that
occur when crossing the solid parts of the boundary of
the strongly stable region of the SCA in Figs. 1(a) and
1(b). For this case, a soft bubbling transition occurs
because the unstable manifold of an asynchronous saddle
born via the supercritical transverse bifurcation forms a
mixed absorbing area surrounding the SCA.

As an example, we consider the first supercritical PD
bifurcation of an embedded period-6 saddle (born via a
saddle-node bifurcation) that occurs when crossing the
solid part of the Dw

6 curve. Figure 2 shows a magnified
phase diagram of Fig. 1(a) near the Dw

6 curve. Note
that a lower asynchronous period-12 saddle-node bifur-
cation line S12, denoted by a dash-dotted line, touches
the Dw

6 curve and decomposes it into the supercritical
(solid) and subcritical (dashed and dotted) parts. We
fix the value of a as a = 1.49 and increase the coupling
parameter c along route I in Fig. 2. Then, when crossing
the solid part of Dw

6 for c = −1.430 753, the embed-
ded period-6 saddle (denoted by open circles) becomes
transversely unstable via the transverse PD bifurcation,
and a new asynchronous saddle with period 12 is born.

Fig. 2. Magnified phase diagram of Fig. 1(a) near the Dw
6

curve. A lower asynchronous period-12 saddle-node bifurca-
tion curve S12 (denoted by a dash-dotted line) touches the
PD bifurcation curve Dw

6 and decomposes it into the super-
critical solid and the subcritical dashed and the dotted parts.
Furthermore, the boundary crisis curve of an absorbing area
(denoted by open circles) crosses the Dw

6 curve and decom-
poses the subcritical part into the dashed contact and dot-
ted noncontact subparts. A pair of asycnhronous period-12
saddle-node bifurcation curves S12 (denoted by a dash-dotted
line) that emanates from a cusp is associated with the subcrit-
ical contact bifurcation occurring when crossing the dashed
part of the Dw

6 curve. Here, the bubbling and the riddling
regions are shown in light gray and gray, respectively. For
more detail, see the text.

For this case, the unstable manifold of the newly born
asynchronous period-12 saddle (denoted by solid circles)
forms a mixed absorbing area surrounding the SCA to-
gether with segments of the critical curves, as shown in
Fig. 3 for c = −1.42. Thus, burstings from the diago-
nal are restrained within the mixed absorbing area. The
“transverse” size of this mixed absorbing area increases
gradually from zero because the orbit points of the asyn-
chronous saddle move away continuously from the diag-
onal. Hence, a soft bubbling transition occurs in the
presence of parameter mismatch or noise because the
maximum bursting amplitude increases gradually from
zero with increasing coupling parameter from the trans-
verse PD bifurcation point. In Fig. 2, such a bubbling
region is shown in light gray. We may also enter the bub-
bling region by passing the dotted part of Dw

6 . However,
for this case, the synchronous period-6 saddle becomes
transversely unstable via a subcritical PD non-contact
bifurcation through absorption of an asynchronous re-
peller with period 12 that is born via a saddle-node bi-
furcation at the lower dash-dotted line S12. The unstable
manifold of an asynchronous period-12 saddle, born at
the same lower dash-dotted line S12, forms a mixed ab-
sorbing area surrounding the SCA before entering the



Global Effect of Transverse Bifurcations in Coupled Chaotic Systems – Woochang Lim and Sang-Yoon Kim -197-

Fig. 3. Symmetric mixed absorbing area surrounding the
two-band SCA for a = 1.49 and c = −1.42 after the supercrit-
ical transverse PD bifurcation of a synchronous period-6 sad-
dle (denoted by open circles and embedded in the SCA). The
unstable manifold (whose direction is denoted by arrows) of
the newly-born asynchronous saddle with period 12 (denoted
by solid circles) forms a symmetric mixed absorbing area to-
gether with segments of the critical curves Lk (k = 1, . . . , 8)
inside the basin of the SCA (shown in light gray). Here, the
dots indicate where the segments of the critical curves and
the unstable manifold connect.

bubbling region. Note that this mixed absorbing area is
preserved when crossing the dotted part of Dw

6 . Hence, a
hard bubbling transition occurs. The global effect of this
subcritical PD non-contact bifurcation will be discussed
in detail in the subsection II. 3. B.

As explained above, a mixed absorbing area surrounds
the SCA in the bubbling region (shown in light gray).
However, when crossing the boundary curve, denoted by
open circles, the absorbing area is destroyed through a
boundary crisis. Then, a transition from bubbling to
riddling occurs because the basin of the SCA becomes
riddled with a dense set of holes, leading to divergent
orbits. Such a riddling region is shown in gray.

3. Consequence of Subcritical Transverse Bifur-
cations

Unlike the case of supercritical transverse bifurcations,
a hard transition occurs through a first subcritical trans-
verse bifurcation when crossing a dashed or dotted part
of the non-horizontal boundary curve of the hatched re-
gion of strong synchronization in Figs. 1(a) and 1(b).
The global effect of such subcritical hard bifurcations is
found to depend on whether they may or may not induce
a contact between the SCA and its basin boundary. A

subcritical bifurcation line may be divided into dashed
contact and dotted non-contact parts. For the case of a
contact bifurcation, an absorbing area surrounding the
SCA disappears; hence, basin riddling occurs when cross-
ing a dashed part. On the other hand, for the case of a
non-contact bifurcation, such an absorbing area is pre-
served. As a result, hard bubbling takes place when
crossing a dotted part.

A. Subcritical Contact Bifurcations Leading to Riddling

Here, we study the global effect of the first subcritical
transverse bifurcations that induce a contact between the
SCA and its basin boundary. Such contact bifurcations
occur on the dashed part of the non-horizontal boundary
curve of the hatched region of strong synchronization.
Before a contact bifurcation, the unstable manifold of
an asynchronous repeller (with two unstable directions)
that lies at the basin boundary forms a mixed absorb-
ing area surrounding the SCA. However, when passing
a threshold value, a synchronous saddle becomes trans-
versely unstable by absorbing the asynchronous repeller
lying at the basin boundary. Then the SCA makes con-
tact with its basin boundary, and the mixed absorbing
area disappears. Consequently, a riddling transition oc-
curs. With explicit examples, the subcritical PD and PF
contact bifurcations are discussed in detail below.

As an example, we first consider the subcritical PD
contact bifurcation of a synchronous period-6 saddle that
occurs when passing the dashed part of the Dw

6 curve
in Fig. 2. Near this Dw

6 curve, a pair of asynchronous
period-12 saddle-node bifurcation curves S12, denoted by
a dash-dotted line and associated with the subcritical PD
bifurcation, emanates from a cusp. We fix the value of a
as a = 1.52 and decrease the coupling parameter c along
route II in Fig. 2. For this case, a asynchronous period-12
saddle and a repeller are born for c = −1.193 853 at the
right saddle-node bifurcation curve (emanating from the
cusp). Just after the saddle-node bifurcation, the unsta-
ble manifold of the asynchronous period-12 saddle forms
a mixed absorbing area surrounding the SCA. However,
as c is decreased a little more, such an absorbing area
breaks up through a boundary crisis for c ' −1.1945;
then, the asynchronous period-12 repeller lies at the
basin boundary of the SCA. After that, the “longitu-
dinal” unstable manifold of the asynchronous period-12
repeller (denoted by solid circles) that lies at the basin
boundary forms a mixed absorbing area surrounding the
SCA, as shown in Fig. 4(a) for c = −1.3. As c is fur-
ther decreased, the asynchronous period-12 saddle disap-
pears via a saddle-node bifurcation for c = −1.337 806 at
the left saddle-node bifurcation line (emanating from the
cusp). On the other hand, the asynchronous period-12
repeller approaches the synchronous period-6 saddle (de-
noted by open circles), and the size of the mixed absorb-
ing area shrinks. Eventually, at the subcritical PD bi-
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furcation point c = −1.313 742, the synchronous period-6
saddle absorbs the asynchronous period-12 repeller lying
at the basin boundary; hence, the mixed absorbing area
disappears. Since the SCA touches its basin boundary at
the saddle points, the subcritical PD bifurcation induces
a contact between the SCA and its basin boundary. Af-
ter this subcritical PD contact bifurcation, the basin of
the SCA becomes riddled with a dense set of holes, lead-
ing to divergent trajectories, as shown in Fig. 4(b) for
c = −1.38. In a real situation, where a small parameter
mismatch or noise exists, the SCA with a riddled basin
is transformed into a chaotic transient with a finite life-
time.

As a second example, we consider the subcritical PF
contact bifurcation of a synchronous period-2 saddle that
occurs when crossing the dashed P2 line in Fig. 2. We
fix the value of a as a = 1.49 and decrease the cou-
pling parameter c along route III in Fig. 2. As in the
above PD case, a pair of asynchronous period-2 repellers
(denoted by solid up and down triangles) that lies at
the basin boundary approaches the synchronous period-
2 saddle (denoted by open circles), and their unstable
manifolds form a mixed absorbing area surrounding the
SCA, as shown in Fig. 5(a) for c = −1.48. As c is de-
creased, the size of the absorbing area shrinks. Eventu-
ally, for c = −1.494 987, the synchronous period-2 sad-
dle becomes transversely unstable via a subcritical PF
bifurcation by absorbing the two asynchronous period-2
repellers lying at the basin boundary; then, the absorb-
ing area disappears. Note that this subcritical PF bi-
furcation also induces a contact between the SCA and
its basin boundary. Through this subcritical PF contact
bifurcation, basin riddling occurs, as shown in Fig. 5(b)
for c = −1.51. In the presence of parameter mismatch
or noise, the riddled basin SCA is changed into a chaotic
transient with a finite lifetime.

B. Subcritical Non-Contact Bifurcations Leading to
Hard Bubbling

We investigate the global effect of the first subcrit-
ical non-contact bifurcations. For this case, an asyn-
chronous repeller, causing the transverse instability of
a synchronous saddle, lies strictly inside an absorbing
area. This is in contrast to the case of contact bifurca-
tions. As a control parameter passes a threshold value,
the synchronous saddle loses its transverse stability by
absorbing the asynchronous repeller lying inside the ab-
sorbing area. However, for this case, the original absorb-
ing area is preserved because there is no contact between
the SCA and its basin boundary. As a result, a hard bub-
bling transition occurs. Explicit examples of the subcrit-
ical PD and PF non-contact bifurcations are presented
below with a detailed explanation.

As an example, we first consider the subcritical PD
non-contact bifurcation of a synchronous period-24 sad-

Fig. 4. (a) Symmetric mixed absorbing area surrounding
the two-band SCA for a = 1.52 and c = −1.3 before the sub-
critical PD contact bifurcation of the synchronous period-6
saddle (denoted by open circles and embedded in the SCA).
The unstable manifold (whose direction is denoted by arrows)
of the asynchronous period-12 repeller (denoted by solid cir-
cles) that lies at the basin boundary forms a symmetric mixed
absorbing area together with segments of the critical curves
Lk (k = 1, . . . , 4) inside the basin (shown in light gray) of
the SCA. Here, the dots indicate where the segments of the
critical curves and the unstable manifold connect. (b) Rid-
dled basin of the SCA for a = 1.52 and c = −1.38 after the
subcritical PD contact bifurcation.

dle (born via a saddle-node bifurcation) that occurs when
crossing the dotted part of the Dw

24 curve in Fig. 1(b).
Figure 6 shows a magnified phase diagram of Fig. 1(a)
near the Dw

24 curve. An asynchronous period-2 saddle
becomes stabilized when crossing the dash-dotted sub-
critical PF bifurcation line P2; then, the basin of the
SCA becomes riddled with a dense set of holes belong-
ing to the basin of the stabilized asynchronous period-
2 attractor. Thus, a transition from bubbling (shown
in light gray) to riddling (shown in gray) occurs. Note
that this stabilization line P2 touches the right subcrit-
ical part of the Dw

24 curve and decomposes it into the
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Fig. 5. (a) Symmetric mixed absorbing area surrounding
the two-band SCA for a = 1.49 and c = −1.48 before the
subcritical PF contact bifurcation of the synchronous period-
2 saddle (denoted by open circles and embedded in the SCA).
The unstable manifolds (whose directions are denoted by ar-
rows) of a pair of asynchronous period-2 repellers (denoted
by solid up and down triangles) that lies at the basin bound-
ary forms a symmetric mixed absorbing area together with
segments of the critical curves Lk (k = 1, 2) inside the basin
(shown in light gray) of the SCA. Here, the dots indicate
where the segments of the critical curves and the unstable
manifold connect. (b) Riddled basin of the SCA for a = 1.49
and c = −1.51 after the subcritical PF contact bifurcation.

dashed contact and dotted non-contact subparts. Near
this subcritical part of the Dw

24 curve, a pair of asyn-
chronous period-48 saddle-node bifurcation curves S48

(denoted by a dash-dotted curve) emanates from a cusp.
We now fix the value of a as a = 1.405 and decrease the
coupling parameter c along route IV in Fig. 6. Figure
7(a) shows a large absorbing area surrounding the SCA
for c = −0.202. Note that an asynchronous period-48 re-
peller (denoted by solid circles) that is born at the right
saddle-node bifurcation curve (emanating from the cusp)
for c = −0.199 438 lies strictly inside the absorbing area
[see Figs. 7(a) and 7(b)]. As c is decreased, this asyn-

Fig. 6. Magnified phase diagram of Fig. 1(b) near the
Dw

24 curve. An asynchronous period-2 saddle becomes stabi-
lized when crossing the dash-dotted subcritical PF bifurca-
tion line P2. Then, a transition from bubbling to riddling oc-
curs. Here, the bubbling and the riddling regions are shown in
light gray and gray, respectively. Note that this stabilization
line P2 crosses the Dw

24 curve and decomposes its subcritical
part into the dashed contact and the dotted non-contact sub-
parts. A pair of asynchronous period-48 saddle-node bifurca-
tion curves S48 (denoted by a dash-dotted line) that emanates
from a cusp is associated with the subcritical PD bifurcation
occurring when crossing the (dashed and dotted) subcritical
part of the Dw

24 curve. On the other hand, when crossing the
solid part of the Dw

24 curve, a supercritical PD bifurcation
occurs. Furthermore, a transition from a small to a large
absorbing area occurs through an interior crisis when cross-
ing the curve denoted by open circles. Then, the maximum
bursting amplitude increases abruptly. For more detail, see
the text.

chronous period-48 repeller approaches the synchronous
period-24 saddle (denoted by open circles). Eventu-
ally, when crossing the dotted part of the Dw

24 curve for
c = −0.207 085, the synchronous period-24 saddle be-
comes transversely unstable via a subcritical PD bifur-
cation by absorbing the asynchronous period-48 repeller
lying inside the absorbing area. For this case, the absorb-
ing area surrounding the SCA is preserved, as shown in
Fig. 7(c) for c = −0.213, because no contact between
the SCA and its basin boundary occurs. This is in con-
trast to the case of the above contact bifurcations. After
this subcritical PD non-contact bifurcation, transient in-
termittent bursts with large amplitudes appear abruptly
[see Fig. 7(d)]. For this case, the maximum bursting
amplitude is determined by the transverse size of the
absorbing area. In a real situation, a small parameter
mismatch or noise leads to a persistent sequence of inter-
mittent bursts. Thus, a hard bubbling transition occurs
through the subcritical PD non-contact bifurcation.

As a second example, we consider the subcritical PF
non-contact bifurcation that occurs when crossing the
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Fig. 7. (a) Large absorbing area surrounding the eight-
band SCA for a = 1.405 and c = −0.202 before the subcriti-
cal PD non-contact bifurcation of the synchronous period-24
saddle (denoted by open circles and embedded in the SCA).
The absorbing area is bounded by segments of the critical
curves Lk (k = 1, . . . , 4) inside the basin of attraction (shown
in light gray). Here the dots indicate where the segments
of the critical curves connect. An asynchronous period-48
repeller (denoted by solid circles) lies strictly inside the ab-
sorbing area. For a clear view of this asynchronous period-48
repeller, a magnified view of (a) near the topmost band of
the SCA is given in (b). For c = −0.207 085, the synchronous
period-24 saddle becomes transversely unstable via a sub-
critical PD non-contact bifurcation by absorbing the asyn-
chronous period-48 repeller. (c) Preserved absorbing area
surrounding the SCA for a = 1.405 and c = −0.213 after the
subcritical PD non-contact bifurcation. (d) Transient inter-
mittent bursting for a trajectory starting from an initial point
(x0, y0) = (0.12, 0.13) when a = 1.405 and c = −0.213. Here,
the transverse variable u(≡ y − x) represents the deviation
from the diagonal.

dotted P8 line in Fig. 6. We fix the value of a as a = 1.405
and decrease the coupling parameter along route V in
Fig. 6. A pair of asynchronous period-8 repellers (de-
noted by solid up and down triangles) lies strictly in-
side the large absorbing area, as shown in Figs. 8(a) and
8(b) for c = −0.233. As c is decreased, they approach
the synchronous period-8 saddle (denoted by open cir-
cles). Eventually, for c = −0.236 431, the synchronous
period-8 saddle loses its transverse stability via a sub-
critical PF bifurcation by absorbing the asynchronous
period-8 repellers. Note that the large absorbing area is
preserved because this subcritical PF bifurcation induces
no contact between the SCA and its basin boundary [see
Fig. 8(c)]. Then, as shown in Fig. 8(d) for c = −0.239,
a sequence of transient intermittent bursts with large
amplitudes appears abruptly. Thus, in the presence of
a small parameter mismatch or noise, a hard bubbling
transition takes place via the subcritical PF non-contact
bifurcation.

Fig. 8. (a) Large absorbing area surrounding the eight-
band SCA for a = 1.405 and c = −0.233 before the subcritical
PF noncontact bifurcation of the synchronous period-8 sad-
dle (denoted by open circles). The absorbing area is bounded
by segments of the critical curves Lk (k = 1, . . . , 4) inside the
basin of attraction (shown in light gray). Here, the dots indi-
cate where the segments of the critical curves connect. A pair
of asynchronous period-8 repellers (denoted by solid up and
down triangles) lies strictly inside the absorbing area. For a
clear view of the asynchronous period-8 repellers, a magni-
fied view of (a) near the topmost band of the SCA is given
in (b). For c = −0.236 431, the synchronous period-8 saddle
becomes transversely unstable via a subcritical PF noncon-
tact bifurcation by absorbing a pair of asynchronous period-8
repellers. (c) Preserved absorbing area surrounding the SCA
for a = 1.405 and c = −0.239 after the subcritical PD non-
contact bifurcation. (d) Transient intermittent bursting for a
trajectory starting from an initial point (x0, y0) = (0.9, 0.91)
when a = 1.405 and c = −0.239. Here, the transverse vari-
able u(≡ y − x) represents the deviation from the diagonal.

III. SUMMARY

We have investigated the global effect of the first trans-
verse bifurcations in symmetrically coupled 1D maps.
Through a detailed numerical analysis, we have given ex-
plicit examples for the consequence of supercritical and
subcritical transverse bifurcations. For the supercriti-
cal case, soft bubbling transition occurs, while a hard
transition takes place for the subcritical case. For the
determination of the global effect of subcritical hard bi-
furcations, a simple contact criterion has been presented.
For the case of a subcritical contact bifurcation, an ab-
sorbing area that exists before the bifurcation disappears
because the SCA makes contact with its basin boundary;
hence, basin riddling occurs. However, for the case of a
subcritical non-contact bifurcation, the original absorb-
ing area surrounding the SCA is preserved because no
contact between the SCA and its basin boundary occurs.
Consequently, a hard bubbling transition takes place.
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