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We consider a forced pendulum with a horizontally oscillating suspension point. Bifurcations
associated with stability of the symmetric period-1 orbit (SPO), arising from the “unforced” sta-
tionary point, are investigated in details by varying the two parameters A (the normalized driving
amplitude) and Ω (the normalized natural frequency). We thus obtain the phase diagram showing
the bifurcation curves of the SPO in the Ω−A plane through numerical calculations of the Floquet
(stability) multipliers and winding numbers. We note that a specific substructure in the bifurcation
set of the SPO recurs in the parameter plane.

I. INTRODUCTION

We consider a horizontally driven pendulum (HDP)
whose suspension point undergoes a horizontal periodic
oscillation. The system is described by a second-order
non-autonomous ordinary differential equation,

ml2θ̈ + bθ̇ +mgl sin θ = mlω2ε cosωt cos θ, (1)

where the overdot denotes the differentiation with re-
spect to time, b is a damping coefficient, m is a mass
attached to one end of a light thin rod (its mass may
be negligible) of length l, θ is the angular displacement
measured counterclockwise from the downward vertical,
and ε and ω are the driving amplitude and frequency
of the horizontal oscillation of the suspension point, re-
spectively. Making the normalization ωt → 2πt and
θ → 2πx, we obtain a dimensionless normalized form
of Eq. (1),

ẍ+ 2πβΩẋ+ 2πΩ2 sin 2πx = 2πA cos 2πt cos 2πx, (2)

where ω0 =
√
g/l, β = b/ml2ω0, Ω = ω0/ω, and A = ε/l.

This gravitational pendulum has an exact analog in the
case of a magnetic pendulum consisting of a permanent
magnet placed in a crossed steady and time-varying mag-
netic field [1]. For the case of the magnetic pendulum, a
lower bound on the chaotic regime obtained by the Mel-
nikov method has been confirmed both experimentally
and numerically, as in the forced double-well Duffing os-
cillator [2]. To our knowledge, this is the only work on
the HDP.

In contrast with the HDP, the parametrically forced
pendulum with a vertically-oscillating suspension point
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has been extensively studied both theoretically and ex-
perimentally [3,4], and thus rich dynamical behaviors
have been found. One of its interesting behaviors is a
cascade of “resurrections” of the stationary points of the
vertically driven pendulum (i.e., the stationary points
become stabilized after their instability, destabilize again
and so forth ad infinitum). One of us (Kim) studied the
bifurcations associated with such resurrections in detail
[4]. In this paper, we study the bifurcations in the HDP
and thus find that the HDP also exhibits interesting bi-
furcation behaviors, as will be seen below.

For the unforced case with A = 0, there exists a stable
stationary point with x = 0 and ẋ = 0. However, as
A is increased from 0, a stable symmetric period-1 orbit
(SPO) arises from the “unforced” stationary point. Here
we are particularly interested in the bifurcations associ-
ated with the stability of the SPO. By varying the two
parameters A and Ω, we make a detailed numerical in-
vestigation of bifurcations in the HDP for a fixed value
of the normalized damping coefficient β.

This paper is organized as follows. In Sec. II, we
discuss bifurcations associated with stability of peri-
odic orbits, using the Floquet theory [5]. The bifurca-
tion behaviors associated with the stability of the SPO
are then investigated through numerical calculations of
its Floquet (stability) multipliers and winding numbers,
characterizing the topological property of the SPO, in
Sec. III. We thus obtain the phase diagram showing
a periodic recurrence of a specific substructure in the
bifurcation set of the SPO, as in other driven oscilla-
tors such as the forced Duffing [6], Toda [7], and Morse
[8] oscillators. However, the recurrent substructure for
the HDP is different from that for the Duffing, Toda,
and Morse oscillators. Finally, a summary is given in
Sec. IV.
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II. STABILITY, BIFURCATIONS, AND
WINDING NUMBERS

In this section, we first discuss stability of periodic
orbits in the Poincaré map of the HDP, using the Floquet
theory [5]. Bifurcations associated with the stability and
winding numbers, giving the topological information of
the local flow, are then discussed.

The second-order ordinary differential equation (2)
is reduced to two first-order ordinary differential equa-
tions:

ẋ = y, (3a)
ẏ = f(x, y, t) = −2πβΩy − 2πΩ2 sin 2πx

+2πA cos 2πt cos 2πx. (3b)

These equations have a symmetry S, because the trans-
formation,

S : x→ −x, y → −y, t→ t+
1
2
, (4)

leaves Eq. (3) invariant. If an orbit z(t)[≡ (x(t), y(t))] is
invariant under S, it is called a symmetric orbit. Other-
wise, it is called an asymmetric orbit and has its “conju-
gate” orbit Sz(t).

The phase space of the HDP is three dimensional with
the coordinates x, y, and t. Since the HDP is periodic in
t, it is convenient to regard time as a circular coordinate
(with mod 1) in the phase space. We then consider the
surface of section, the x− y plane at interger times (i.e.,
t = m, m: integer). The phase-space trajectory inter-
sects this plane in a sequence of points. This sequence of
points corresponds to a mapping on the plane. This map
plot of an initial point z0 [= (x0, y0)] can be conveniently
generated by sampling the orbit points zm at the discrete
time t = m. We call the transformation zm → zm+1 the
Poincaré map and write zm+1 = P (zm).

The linear stability of a q-periodic orbit of P such that
P q(z0) = z0 is determined from the linearized-map ma-
trix DP q of P q at an orbit point z0. Here P q means
the q-times iterated map. Using the Floquet theory [5],
the matrix DP q can be obtained by integrating the lin-
earized differential equations for small perturbations as
follows.

Let z∗(t) = z∗(t+ q) be a solution lying on the closed
orbit corresponding to the q-periodic orbit. In order to
determine the stability of the closed orbit, we consider
an infinitesimal perturbation δz[= (u, v)] to the closed
orbit. Linearizing Eq. (3) about the closed orbit, we
obtain(

u̇
v̇

)
= J(t)

(
u
v

)
, J(t) =

(
0 1

fx(x∗, t) fy

)
. (5)

Here fx and fy denote the partial derivatives of f(x, y, t)
in Eq. (3) with respect to the variables x and y, respec-
tively. They are given by

fx(x, t) = −4π2Ω2 cos 2πx− 4π2A cos 2πt sin 2πx,
fy = −2πβΩ. (6)

Note that J is a 2 × 2 q-periodic matrix. Let W (t) =
(w1(t), w2(t)) be a fundamental solution matrix with
W (0) = I. Here w1(t) and w2(t) are two independent
solutions expressed in column vector forms, and I is the
2 × 2 unit matrix. Then a general solution of the q-
periodic system has the following form(

u(t)
v(t)

)
= W (t)

(
u(0)
v(0)

)
. (7)

Substitution of Eq. (7) into Eq. (5) leads to an initial-
value problem to determine W (t)

Ẇ (t) = J(t)W (t), W (0) = I. (8)

It is clear from Eq. (7) that W (q) is just the linearized-
map matrix DP q(z0). Hence the matrix DP q can be
obtained through integration of Eq. (8) over the period
q.

The characteristic equation of the linearized-map ma-
trix M(≡ DP q) is

λ2 − trM λ+ detM = 0, (9)

where trM and detM denote the trace and determinant
of M , respectively. The eigenvalues, λ1 and λ2, of M are
called the Floquet (stability) multipliers. By using the
Liouville’s formula [9], we obtain the determinant of M
(detM),

detM = e−2πβΩq. (10)

Consequently, the Poincaré map P becomes a two-
dimensional (2D) dissipative map with a constant Ja-
cobian determinant (less than unity).

The pair of Floquet multipliers of a periodic orbit with
period q lies either on the circle of radius e−πβΩq or on the
real axis in the complex plane. The periodic orbit is sta-
ble only when both Floquet multipliers lie inside the unit
circle. We first note that they never cross the unit circle,
except at the real axis, and hence Hopf bifurcations do
not occur. Consequently, a stable periodic orbit can lose
its stability when a Floquet multiplier passes through
1 or −1 on the real axis. When a Floquet multiplier
decreases through −1, the stable periodic orbit becomes
unstable via a period-doubling bifurcation. On the other
hand, when a Floquet multiplier increases through 1, it
loses its stability via a saddle-node or pitchfork bifurca-
tion. For more details on bifurcations, refer to Ref. 10.

We now discuss the winding number of an orbit, which
counts the average number of rotations of neighboring
orbits around the given orbit during the time 1 (i.e., one
iteration of P ). To measure the rotations, we express the
linearized equations (5) for the displacements in terms of
the polar coordinates u = r cosφ and v = r sinφ,

ṙ = r[(1 + fx) sinφ cosφ+ fy sin2 φ],

φ̇ = − sin2 φ+ (fx cosφ+ fy sinφ) cosφ. (11)
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Fig. 1. Phase Diagram showing the bifurcation curves
of the SPO for (a) 0 ≤ Ω ≤ 2.4 and (b) 2.1 ≤ Ω ≤ 2.87.
There exist an infinity of disconnected bifurcation curves Bn
(n = 0, 1, 2, . . .) of the SPO, labelled by its winding number
ω. When crossing a solid curve Bn of even order n, the SPO
becomes unstable via a pitchfork bifurcation, while it dis-
appears via a saddle-node bifurcation when crossing a solid
curve Bn of odd n. Each solid curve Bn also extends over
the entire Ω range by joining with the separate parts of the
dashed bifurcation curve bn of another symmetric period-1
orbit born via a saddle-node bifurcation, which is also la-
belled by its winding number. Note that with increasing Ω, a
sequence of bifurcation curves with similar shapes and with
increasing winding numbers appears. Enlarged views near
the saddle-node bifurcation curves Bn (n = 1, 3, 5, 7) are also
given in the insets. For other details, see the text.

The motions of the displacements (r, φ) contain all the
information about the nearby orbits. Hence we first ob-
tain the Poincaré maps of an initial displacement (r0, φ0)
by sampling the displacements (rm, φm) at the discrete
time t = m (m = 1, 2, 3, . . .). Then the average expo-
nential rate of growth of the radius r gives the largest
Lyapunov exponent, while the increase in the angle φ
(normalized by the factor 2π) can be used to define the
winding number w,

w = lim
m→∞

|φm − φ0|
2πm

. (12)

For more details on the winding number, refer to Ref. 11.

III. BIFURCATIONS OF THE SPO

In this section, by varying the two parameters A and
Ω, we study bifurcations associated with stability of the
SPO for a moderately damped case of β = 0.5. We thus
obtain the phase diagram, showing a recurrent structure
in the bifurcation set of the SPO.

As explained in Sec. II, the linear stability of a periodic
orbit with period q in the Poincaré map P is determined
from the linearized-map matrix M(≡ DP q) of P q. The
matrix M can be obtained through numerical integration
of Eq. (8) over the period q, and then its eigenvalues give
the Floquet multipliers of the periodic orbit. In such a
way, we determine the stability of the SPO in the Ω−A
plane through numerical calculations of its Floquet mul-
tipliers, and then we investigate in detail the bifurcation
behaviors of the SPO at the stability boundary curves.
The winding number ω of the SPO at each bifurcation
curve is also obtained through numerical computation
of Eq. (12) to characterize its topological property. It is
thus found that there exist an infinity of disconnected bi-
furcation curves Bn (n = 0, 1, 2, . . .) of the SPO, labelled
by its winding numbers ω, some of which are denoted by
heavy solid curves in the phase diagram shown in Fig. 1.

The bifurcation behaviors of the SPO depend on
whether the order n of the bifurcation curve Bn is even
or odd. When crossing a bifurcation curve Bn of even
order n, the SPO becomes unstable via a pitchfork bi-
furcation, while it disappears via a saddle-node bifurca-
tion when crossing a bifurcation curve Bn of odd order
n. It is also found that each such bifurcation curve Bn
of the SPO extends over the whole Ω range by joining
with the separate parts of a bifurcation curve, denoted
by dashed curves in Fig. 1, of another symmetric period-
1 orbit born via a saddle-node bifurcation. Hereafter,
each dashed curve, joining with the solid curve Bn, will
be represented by bn (n = 0, 1, 2, . . .). We first note that,
when the bifurcation curve bn of odd order n is crossed, a
saddle-node bifurcation occurs, which results in the birth
of a pair of stable and unstable symmetric period-1 or-
bits with the winding number ω = n. As shown in Fig. 1,
there exist two separate bn’s for each odd n. The “left”
(“right”) bn connects with the right (left) end point of
the solid curve Bn. The stable symmetric period-1 orbit
born at the left (right) bn of odd order n becomes unsta-
ble via a pitchfork bifurcation at the left (right) dashed
curve bn+1 (bn−1) of even order n + 1 (n − 1), where
the winding number of the symmetric period-1 orbit be-
comes n+ 1 (n− 1). The dashed curve bn of even order
n also connects with the solid curve Bn.

From now on, we present concrete examples of the bi-
furcations explained above. We first consider the bifur-
cations associated with the stability of the SPO. The bi-
furcation diagrams and the phase-portrait plots are also
given for clear presentation of the bifurcations. As an
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Fig. 2. Phase portraits and a bifurcation diagram for
Ω = 1.0. (a) For A = 0.1 the phase flow of the SPO, arising
from the “unforced” stationary point, is denoted by a solid
curve, and its Poincaré map is represented by a solid circle.
(b) A bifurcation diagram (plot of x vs. A) near the pitchfork
bifurcation point Ab(= 1.572 491 · · ·). Here the solid curve de-
notes a stable periodic orbit, while the dashed curve represent
an unstable periodic orbit. (c) For A = 1.6 the phase flows of
a conjugate pair of asymmetric period-1 orbits, born by the
pitchfork bifurcations, are denoted by the solid curves, while
their Poincaré maps are represented by the solid circles.

example, we consider the case of Ω = 1.0. For A = 0,
there exists a stationary point with (x, ẋ) = (0, 0). How-
ever, as A is increased from 0, a stable SPO arises from
the unforced stationary point, and its phase portrait for
A = 0.1 is shown in Fig. 2(a). This SPO becomes unsta-
ble via a pitchfork bifurcation when the bifurcation curve
B0 is crossed at its bifurcation point Ab (= 1.572 491 · · ·)
[see Fig. 1(a)]. The bifurcation diagram near this bifur-
cation is also shown in Fig. 2(b). Through the symmetry-
breaking pitchfork bifurcation, a conjugate pair of asym-
metric period-1 orbits appears, and their phase portraits

Fig. 3. Plots of the winding number of the SPO, ω, vs.
A in the range between A = 0 and the pitchfork bifurcation
point Ab and the phase portraits of the SPO at the pitchfork
bifurcation points Ab for (a) and (b) Ω = 1.0, (c) and (d)
Ω = 1.5, (e) and (f) Ω = 2.25, (g) and (h) Ω = 2.56, and
(i) and (j) Ω = 2.86. Here the phase flows are denoted by
solid curves, while the Poincaré maps are represented by solid
circles.

for A = 1.6 are shown in Fig. 2(c). As in the case of B0,
when crossing the curves Bn of even order n, the SPO
loses its stability via a pitchfork bifurcation. However,
the winding number ω of the SPO at the curve Bn in-
creases with the order n. As an example, we take some
representative values Ω = 1.0, 1.5, 2.25, 2.56, and 2.84
for the bifurcation curves Bn with n = 0, 2, 4, 6 and 8, re-
spectively. The plots of ω vs. A for representative values
of Ω are given in the left column of Fig. 3. Note that the
winding numbers near the bifurcation points take even-
interger values of 0, 2, 4, 6, and 8, respectively. That is,
the order n of the bifurcation curve is just the winding
number ω of the SPO (i.e., ω = n). The phase portraits
of the SPO at the bifurcation points are given in the right
column of Fig. 3. Note that the SPO at the curve Bn
has an increasing number of loops, because the winding
number increases with n.

Unlike the above case, the SPO disappears via a
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Fig. 4. (a) Bifurcation diagram near the saddle-node bi-
furcation for Ω = 1, 24. Here the solid curve denotes a stable
periodic orbit, while the dashed curve represents an unstable
periodic orbit. (b) Plot of the winding number of the SPO ω
vs. A in the range between A = 0 and the saddle-node bifur-
cation point Ab. (c) Phase flow (Poincaré map) of the SPO
at the saddle-node bifurcation point Ab (= 1.893 191 · · ·) is
denoted by a solid curve (circle).

saddle-node bifurcation when crossing a bifurcation
curve Bn of odd n. As an example, we consider the
case of Ω = 1.24. The bifurcation diagram near the
saddle-node bifurcation is shown in Fig. 4(a). When
the curve B1 is crossed at the bifurcation point Ab
(= 1.893 191 · · ·), the SPO disappears via a saddle-node
bifurcation by absorbing an unstable period-1 orbit born
at the dashed saddle-node bifurcation curve b1 just below
the curve B1 [see the left inset in Fig. 1(a)]. After the
disappearance of the SPO, the state of the system jumps
to another stable symmetric period-1 orbit born via a
saddle-node bifurcation at the curve b1. The plot of ω
vs. A and the phase portrait at the bifurcation point Ab

Fig. 5. Plots of the winding number of the SPO ω vs. A
in the range between A = 0 and the saddle-node bifurcation
point Ab and the phase portraits of the SPO at the saddle-
node bifurcation points Ab for (a) and (b) Ω = 2.025, (c)
and (d) Ω = 2.42, and (e) and (f) Ω = 2.70. Here the phase
flows are denoted by solid curves, while the Poincaré maps
are represented by solid circles.

are also given in Figs. 4(b) and 4(c), respectively. Note
that the winding number ω takes the value of 1 near the
bifurcation point. Such saddle-node bifurcations occur
when crossing the bifurcation curves Bn of odd order n.
However, the winding number ω of the SPO increases
with n, like the case of even-order n. As an example,
we take some representative values Ω = 2.025, 2.42, and
2.70 for the bifurcation curves Bn with n = 3, 5, and 7,
respectively. The left column of Fig. 5 shows the plots of
ω vs. A for the representative values of Ω. The winding
numbers near the bifurcation points take odd-interger
values of 3, 5, and 7, respectively. The phase portraits
of the SPO at the bifurcation points are also shown in
the right column of Fig. 5. Note also that the SPO at
the curve Bn has an increasing number of loops with n.

As mentioned above, each curve Bn of the SPO joins
with the separate parts of the dashed bifurcation curves
bn of another symmetric period-1 orbit born via a saddle-
node bifurcation. When the curve bn of odd order n
is crossed, a saddle-node bifurcation takes place, which
leads to the birth of a pair of stable and unstable sym-
metric period-1 orbits with winding numbers n. As A
is increased, each newly-born stable period-1 orbit be-
comes unstable via a pitchfork bifurcation at the dashed
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Fig. 6. Plots of the winding number ω vs. A for the
symmetric period-1 orbit born at the dashed saddle-node bi-
furcation curve b1 in case of (a) Ω = 1.0 and (b) Ω = 1.5.

curve bn of even order. However, the change in the wind-
ing number of the symmetric period-1 orbit depends on
whether it is born at the left or right dashed curve bn.
As an example, we take two representative values, Ω =
1.0 and 1.5, for the left and right parts of the curve b1,
respectively. Figure 6 shows the plots of ω vs. A for the
representative values of Ω. The winding number for the
case of Ω = 1.0 increases by 1, while it decreases by 1
for Ω = 1.5. In such a way, the symmetric period-1 orbit
born at the left (right) dashed curve bn of odd n loses
its stability via pitchfork bifurcation at the left (right)
dashed curve bn+1 (bn−1) of even order n+ 1 (n− 1).

Finally, we note that the bifurcation set in Fig. 1
consists of the recurrence of a specific substructure of
the bifurcation curves. To show this recurrence, we de-
note the connected bifurcation curve of Bn and bn by
Ln (i.e., Ln = Bn ∪ bn). The first nine curves Ln’s
(n = 0, 1, . . . , 8) are shown in Fig. 1. As an example,
compare the structure of L4∪L5 and L6∪L7 in Fig. 1(b)
with that of L2 ∪ L3 in Fig. 1(a). Then one can easily

see that each pair of the bifurcation curves has a similar
structure. It is thus expected that higher-order pairs of
bifurcation curves Ln∪Ln+1 (n = 8, 10, . . .) with similar
structures will appear successively with increasing Ω.

IV. SUMMARY

A detailed investigation of the bifurcations, associated
with the stability of the SPO, has been made through nu-
merical calculations of the Floquet multipliers and wind-
ing numbers. We have thus obtained the phase diagram,
showing a recurrent structure in the bifurcation set of the
SPO. Finally, note also that recurrence of a substructure
in the bifurcation set occurs in other driven oscillators
such as the forced Duffing, Toda and Morse oscillators
[6–8]. However, the repeating substructure varies de-
pending on the oscillator.
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