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We consider blow-out bifurcations of synchronous chaotic attractors on invariant subspaces in
coupled chaotic systems with symmetries. Through a blow-out bifurcation, the synchronous chaotic
attractor becomes unstable with respect to perturbations transverse to the invariant subspace, and
then a new asynchronous chaotic attractor may appear. However, the system symmetry may
be preserved or violated when such a transition from synchronous to asynchronous chaotic motion
occurs. Here we investigate the underlying mechanism for the symmetry preservation and violation.
It is thus found that the shape of a minimal invariant absorbing area controlling the global dynamics
and acting as a trapping bounded vessel determines whether the symmetry is conserved or not. For
the case of a symmetric absorbing area, a symmetry-conserving blow-out bifurcation occurs while in
the case of an asymmetric absorbing area, a symmetry-breaking blow-out bifurcation takes place.

In recent years, much attention has been paid to the
phenomenon of synchronization in coupled chaotic sys-
tems. In the case of symmetrically coupled identical
chaotic systems, such chaos synchronization may occur
when a chaotic attractor (CA) on the symmetric invari-
ant subspace S becomes stable with respect to perturba-
tions transverse to S [1]. Hence, an important question
concerns the transverse stability of the synchronous CA
with regard to the coupling strength [2]. It is known
that, as a coupling parameter passes a threshold value,
the synchronous CA loses its transverse stability through
a blow-out bifurcation [3], and then a new asynchronous
CA appears in the supercritical (nonhysteric) case. How-
ever, the system symmetry may be conserved or bro-
ken when such a transition from synchronous to asyn-
chronous motion occurs [4].

Here we investigate the underlying mechanism for the
conservation and the breakdown of symmetry when a
supercritical blow-out bifurcation takes place. Our new
finding is that the shape of a minimal invariant absorb-
ing area [5,6], which is a compact trapping region in the
phase space, determines the type of blow-out bifurcation
(i.e., whether it is symmetry conserving or breaking).
The shape of the minimal invariant absorbing area can
be ascertained by the introduction of a small parame-
ter mismatch between the subsystems [6]. In the case of
a symmetric absorbing area, a symmetric asynchronous
CA appears through a symmetry-conserving blow-out bi-
furcation. On the other hand, for the case of an asym-
metric absorbing area, a symmetry-breaking blow-out bi-
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furcation occurs, leading to the birth of a conjugate pair
of asymmetric asynchronous CAs.

Let us consider the symmetrically coupled system T ,
consisting of two identical one-dimensional (1D) maps,

T :
{
xt+1 = 1− ax2

t + g(xt, yt),
yt+1 = 1− ay2

t + g(yt, xt),
(1)

where xt and yt are state variables of the first and second
1D maps at a discrete time t, a is the control parameter
of the uncoupled 1D map, and g is a coupling function
obeying the condition

g(x, x) = 0 for any x. (2)

This coupled map T has an exchange symmetry because
it is invariant under the exchange of coordinates x↔ y.
The set of points which are invariant under the exchange
operation forms an invariant symmetry line y = x. If an
orbit lies on the invariant line, it is called a synchronous
orbit because the two state variables xt and yt become
the same for all t; otherwise, it is called an asynchronous
orbit. Hereafter, the invariant line will be referred to as
the synchronization line.

We also note that the coupled map T is non-invertible
because its Jacobian determinant det(DT) (DT is the
Jacobian matrix of T ) becomes zero along the criti-
cal curves, L0 = {(x, y) ∈ R2 : [2ax − g1(x, y)][2ay −
g1(y, x)]+g2(x, y)g2(y, x) = 0}, where the subscript i of g
denotes the partial derivative of g with respect to the ith
argument. Critical curves of rank k, Lk (k = 1, 2, . . .),
are then given by the images of rank k of L0 [i.e.,
Lk = T k(L0)]. Segments of these critical curves can be
used to bound a compact region of the phase space that
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Fig. 1. Symmetry-conserving blow-out bifurcation for
a = 1.44 in the linear-coupling case. (a) After the param-
eter mismatching with ε = 0.001 for c = −1.028, a typical
trajectory starting on the diagonal covers the entire mini-
mal invariant absorbing area. (b) The minimal invariant ab-
sorbing area bounded by segments of the critical curves Lk
(k = 1, 2, 3, 4) for ε = 0. (c) A symmetric asynchronous CA
for c = −1.024, born via a symmetry-conserving blow-out
bifurcation.

acts as a trapping bounded vessel, called an absorbing
area A, inside which trajectories starting near the syn-
chronization diagonal are confined [7]. Furthermore, the
boundaries of an absorbing area can also be obtained by
the union of segments of critical curves and portions of
unstable manifolds of unstable periodic orbits. For this
case, A is called a mixed absorbing area.

Only the minimal invariant absorbing area (i.e., the
smallest invariant one including the synchronous CA) is
important to characterize the global effect of the blow-
out bifurcation. To ascertain the existence and shape of a
minimal invariant absobing area near a blow-out bifurca-
tion point, we introduce a small parameter mismatching
by taking the control parameter b of the second 1D map
as b = a + ε, where a is just the control parameter of
the first 1D map and ε is a small symmetry-breaking pa-
rameter. A consequence of such parameter mismatching
is that invariance of the synchronization diagonal is lost.
However, the existence of a minimal invariant absorbing
area is generally persistent under a small parameter mis-
matching. Consequently, a typical trajectory starting on

Fig. 2. Symmetry-breaking blow-out bifurcation for a =
1.427 in the linear-coupling case. (a) A synchronous CA on
the diagonal with four bands for c = −1.031. (b) The minimal
invariant absorbing area bounded by segments of the critical
curves Lk (k = 1, ..., 32). For clear presentation, only a part
of the entire absorbing area, including the upper two chaotic
bands, is shown. (c) An asymmetric CA for c = −1.027, born
via a symmetry-breaking blow-out bifurcation.

the diagonal covers the whole minimal invariant absorb-
ing area, which gives us clear information on the shape
of the minimal invariant absorbing area.

From now on, we present concrete examples of
symmetry-conserving and -breaking blow-out bifurca-
tions for a linear-coupling case with g(x, y) = c(y − x),
where c is a coupling parameter. For a = 1.44, a syn-
chronous chaotic state with two bands exists on the syn-
chronization diagonal. This synchronous chaotic state
becomes an attractor for cb,l(' −1.478) ≤ c ≤ cb,r('
−1.026) because its transverse Lyapunov exponent given
by

σ⊥ = lim
N→∞

1
N

N∑
t=1

ln |2axt + 2c| (3)

is negative. However, when passing the point cb,r, a su-
percritical blow-out bifurcation occurs. To determine the
type of this blow-out bifurcation, we introduce a small
parameter mismatching with ε = 0.001 for c = −1.028
(just before the blow-out bifurcation). For this mis-
matched case, the synchronization diagonal is no longer
invariant, and a typical trajectory starting on the diag-
onal covers the whole minimal invariant absorbing area,
as shown in Fig. 1(a). Based on this information given
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Fig. 3. Symmetry-conserving blow-out bifurcation for
a = 1.85 in the dissipative-coupling case. (a) A symmetric
mixed absorbing area for c = −1.47 is bounded by a union
of segments of the critical curves L1 and L2 and segments
of unstable manifolds of a conjugate pair of asymmetric sad-
dle fixed points (4 and 5) born from the synchronous fixed
point (©) via a pitchfork bifurcation. (b) A symmetric CA
for c = −1.49, born via a symmetry-conserving blow-out bi-
furcation.

through a parameter mismatching, we can obtain the
minimal invariant absorbing area bounded by segments
of the critical curves Lk (k = 1, 2, 3, 4) for ε = 0, which
is shown in Fig. 1(b). Note that the absorbing area,
including the CA with two bands on the synchronization
diagonal, is a symmetric one. As c passes cb,r, the syn-
chronous CA becomes transversely unstable and trans-
forms to a chaotic saddle with σ⊥ > 0. Hence, a typical
trajectory starting near the synchronization diagonal is
spread over the entire symmetric absorbing area. Figure
1(c) shows a symmetric asynchronous CA for c = −1.024.
Consequently, for this case, the symmetry is conserved
when the blow-out bifurcation occurs (i.e., a symmetry-
conserving blow-out bifurcation takes place).

Figure 2(a) shows a synchronous CA with four bands
on the diagonal for a = 1.427 and c = −1.031. As above,
through a small parameter mismatching, we get infor-
mation on the shape of the minimal invariant absorbing
area, including the synchronous CA, and then construct
the minimal invariant absorbing area bounded by seg-
ments of the critical curves Lk (k = 1, ..., 32). For clear
presentation, only a part of the whole absorbing area,

including the upper two chaotic bands, is shown in Fig.
2(b). Note that this absorbing area is an asymmetric
one, in contrast to the above symmetric case. (In fact,
there exists a conjugate pair of asymmetric absorbing
areas due to the exchange symmetry.) Obviously, when
crossing a blow-out bifurcation point cb (= −1.029), a
symmetry-breaking blow-out bifurcation occurs, which
results in the birth of a conjugate pair of asymmetric
CAs. An asymmetric CA for c = −1.027 is shown in
Fig. 2(c).

In addition to the linear-coupling case, the type of
blow-out bifurcations is also studied in the dissipatively-
coupled case with g(x, y) = c(y2 − x2), and only
symmetry-conserving blow-out bifurcations are observed
for all cases studied. As an example, consider the case of
a = 1.85, where a chaotic state with a single band exists
on the diagonal. For c = −1.47 (just before the blow-out
bifurcation), a union of segments of the critical curves L1

and L2 and segments of unstable manifolds of a conjugate
pair of asymmetric saddle fixed points (denoted by the
up and the down triangles) born from the synchronous
fixed point (denoted by the circle) via a pitchfork bi-
furcation is used to define a symmetric mixed absorbing
area, as shown in Fig. 3(a). Consequently, when c passes
a threshold point ct (= −1.485), a symmetry-conserving
blow-out bifurcation occurs, leading to the birth of a
symmetric CA, which is shown in Fig. 3(b).

To summarize, we have investigated the conservation
and the breakdown of the symmetry when a blow-out
bifurcation occurs. It has been found that the shape
of the minimal invarsiant absorbing area determines the
type of blow-out bifurcation. For the case of a sym-
metric absorbing area, a symmetry-conserving blow-out
bifurcation occurs while in the case of an asymmetric ab-
sorbing area, a symmetry-breaking blow-out bifurcation
takes place. Just after the blow-out bifurcations, both
the symmetric and the asymmetric asynchronous CAs
exhibit typical on-off intermittent behaviors [8].
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