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Abstract
We investigate mechanisms for the hard bubbling transition in symmetrically
coupled one-dimensional maps. A transition from strong to weak
synchronization occurs via a first period-doubling or pitchfork transverse
bifurcation of a periodic saddle embedded in the synchronous chaotic attractor.
The consequence of such transverse bifurcations depends on the existence
of an ‘absorbing area,’ controlling the global dynamics. In the presence of
an absorbing area, a subcritical transverse bifurcation is found to give rise to
abrupt appearance of transient intermittent bursts with large amplitude. For this
case, any small parameter mismatch that is unavoidable in real systems induces
a hard bubbling transition via an interior crisis. Through a detailed numerical
analysis, we present explicit examples for the subcritical period-doubling and
pitchfork transverse bifurcations, leading to hard bubbling.

PACS number: 05.45.Xt

1. Introduction

Recently, the phenomenon of synchronization in coupled chaotic systems has become a field
of intensive study. For this case of chaos synchronization, a synchronous chaotic motion
may occur on an invariant subspace of the whole phase space [1–4]. Particularly, this chaotic
synchronization has attracted much attention, because of its potential practical applications
(e.g., see [5]).

An important problem in this field concerns stability of chaos synchronization with respect
to a perturbation transverse to the invariant subspace [6]. If a synchronous chaotic state on
the invariant subspace is transversely stable, then it may become an attractor in the whole
phase space. Properties of transverse stability of the synchronous chaotic attractor (SCA)
are intimately associated with transverse bifurcations of periodic saddles embedded in the
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SCA [7–14]. If all such periodic saddles are transversely stable, then the SCA becomes
asymptotically stable (i.e., Lyapunov stable and attracting in the topological sense), and
hence we have ‘strong’ synchronization. However, as the coupling parameter passes through
a threshold value, a periodic saddle first becomes transversely unstable through a local
bifurcation. After this first transverse bifurcation, trajectories may be locally repelled from
the invariant subspace when they visit the neighbourhood of the transversely unstable periodic
repeller. Thus, loss of strong synchronization begins with such a first transverse bifurcation
of an embedded periodic saddle, and then we have ‘weak’ synchronization. However, the
fate of locally repelled trajectories through the first transverse bifurcation depends on whether
there exists an absorbing area, surrounding the SCA and controlling the global dynamics,
inside the basin of attraction [10–13, 15]. Particularly, for the case of asymmetric coupling the
consequence of a transcritical transverse bifurcation has been well investigated in connection
with existence of an absorbing area (see [12, 13]).

Here we are interested in symmetrically coupled chaotic systems, where transition from
strong to weak synchronization may occur through a first period-doubling (PD) or pitchfork
(PF) transverse bifurcation of a periodic saddle embedded in the SCA. For the case of a
supercritical transverse bifurcation, it was found in [9, 10] that the unstable manifold of
the newly born asynchronous saddle forms an absorbing area, surrounding the SCA and
acting as a bounded trapping vessel. Then, a locally repelled trajectory from the invariant
subspace is restrained within this absorbing area and exhibits a transient intermittent bursting
from the invariant subspace [16]. For this case the ‘transverse’ size of the absorbing area
increases gradually from zero with respect to variation of a control parameter, because the
newly born asynchronous saddle points move away continuously from the invariant subspace.
Hence, a supercritical transverse bifurcation induces a soft bubbling transition in the presence
of parameter mismatch between the subsystems, because the maximum bursting amplitude
increases gradually from zero. On the other hand, it was demonstrated in [8, 10] that a
subcritical PD or PF transverse bifurcation may induce a riddling transition. For this case,
the basin of the SCA becomes riddled with a dense set of ‘holes,’ belonging to the basin of
another attractor (or infinity) [17]. This kind of riddling transition occurs when a synchronous
saddle becomes transversely unstable by absorbing an asynchronous repeller lying at the basin
boundary of the SCA. Before the riddling transition, the unstable manifold of the asynchronous
repeller forms an absorbing area surrounding the SCA. However, at the moment of the riddling
transition such an absorbing area disappears, because the SCA makes a contact with its basin
boundary at the synchronous saddle points. Hence, a subcritical transverse bifurcation may
induce a riddling transition in the absence of an absorbing area, because locally repelled
trajectories may go to another attractor (or infinity). In the presence of parameter mismatch
destroying the symmetric invariant subspace, the SCA with a riddled basin is transformed
into a chaotic transient with a finite lifetime through a boundary crisis [18]. In contrast
to this riddling transition, a subcritical PD or PF transverse bifurcation may also lead to
an abrupt occurrence of intermittent burstings with large amplitude when an absorbing area,
confining locally repelled trajectories,exists. However, dynamical origin for this hard bubbling
transition in symmetrically coupled systems has been less understood than those for the case
of asymmetric coupling [12, 13], although characterization of such intermittent burstings for
both cases of the symmetric and asymmetric couplings has been well made in terms of the
average interburst intervals [19].

In this paper, we investigate dynamical mechanisms for hard bubbling transition in a
representative model system of symmetrically coupled one-dimensional (1D) maps. Unlike
the case of riddling transition, a subcritical PD or PF transverse bifurcation may take place by
absorbing a repeller lying strictly inside an absorbing area. For this case, the original absorbing
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area, surrounding the SCA, is preserved through the subcritical transverse bifurcation, because
there is no contact between the SCA and its basin boundary. In section 2.1, with explicit
examples obtained through detailed numerical analysis, we discuss the consequence of
subcritical PD and PF transverse bifurcations when an absorbing area, surrounding the SCA,
exists. Just after this subcritical transverse bifurcation, a locally repelled trajectory is restricted
to move within the absorbing area with a finite transverse width, and hence intermittent bursts
with large amplitude appear abruptly. For this case, the SCA is still transversely stable,
because its transverse Lyapunov exponent is negative. Hence the intermittent bursting will
tend to stop. However, a small parameter mismatch between the 1D maps results in a continual
sequence of intermittent hard bursts through an interior crisis, as shown in section 2.2. Thus,
a mismatch-induced hard bubbling transition may occur in the presence of an absorbing area.
Finally, a summary is given in section 3.

2. Hard bubbling transition in symmetrically coupled 1D maps

In this section, we investigate mechanisms for hard bubbling transition in symmetrically
coupled 1D maps. In section 2.1, it is explicitly shown that, as a consequence of subcritical
PD and PF transverse bifurcations, a transient intermittent bursting with large amplitude occurs
abruptly when an absorbing area, surrounding the SCA, exists. Furthermore, in section 2.2 any
small parameter mismatch that destroys the invariant diagonal is found to lead to a persistent
intermittent hard bursting through an interior crisis.

2.1. Consequence of subcritical transverse bifurcations in the presence of an absorbing area

We consider two coupled 1D maps T,

T :

{
xt+1 = f (xt , a) + c(yt − xt)

yt+1 = f (yt , b) + c(xt − yt)
(1)

where xt and yt are state variables of the subsystems at a discrete time t, the uncoupled
dynamics (c = 0) is governed by the 1D map f (x, p) = 1 − px2 with a control parameter p
(p = a, b), and c is a coupling parameter. In a real situation, a small mismatch between the
two 1D maps is unavoidable. To take into consideration this mismatch, we introduce a small
mismatching parameter ε in the coupled 1D maps of equation (1) such that

b = a + ε. (2)

In this subsection, we consider the ideal case without parameter mismatch (ε = 0). Then,
the coupled map T has an exchange symmetry because it is invariant under the interchange of
coordinates x ↔ y. The set of points which are invariant under the exchange operation forms
a symmetric invariant line x = y. If an orbit lies on the symmetric invariant diagonal, it is
called a synchronous orbit because the two state variables xt and yt become the same for all t;
otherwise, it is called an asynchronous orbit. In addition, this coupled map T is non-invertible,
because its Jacobian determinant det(DT ) (DT is the Jacobian matrix of T) becomes zero
along the critical curve, L0 = {(x, y) ∈ R2 : (2ax + c)(2by + c) − c2 = 0}. Critical curves of
rank k,Lk (k = 1, 2, . . .), are then given by the images of L0 [i.e., Lk = T k(L0)]. Segments
of these critical curves can be used to bound a compact region of the phase space that acts as a
trapping bounded vessel, called an absorbing area A, inside which trajectories bursting away
from the diagonal are confined [15]. Furthermore, the boundary of an absorbing area can also
be obtained by the union of segments of critical curves and portions of the unstable manifold
of an unstable periodic orbit. For this case, A is called a mixed absorbing area.
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Figure 1. (a) Phase diagram in the second largest region of chaos synchronization in symmetrically
coupled 1D maps. The SCA appears when crossing the critical line, denoted by the horizontal
solid line on the a = a∞ line. Note that the SCA is strongly stable in the hatched region with
vertical lines. The non-horizontal boundary curves Dq and Pq of the hatched region correspond
to the first PD and PF transverse bifurcation curves of saddles with period q embedded in the
SCA, respectively. (The dashed parts of Dw

24 and D16 connect at a point, denoted by a small
solid circle.) On the other hand, the horizontal boundary curve Sq represents the synchronous
saddle-node bifurcation opening a period-q window. Here the superscript ‘w’ in Sq or Dq denotes
that the bifurcation is associated with a periodic window. When passing this boundary curve,
a bubbling or riddling transition occurs. The bubbling and riddling regions are shown in light
grey and grey, respectively. Finally, the weakly stable SCA becomes transversely unstable via
a blowout bifurcation when passing the boundary curve denoted by solid circles. (b) Magnified
phase diagram of (a) near the Dw

24 curve. For more details, see the text.

Based on the phase diagram for chaos synchronization, we first discuss the overall
transverse stability of the SCA in the symmetrically coupled 1D maps of equation (1).
With increasing control parameter a, the coupled map T exhibits an infinite sequence of
PD bifurcations of synchronous attractors with period 2n (n = 0, 1, 2, . . .), ending at the
accumulation point a∞ (= 1.401155 · · ·), in some region of c. When crossing a critical line
in the a–c plane, a transition from periodic to chaotic synchronization occurs. Figure 1 shows
the phase diagram in the second largest region of chaos synchronization. The SCA appears
when crossing the critical line, denoted by the horizontal solid line on the a = a∞ line. With
further increase of a from a∞, a sequence of band-merging bifurcations of the SCA takes
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place. For a = an, the 2n+1 bands of the SCA merge into 2n bands; a = a2 (= 1.407405 · · ·)
and a = a3 (= 1.402492 · · ·) lines are shown in the figure.

For the chaotic values of a, the SCA is at least weakly stable inside the region bounded
by solid circles in figure 1, because its transverse Lyapunov exponent

σ⊥ = lim
N→∞

1

N

N∑
t=1

ln |2axt + 2c| (3)

is negative. We note that the SCA becomes strongly stable in the hatched region with vertical
lines, because there all periodic saddles embedded in the SCA are transversely stable. When
crossing the boundary of this hatched region, a weakly stable SCA exhibiting bubbling or
riddling appears, depending on the existence of an absorbing area. For the bubbling case,
there exists an absorbing area, restraining the bursting from the diagonal. However, in the
riddling case, there exists no such absorbing area, and hence the basin of the SCA becomes
riddled with a dense set of holes, belonging to the basin of another attractor (or infinity). Note
that these bubbling and riddling regions are shown in light grey and grey, respectively. In
this region of weak synchronization, a transition from bubbling to riddling may occur through
a boundary crisis of an absorbing area [10] when passing a curve denoted by open circles
in figure 1(a) or through stabilization of an asynchronous saddle with period q [9] when
crossing a dash-dotted PF bifurcation curve Pq . Thus, in the dark grey region, the basin of the
SCA becomes riddled with two dense sets of holes, belonging to the basin of the attractor at
infinity and to the basin of a stabilized asynchronous attractor inside the absorbing area. The
asynchronous chaotic attractor developed from the stabilized asynchronous periodic attractor
disappears through a boundary crisis when crossing a curve denoted by open squares in
figure 1(a). In addition, transition from a small to a large absorbing area may occur via an
interior crisis when passing the curve denoted by open triangles in figure 1(b), and then the
maximum bursting amplitude increases abruptly. Finally, when crossing the boundary denoted
by solid circles, the SCA becomes transversely unstable through a blowout bifurcation [20],
and then a complete desynchronization occurs.

The non-horizontal boundary curves Dq and Pq of the hatched region with vertical lines
represent the first PD and PF transverse bifurcations of a period-q saddle embedded inside the
SCA, which occur when its transverse Floquet (stability) multiplier,

λ⊥ =
q∏

t=1

(−2axt − 2c) (4)

passes through −1 and +1, respectively. Note that the consequence of these transverse PD
and PF bifurcations depends on the existence of an absorbing area. When crossing a solid
curve (e.g., see the solid part of the Dw

24 curve), a soft bubbling transition occurs through a
supercritical transverse bifurcation [9, 10], because the unstable manifold of a newly born
asynchronous saddle forms a mixed absorbing area, inside which burstings from the diagonal
are restrained. Then, the maximum bursting amplitude increases gradually from zero. On
the other hand, when crossing a dashed curve (e.g., see the dashed part of the Dw

24 curve), a
riddling transition takes place through a subcritical transverse bifurcation [8, 10] by absorbing
an asynchronous repeller at the basin boundary of the SCA. For this case, an absorbing area,
surrounding the SCA, disappears, because the SCA makes a contact with its basin boundary.
Then, the basin of the SCA becomes riddled with a dense set of holes, belonging to the basin of
another attractor (or infinity). Thus, a subcritical transverse bifurcation may induce a riddling
transition in the absence of an absorbing area. However, when passing a dotted curve (e.g.,
see the dotted part of the Dw

24 curve), a hard bubbling transition occurs through a subcritical
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transverse bifurcation in the presence of an absorbing area, as demonstrated below. For this
case, intermittent bursts with large amplitude appear abruptly.

Through a detailed numerical analysis, we investigate the consequence of subcritical PD
and PF transverse bifurcations when an absorbing area, surrounding the SCA, exists. As a
first example, consider the subcritical PD bifurcation of a synchronous period-24 saddle (born
via a saddle-node bifurcation) that occurs when crossing the dotted part of the Dw

24 curve
in figure 1(a). Figure 1(b) shows a magnified phase diagram of figure 1(a) near the Dw

24
curve. An asynchronous period-2 saddle becomes stabilized when crossing the dash-dotted
subcritical PF bifurcation line P2, and then the basin of the SCA becomes riddled with a dense
set of holes, belonging to the basin of the stabilized asynchronous period-2 attractor. Thus, a
transition from bubbling (shown in light grey) to riddling (shown in grey) occurs. Note that
this stabilization line P2 touches the right subcritical part of the Dw

24 curve and decomposes it
into the dashed and dotted parts. When crossing the dashed part, the subcritical PD bifurcation
induces a riddling transition,because an absorbing area, surrounding the SCA, disappears at the
bifurcation point. On the other hand, when passing the dotted part, transient intermittent bursts
with large amplitude appear suddenly, because there exists an absorbing area. For explicit
demonstration, we fix the value of a as a = 1.405 and decrease the coupling parameter c along
the route I in figure 1(b). Figure 2(a) shows a large absorbing area surrounding the whole
eight-band SCA for c = −0.202. Inside this absorbing area, an asynchronous period-48
repeller (denoted by solid circles) lies near a synchronous period-24 saddle (denoted by open
circles) embedded in the SCA. For a clear view, a magnified view near the topmost band of the
SCA is given in figure 2(b). As c is decreased, the asynchronous period-48 repeller approaches
the synchronous period-24 saddle. Eventually, when crossing the dotted part of the Dw

24 curve
for c = −0.207 085, the synchronous period-24 saddle becomes transversely unstable via
a subcritical PD bifurcation by absorbing the asynchronous period-48 repeller lying inside
the absorbing area. For this case, the absorbing area surrounding the SCA is preserved, as
shown in figure 2(c) for c = −0.212, in contrast to the case of riddling transition. Thus,
transient intermittent bursts with large amplitude appear abruptly (see figure 2(d )). For this
case, the maximum bursting amplitude is determined by the transverse size of the absorbing
area.

As a second example, we consider the subcritical PF transverse bifurcation that occurs
when crossing the dotted P8 line in figure 1(b). For explicit demonstration, we fix the value
of a as a = 1.405 and decrease the coupling parameter along the route II in figure 1(b).
Figure 3(a) shows a large absorbing area surrounding the whole eight-band SCA for
c = −0.233. Inside this absorbing area, a pair of asynchronous period-8 repellers (denoted
by solid up-triangles and down-triangles) lies near a synchronous period-8 saddle (denoted
by open circles). To show the repellers clearly, a magnified view near the topmost band
of the SCA is given in figure 3(b). As c is decreased, the asynchronous period-8 repellers
approach the synchronous period-8 saddle. Eventually, for c = −0.236 431 the synchronous
period-8 saddle loses its transverse stability via a subcritical PF bifurcation by absorbing the
asynchronous period-8 repellers. For this case, the large absorbing area is preserved, as shown
in figure 3(c) for c = −0.238. Thus, a transient intermittent bursting with large amplitude
appears suddenly (see figure 3(d )), as in the above case of the subcritical PD transverse
bifurcation.

As explicitly demonstrated in the above two examples, subcritical PD and PF transverse
bifurcations give rise to an abrupt appearance of transient intermittent bursts with large
amplitude when there exists an absorbing area, surrounding the SCA. For this case, any
small parameter mismatch between the 1D maps may lead to a persistent intermittent bursting
through an interior crisis, as will be shown in section 2.2.
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Figure 2. (a) Large absorbing area surrounding the whole eight-band SCA for a = 1.405
and c = −0.202 before the subcritical PD transverse bifurcation of the embedded synchronous
period-24 saddle (denoted by open circles). The absorbing area is bounded by segments of the
critical curves Lk (k = 1, . . . , 4) inside the basin of attraction (shown in light grey). Here the
dots indicate where the segments of the critical curves connect. An asynchronous period-48
repeller (denoted by solid circles) lies strictly inside the absorbing area. For a clear view of
this asynchronous period-48 repeller, a magnified view of (a) near the topmost band of the SCA
is given in (b). For c = −0.207 085, the synchronous period-24 saddle becomes transversely
unstable via a subcritical PD bifurcation by absorbing the asynchronous period-48 repeller.
(c) Preserved absorbing area surrounding the SCA for a = 1.405 and c = −0.212 after the
subcritical PD transverse bifurcation. (d ) Transient intermittent bursting for a trajectory starting
from an initial point (x0, y0) = (0.5, 0.51) when a = 1.405 and c = −0.212. Here the transverse
variable u (≡ y − x) represents the deviation from the diagonal.

2.2. Effect of parameter mismatch on transient intermittent bursting

In this subsection, we investigate the parameter-mismatching effect on the transient intermittent
bursts caused by subcritical PD and PF transverse bifurcations in the presence of an absorbing
area. It is thus shown that any small parameter mismatch leads to a persistent intermittent
hard bursting via an interior crisis.

We first consider the case of a subcritical PD transverse bifurcation discussed in section 2.1
and study the effect of parameter mismatch with ε = 0.0015 along the route I for a = 1.405
in figure 1(b). For this case, a strongly stable SCA has no sensitivity with respect to
variation of the mismatching parameter, because all embedded unstable periodic orbits are
transversely stable [19]. Hence, the strongly stable SCA in figure 2(b) is transformed into
a thin ‘quasisynchronous’ chaotic attractor that lies in a slightly spread invariant region near
the diagonal. For a clear presentation, a magnified view of the quasisynchronous chaotic
attractor near its topmost band is given in figure 4(a) for c = −0.202. A period-48 repeller
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Figure 3. (a) Large absorbing area surrounding the whole eight-band SCA for a = 1.405 and
c = −0.233 before the subcritical PF transverse bifurcation of the synchronous period-8 saddle
(denoted by open circles). The absorbing area is bounded by segments of the critical curves
Lk (k = 1, . . . , 4) inside the basin of attraction (shown in light grey). Here the dots indicate where
the segments of the critical curves connect. A pair of asynchronous period-8 repellers (denoted
by solid up-triangles and down-triangles) lies strictly inside the absorbing area. For a clear view
of the asynchronous period-8 repellers, a magnified view of (a) near the topmost band of the
SCA is given in (b). For c = −0.236 431, the synchronous period-8 saddle becomes transversely
unstable via a subcritical PF by absorbing a pair of asynchronous period-8 repellers. (c) Preserved
absorbing area surrounding the SCA for a = 1.405 and c = −0.238 after the subcritical PF
transverse bifurcation. (d ) Transient intermittent bursting for a trajectory starting from an initial
point (x0, y0) = (0.5, 0.51) when a = 1.405 and c = −0.238. Here the transverse variable
u (≡ y − x) represents the deviation from the diagonal.

(denoted by solid circles) lies near a period-24 saddle (denoted by open circles) embedded
inside the quasisynchronous chaotic attractor. As c is decreased the period-48 repeller
approaches the quasisynchronous chaotic attractor. Eventually, when passing a threshold
value of c = −0.2069 they make a collision, and then a large two-dimensional (2D)
chaotic attractor filling the whole absorbing area appears suddenly via an interior crisis,
as shown in figure 4(b) for c = −0.212. Consequently, a persistent intermittent bursting with
large amplitude occurs abruptly (see figure 4(c)). After this interior crisis, a subcritical
PD bifurcation between the period-24 saddle and the period-48 repeller takes place for
c = −0.206 950 inside the large 2D chaotic attractor. Although the PD bifurcation is preserved
under a parameter mismatch, it has no particular consequence to the hard bubbling caused by
the interior crisis.

As a second example, we consider the case of a subcritical PF transverse bifurcation
discussed in section 2.1 and investigate the effect of parameter mismatch along the route II



Mechanisms for the hard bubbling transition in symmetrically coupled chaotic systems 6959

-0.8 0.3 1.4
-0.8

0.3

1.4
L

3L
4

L
2

L
4

L
3

L
1

(b)

y

x

0 25000 50000
-2

0

2
(c)

 

 
u t

t

0.986 0.994 1.002
0.984

0.994

1.004
(a)

 

y

x

Figure 4. Effect of the parameter mismatch with ε = 0.0015 on the strong and weak
synchronization for a = 1.405 in the case of the subcritical PD transverse bifurcation. (a) A
magnified view near the topmost band of the thin quasisynchronous chaotic attractor for c = −0.202
inside the basin of attraction shown in grey. Solid and open circles represent the period-48 repeller
and period-24 saddle, respectively. (b) A large 2D chaotic attractor filling the whole absorbing
area and (c) a persistent intermittent bursting for a trajectory starting from (x0, y0) = (0.5, 0.5)

for the hard bubbling case of c = −0.212. Here the transverse variable u (≡ y − x) represents the
deviation from the diagonal.

for a = 1.405 in figure 1(b). Unlike the case of the PD bifurcation, the PF bifurcation is
structurally unstable, and hence it is destroyed even by a small mismatch. Figure 5(a) shows
the bifurcation diagram for ε = 0.0002. Note that the subcritical PF bifurcation is transformed
into a saddle-node bifurcation through splitting of the upper branch of the original bifurcation
diagram for ε = 0. Hence the period-8 saddle (denoted by the solid line) disappears through
collision with a period-8 repeller (denoted by the dashed curve). As in the above case of
the subcritical PD transverse bifurcation, a strongly stable SCA without parameter sensitivity
is transformed into a thin quasisynchronous chaotic attractor in the presence of a parameter
mismatch. Figure 5(b) shows a magnified view near the topmost band of the quasisynchronous
chaotic attractor for c = −0.233. Two period-8 repellers (denoted by the up-triangle and down-
triangle) approach the quasisynchronous chaotic attractor, and a period-8 saddle (denoted by
an open circle) lies at the upper boundary of this quasisynchronous chaotic attractor. When
passing a threshold value of c = −0.2345, the upper period-8 repeller makes a collision
with the period-8 saddle in a saddle-node bifurcation, and then they disappear. Consequently,
the quasisynchronous chaotic attractor is transformed into a large 2D chaotic attractor filling
the whole absorbing area, due to the interior crisis induced by the saddle-node bifurcation,
as shown in figure 5(c) for c = −0.238. Thus, a persistent intermittent bursting with large
amplitude occurs abruptly (see figure 5(d )).
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Figure 5. Effect of the parameter mismatch with ε = 0.0002 on the strong and weak
synchronization for a = 1.405 in the case of the subcritical PF transverse bifurcation.
(a) Bifurcation diagram. Solid and dashed lines represent the period-8 saddle and repeller,
respectively. (b) A magnified view near the topmost band of the thin quasisynchronous chaotic
attractor for c = −0.233 inside the basin of attraction shown in grey. The up-triangle and down-
triangle denote period-8 repellers, while the open circle represents the period-8 saddle. (c) A large
2D chaotic attractor filling the whole absorbing area and (d ) a persistent intermittent bursting for
a trajectory starting from (x0, y0) = (0.5, 0.5) for the hard bubbling case of c = −0.238. Here the
transverse variable u (≡ y − x) represents the deviation from the diagonal.

We also note that equation (1) is invariant under the the interchange x ↔ y and
ε �→ −ε. Hence, the same kind of hard bubbling transition occurs through an interior
crisis, independently of the sign of parameter mismatch.

3. Summary

In connection with existence of an absorbing area controlling the global dynamics, we have
investigated some mechanisms for hard bubbling transition in symmetrically coupled 1D maps.
Through a detailed numerical analysis, we have explicitly demonstrated that subcritical PD
and PF transverse bifurcations may lead to an abrupt occurrence of a transient intermittent
bursting with large amplitude in the presence of an absorbing area. For this case, any small
parameter mismatch that is unavoidable in real systems has been shown to induce a hard
bubbling transition via an interior crisis.
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