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The critical behavior of the system of two coupled invertible maps with period-doubling was in-
vestigated. We obtain that the critical behavior of the FQ-type exists in the invertible systems only
when partial systems are coupled in a special way: with dissipative coupling. The coordinates of the
critical (FQ) point in the system of dissipatively coupled Hénon maps were found. The scaling in the
parameter plane near the FQ-point was demonstrated.
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1 Introduction

The investigation of coupled systems is now a
very popular topic in the nonlinear dynamics.
There are a lot of papers dedicated to the ques-
tions of synchronization (see [1,2] for example),
spatio-temporal dynamics in the coupled maps
lattices [3,4] and so on. But in the most part
of those papers the partial systems were taken to
be identical. The system of non-identical coupled
maps was investigated in [5]. It was the system
of two coupled logistic maps

xn+1 = 1− λx2
n − Cy2

n,

yn+1 = 1−Ay2
n −Bx2

n,
(1)

where the coupling parameters B and C were
fixed (B = 0.375, C = −0.25). In this system the
new type of critical behavior (called the FQ-type)

was discovered and the corresponding scaling con-
stants, universal multipliers and other character-
istics were calculated [5-8].
It seems that the FQ-type of criticality is typical
for non-invertible coupled systems with period-
doubling. But it is not evident that the invertible
systems will demonstrate this type of critical be-
havior as a phenomenon of codimension 2 because
it is known that some typical for non-invertible
systems types of critical behavior can’t be ob-
served in the invertible systems with the same
numbers of parameters (some examples are given
in [9,10]). This question seems to be rather im-
portant because an invertible system always may
be interpreted as a Póıncare map of some system
of differential equations, so it seems to be more
realistic then discrete map. In our paper we’ll try
to obtain the critical behavior of the FQ-type in
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the invertible systems.

2 ”Natural” transition

to invertible maps

Now we’ll try to construct the invertible system in
which the critical behavior of the FQ-type occur.
It seems very natural that such system should be
as close to (1) as possible, and the most natural
way of constructing such system is to use Hénon
maps instead of logistic maps because the Hénon
map [11] is the most similar to logistic map in-
vertible system. So, lets consider the system:

xn+1 = 1− λx2
n − Cu2

n − byn,

yn+1 = xn,

un+1 = 1−Au2
n −Bx2

n − bvn,

vn+1 = vn.

(2)

We’ll take the values of coupling constants the
same as in (1) and fix the parameter of dissipa-
tion b equal to 0.2. At the Fig.1 one can see
the structure of the parameter plane (λ,A) for
system (2) (up) and for system (1)(down). The
main structure of these parameter planes is very
similar, in particular, both Feigenbaum scenario
and transition to chaos through the destruction
of quasiperiodic motion may be observed. But
also one can see rather essential differences (see
Fig. 2).

In particular, in the region of quasiperiodical
motion of system (2) there are Arnold tongues
which have the unusual shape similar to the ring.
Unfortunately, it is very difficult to investigate
these tongues more detail due to rather large pe-
riod and small size of them.

To understand if there is the FQ-type of crit-
icality in the system (2) we should try to locate
the critical point and to obtain the numerical esti-
mates of the corresponding scaling constants. Be-
low we’ll consider some numerical methods which
we used in this work.

FIG. 1. The structure of the parameter plane of sys-
tems (2) (up) and (1) (down). The areas where the
stable cycles exist are colored with different colors.
The periods of cycles are written. The regions of non-
periodical behaviour (chaos and quasiperiodical mo-
tion) are colored with black, the regions of global in-
stability are colored by white. The FQ-point at the
parameter plane of (1) is marked by black narrow.

3 The numerical methods

If we’ll have a good look at Fig. 1 we’ll see that
the basic element of the parameter plane is as
shown at the Fig. 3. The region where the sta-
ble cycle with period n exists is bounded by
the lines of period-doubling and Neimark bifur-
cations which intersect at some point. We’ll call
it ”period-doubling terminal (or PDT) point” be-
cause the period-doubling line terminates here.
If the FQ-type of criticality exists in the system
then the sequence of PDT-points accumulates to
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FIG. 2. The fine structure of the area of quasiperi-
odicity for the system (2) (up) and (1) (down). The
regions of periodical motion are colored with grey, the
regions of quasiperiodical motion - with black.

FIG. 3. The basic pattern of the parameter plane’s
structure for systems (1) and (2)

the critical point of the FQ-type. It is remark-

able that in every infinitely small neighborhood
of this point we can observe both the period-
doubling and quasyperiodicity. (The name ”FQ”
originated from this fact: it means ”Feigen-
baum+quasyperiodicity”).

It is clear that at the PDT-point both multi-
pliers of n-cycle are equal to -1, so it is possible
to obtain this point by solving numerically corre-
sponding equations. Also we can estimate scaling
constants and scaling vectors for the parameter
plane as eigenvalues and eigenvectors of so called
scaling matrix (see [12]) which may be found from
the following expressions:

∆λn−1 = δ
(n)
11 ∆λn + δ

(n)
12 ∆An

∆An−1 = δ
(n)
21 ∆λn + δ

(n)
22 ∆An

∆λn = δ
(n)
11 ∆λn+1 + δ

(n)
12 ∆An+1

∆An = δ
(n)
21 ∆λn+1 + δ

(n)
22 ∆An+1,

(3)

where ∆λn = λn+1 − λn, ∆An = An+1 −An, and
λn and An are the coordinates of the PDT-point
of period n. (Here the elements of scaling matrix
obtained from the coordinates of PDT-points for
the cycles of periods n− 1, n and n + 1 were de-
notes as δ

(n)
ij .)

Another way to obtain the FQ-point is
eigenvalue-matching method [13-15]. It is based
on the fact that at the critical point all cycles
asymptotically have the same multipliers. So the
sequence of points in the parameter plane where
multipliers for cycles of period n and 2n are equal
must converge to the critical point. Scaling ma-
trix may be obtained from equation

∆n = Γ−1
n Γ2n, (4)

where

Γn =




∂Spn

∂λ
∂Spn

∂A

∂Detn
∂λ

∂Detn
∂A


 . (5)

(All derivatives in matrix (5) are taken in the
point where the multipliers of the cycles of period
n and 2n are equal.)

Nonlinear Phenomena in Complex Systems Vol. 7, No. 1, 2004



72 A.P. Kuznetsov, A.V. Savin, and S.Y. Kim: On the Criticality of the FQ-Type . . .

Table 1 Table 2

N λ A
1 1.40443503 0.79643742
2 1.86175463 1.23944066
4 1.97335903 1.35074553
8 1.99056056 1.36629930
16 1.99624542 1.37214443
32 1.99617992 1.37183054
64 1.99670754 1.37245687
128 1.99678555 1.37254857
256 1.99680475 1.37257100
512 1.99680427 1.37257030
1024 1.99680724 1.37257388

N δ1 k1 δ2 k2

32 4.893315 1.052708 -1.767793 0.813615
64 5.773516 1.061852 -1.948423 0.791786
128 5.992605 0.848376 -53.67671 0.793495
256 8.651061 0.840215 1.672860 0.874160
512 1.91+2.41i 1.91-2.41i
1024 7.851900 0.867895 -0.965509 0.826408
2048 35.83928 0.823423 4.211473 0.829215

4 Searching for the FQ-point in

the system (2)

First it should be noted that both methods give
rather good results when they are applied to the
system (1), but the eigenvalue-matching method
gives better results. Below there are the results
of these methods applied to system (2).

The sequence of PDT-points converges rather
well (see Table 1) to the point with coordinates
λc = 1.99681 . . . and Ac = 1.37275 . . ., but it is
not monotonic. For example, the parameter val-
ues for the PDT-point for the cycle of period 32
are less then for the cycle of period 16. Also there
are some essential differences in a fine structure
of parameter plane (see Fig. 4).

In the Table 2 one can see scaling constants
and vectors obtained from PDT-sequence. (For
scaling vectors the tangent coefficient is shown).

It is clear that these values even approximately
are not close to the typical for the FQ-type values
δ1 = 6.32631925 . . . and δ2 = 3.44470967 . . .. The
eigenvalue-matching method gives similar results
(see Tables 3 and 4).

This results allow us to conclude that there
are no FQ-type of criticality in the system (2).It
seems that it is due to the influence of third rele-
vant eigenvalue of RG-equation corresponding to
the FQ-type δ3 = −1.900 . . .. This eigenvalue

does not affect the dynamics of (1) due to the
symmetry of the system, but in the system (2)
there are no such symmetry.

5 Dissipatively coupled Hénon

maps

It is possible to avoid the influence of third eigen-
value by introducting the special type of cou-
pling, so called dissipative coupling (see [5,6]).
We can introduce the dissipative coupling be-
tween two autonomous maps xn+1 = f(xn) and
yn+1 = g(yn) as

xn+1 = f(xn) + C(f(xn)− g(yn)),

yn+1 = g(yn) + B(g(yn)− f(xn)),
(6)

where B and C are the coupling constants. This
coupling tends to equalize the values of dynamical
variables of partial systems.

When partial systems are Hénon maps, this
procedure results in system (7):

xn+1 = 1− λx2
n − b(1− C ′)yn − Cu2

n − bC ′vn,

yn+1 = (1− C ′)xn + C ′un,

un+1 = 1−Au2
n − b(1−B′)vn −Bx2

n − bB′yn,

vn+1 = (1−B′)un + B′xn,
(7)
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Table 3 Table 4

N λ A
32 1.99691244 1.37270417
64 1.99680041 1.37256554
128 1.99681349 1.37258140
256 1.99680210 1.37256763
512 1.99680838 1.37257526

N δ1 k1 δ2 k2

32 10.92251 0.619983 3.572088 0.822044
64 3.84+0.45i 3.84-0.45i
128 10.49683 0.769194 3.687652 0.837312
256 4.853185 0.869885 1.806063 0.819520
512 8.941400 0.804633 3.671438 0.827040

Table 5 Table 6

N λ A
1 1.38086158 0.76747515
2 1.86757505 1.24659522
4 1.97122318 1.34817659
8 1.99205487 1.36816214
16 1.99586986 1.37171421
32 1.99658765 1.33237640
64 1.99679763 1.37259965
128 1.99686780 1.37268023
256 1.99688667 1.37270236
512 1.99689167 1.37270830
1024 1.99689329 1.37271025
2048 1.99689375 1.37271079
FQ 1.99681. . . 1.372575. . .

N δ1 k1 δ2 k2

64 6.344390 2.178323 2.622498 0.818234
128 9.113578 0.737851 4.223072 0.840365
256 6.033608 0.528929 3.848202 0.824688
512 5.767523 0.870097 2.314523 0.822454
1024 7.548862 8.016119 3.956383 0.826543

where we use some definitions: C ′ = C λ−B)
Aλ−CB ,

B′ = B A−C
Aλ−CB and the coupling parameters were

fixed as follows B=0.375, C=-0.25, b=0.2. (The
parameters were changed so that system becomes
(1) with the same values of coupling parameters
when b=0.)

In the Fig.5 one can see the structure of the pa-
rameter plane for system (7). It is clear that its
structure is practically the same that for system
(1) except the fact that near the axes there are the
regions of global instability. These regions don’t
influence the dynamics near the FQ-point, but it
is interesting that the transition from period 1 to
global instability here occur through the region of
quasiperiodical motion with Arnold tongues.(see
Fig.6) Lets find the FQ-point in the system (7)
with the help of the above-listed numerical meth-

ods. The coordinates of PDT-points are in Table
5 and the values of scaling constants and vectors
- in Table 6.

It is clear that the PDT-sequence shows good
convergence to the point λc = 1.99689 . . ., Ac =
1.3782711 . . ., and the values of scaling constants
are close to the typical for the FQ type. Lets
also pay attention to the fact that eigenvector
corresponding to the constant δ2 demonstrates
rather good convergence unlike the first eigenvec-
tor. The same situation occurred in the system
(1). So we can say that there are no special di-
rection in the parameter plane corresponding to
the scaling constant δ1. (See [6] for the reasons
of this fact).

In the tables 7 and 8 one can see the results of
eigenvalue-matching method applied to the sys-
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FIG. 4. The fine structure of the parameter plane for
system (2) (up) and (1) (down). One can see that
the shape of the region of period 16 differs very much
and the Arnold tongues have rather unusual shape for
system (2) unlike the system (1).

FIG. 5. The structure of the parameter plane of sys-
tem (7).

FIG. 6. The region of quasiperiodical motion on the
parameter plane of system (7).

tem (7).
We can see that the coordinates of the

FQ-point may be defined with more precision
with this method (λc = 1.9968939 . . ., Ac =
1.3727110 . . ., and scaling constants demonstrate
rather good convergence to the values δ1 =
6.32631925 . . ., δ2 = 3.44470967 . . .. So we can
conclude that in the invertible system (7) the FQ-
type of criticality exists.

6 Scaling near the FQ-point on

the parameter plane

Now lets draw the illustrations of scaling on the
parameter plane of system (7) near the FQ-point.
We should define the special ”scaling” coordi-
nates (C1, C2) in such a way that the structure of
the parameter plane will be invariant when scal-
ing with constant δ1 along the axis C1 and con-
stant δ2 along the axis C2. Let the axis C2 to be
collinear with the eigenvector k2 corresponding to
scaling constant δ2; and the axis C1 be collinear
with the axis λ for simplicity because there are no
definite eigenvector corresponding to scaling con-
stant δ1 and we can choose the direction of this
axis arbitrary [6]. Then we can see that ”natural”
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Table 7 Table 8

N λ A
16 1.99689769 1.37268669
32 1.99688586 1.37270094
64 1.99689574 1.37271326
128 1.99689414 1.37271127
256 1.99689376 1.37271081
512 1.99689395 1.37271105
1024 1.99689393 1.37271102
FQ 1.9968939. . . 1.3727110. . .

N δ1 δ2 k1 k2

32 6.372306 3.354398 -0.159957 0.823286
64 6.407103 3.472693 -0.484587 0.824998
128 6.287635 3.494486 -4.669529 0.825698
256 6.299577 3.374163 0.0251426 0.825207
512 6.386254 3.419344 0.192018 0.825159
1024 6.294248 3.461336 1.431319 0.825182

and ”scaling” coordinates satisfy next formula:

A = Ac + C2,

λ = λc + C1 + k2C2,
(8)

where λc = 1.996839 . . . and Ac = 1.3727110 . . .

are the coordinates of the FQ-point (the scaling
center) and k2 = 0.8452... is the tangent coeffi-
cient of the axis C2 in the ”natural” coordinates.

The structure of the parameter plane in the
scaling coordinates is demonstrated at the Fig.7,
and at the Fig. 8 the scaling is demonstrated in
the close vicinity of the critical point. It is clear

FIG. 7. The structure of the parameter plane of sys-
tem (7) in the scaling coordinates (C1,C2) .

that the structure of the parameter plane repro-
duces very well when we rescale coordinates with
constants C1 and C2. Also we can see that the

FIG. 8. The illustration of scaling in the vicinity of
the FQ-point at the parameter plane of system (7).
The below figure is the rescaled rectangle marked on
the upper figure.

fine structure of the parameter plane near the FQ-
point is practically the same as the structure of
the parameter plane near the FQ-point for system
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(1) (compare Figs. 8 and 9).

FIG. 9. The fine structure of the parameter plane of
system (1) near the FQ-point. It is well seen that it is
very similar to the structure of the parameter plane of
system (7) near the FQ-point (compare with Fig.8).

7 Conclusion

So we demonstrated that the FQ-type of critical-
ity exists not only in non-invertible but also in the
invertible systems of coupled maps with period-
doubling. To observe the behavior of this type
in the system of invertible coupled maps with
period-doubling as the phenomenon of codimen-
sion 2 we should introduce the dissipative cou-
pling between the systems. In this case the struc-
ture of the parameter plane near the FQ-point in
completely the same as in the system of coupled
non-invertible maps and it is possible to demon-
strate scaling near the FQ-point with the typical
for the FQ-type scaling constants.
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