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Mechanism for the Band-Merging Route to Strange Nonchaotic Attractors in
Quasiperiodically Forced Systems
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As a representative model for quasiperiodically forced period-doubling systems, we consider the
quasiperiodically forced Hénon map and investigate the dynamical mechanism for the band-merging
route to intermittent strange nonchaotic attractors (SNAs). Using the rational approximation to
quasiperiodic forcing, we show that a band-merging transition from a two-band smooth torus to a
single-band intermittent SNA occurs when the smooth torus collides with a ring-shaped unstable
set which has no counterpart in the unforced case. The mechanism for the band-merging transition
to intermittent SNAs is also confirmed in the quasiperiodically forced Toda oscillator. In addition
to inducing the transition to SNAs, such a band-merging mechanism is a direct cause for the
truncation of the torus-doubling sequence.
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I. INTRODUCTION

Strange nonchaotic attractors (SNAs) typically appear
in quasiperiodically forced dynamical systems [1]. They
exhibit some properties of regular, as well as chaotic, at-
tractors. Like regular attractors, their dynamics is non-
chaotic in the sense that they do not have a positive
Lyapunov exponent; like usual chaotic attractors, they
have a geometrically strange (fractal) structure. These
SNAs were first described by Grebogi et al. [2] and have
been extensively investigated both theoretically [3–17]
and experimentally [18]. Moreover, they are related to
the Anderson localization in the Schrödinger equation
with a quasiperiodic potential [19], and may have a prac-
tical application in secure communication [20]. Hence,
dynamical routes to SNAs have become a topic of con-
siderable current interest [4,7–13,15–17]. However, the
mechanisms for the birth of SNAs are much less clear
than those for the appearance of chaotic attractors in
periodically forced systems.

Here, we are interested in the band-merging route to
intermittent SNAs. As a parameter passes a threshold
value, a two-band smooth torus, which is born from its
single-band parent torus via a torus-doubling bifurca-
tion, abruptly transforms into a single-band intermit-
tent SNA, and then the torus-doubling sequence is trun-
cated. This band-merging transition to an intermittent
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SNA is quite general and has been observed in a number
of quasiperiodically forced period-doubling systems (e.g.,
see Refs. [10–12]). However, the unstable orbit inducing
such a band-merging transition was not located; hence,
the dynamical origin for the band-merging transition re-
mains unclear.

This paper is organized as follows: In Sec. II, we inves-
tigate the mechanism for the band-merging route to an
intermittent SNA in the quasiperiodically forced Hénon
map which is a representative model for quasiperiodi-
cally forced period-doubling maps. We use the rational
approximation to quasiperiodic forcing and find that a
transition from a two-band smooth torus to a single-band
intermittent SNA occurs through a collision with an in-
variant ring-shaped unstable set which has no counter-
part in the unforced case. The dynamical mechanism
for the band-merging transition is also confirmed in the
quasiperiodically forced Toda oscillator, which is another
representative model for quasiperiodically forced period-
doubling flows. We note that this kind of band-merging
route to intermittent SNAs is in contrast to the Heagy-
Hammel route to SNAs via torus collision [4]. For the
latter case, a two-band smooth torus is transformed into
a single-band SNA, exhibiting no intermittency, when it
collides with its unstable parent torus. Both mechanisms
for the birth of SNAs are direct causes for the interrup-
tion of torus-doubling cascades [21]. Finally, a summary
is given in Sec. III.
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II. BAND-MERGING TRANSITION TO
INTERMITTENT STRANGE

NONCHAOTIC ATTRACTORS

We consider the quasiperiodically forced Hénon map,
which is a representative model for quasiperiodically
forced period-doubling systems:

M :





xn+1 = a− x2
n + yn + ε cos 2πθn,

yn+1 = bxn,
θn+1 = θn + ω (mod 1),

(1)

where a is the nonlinearity parameter of the unforced
Hénon map, and ω and ε represent the frequency and
the amplitude of the quasiperiodic forcing, respectively.
This quasiperiodically forced Hénon map M is invertible
because it has a nonzero constant Jacobian determinant
−b whose magnitude is less than unity (i.e., b 6= 0 and
−1 < b < 1 ). Here, we fix the value of the dissipation
parameter b at b = 0.05 and set the frequency ω to be the
reciprocal of the golden mean, ω = (

√
5 − 1)/2. Then,

using the rational approximation to this quasiperiodic
forcing, we investigate the dynamical mechanism for the
band-merging route to intermittent SNAs. For the in-
verse golden mean, its rational approximants are given
by the ratios of the Fibonacci numbers, ωk = Fk−1/Fk,
where the sequence of {Fk} satisfies Fk+1 = Fk + Fk−1

with F0 = 0 and F1 = 1. Instead of a quasiperiodically
forced system, we study an infinite sequence of periodi-
cally forced systems with rational driving frequencies ωk

and suppose that the properties of the original system
M may be obtained by taking the quasiperiodic limit
k →∞.

Fig. 1(a) shows a phase diagram in the a − ε plane.
Each phase is characterized by the (nontrivial) Lyapunov
exponents σ1 and σ2 (≤ σ1) associated with the dy-
namics of the variables x and y (besides the zero expo-
nent, connected to the phase variable θ of the quasiperi-
odic forcing) as well as the phase sensitivity exponent
δ. The exponent δ measures the sensitivity with respect
to the phase of quasiperiodic forcing and characterizes
the strangeness of an attractor [5]. A two-band smooth
torus, which is born via a first-order torus-doubling bi-
furcation of its parent torus with a single band, exists in
the region represented by 2T and is shown in light gray.
It has negative Lyapunov exponents (σ1,2 < 0) and no
phase sensitivity (δ = 0). When crossing the solid line
(corresponding to a second-order torus-doubling bifurca-
tion line), the two-band smooth torus becomes unstable
and bifurcates to a four-band smooth torus, which ex-
ists in the region denoted by 4T . On the other hand,
a chaotic attractor with a positive Lyapunov exponent
(σ1 > 0) exists in the region shown in black. Between
these regular and chaotic regions, SNAs that have nega-
tive Lyapunov exponents (σ1,2 < 0) and high phase sen-
sitivity (δ > 0) exist in the region shown in gray. Because
of their high phase sensitivity, these SNAs have fractal
structure [5]. A very interesting feature of the phase di-
agram is the existence of a second-order “tongue” that

Fig. 1. (a) Phase Diagram of the quasiperiodically forced
Hénon map M in the a− ε plane for the case of b = 0.05 and
ω = (

√
5−1)/2. Regular, chaotic, and SNA regions are shown

in light gray, black, and gray, respectively. For the case of a
regular attractor, tori with two and four bands exist in the
regions denoted by 2T and 4T , respectively. When crossing
the white solid curve, a two-band attractor is transformed
into a single-band attractor; a transition from a four-band
attractor to a two-band attractor occurs when passing the
white dashed curve. Particularly, a band-merging transition
to an intermittent SNA takes place along route A. In (b) and
(c), projections of the attractors and of the smooth unstable
torus (represented by a dashed curve) onto the θ − x plane
and the 2D slices with y = 0.005 of the basins of the attractors
are given for a = 1.17. There exists a pair of conjugate tori
in M2, which are denoted by black curves in (b) for ε =
0.12. The basins of the upper and the lower tori are shown
in light gray and gray, respectively. Through a collision with
a hole boundary, the conjugate tori merge into a single-band
intermittent SNA in M , as shown in (c) for ε = 0.127.

penetrates into the chaotic region. This tongue lies near
the terminal point (denoted by the cross) of the second-
order torus-doubling bifurcation curve, as in the case of
the main (first-order) tongue that exists near the ter-
minal point of the first-order torus-doubling bifurcation
line (e.g., see Fig. 1(a) in Ref. [15]).

When passing the solid white line in Fig. 1(a), a two-
band attractor (smooth torus, SNA, or chaotic attrac-
tor) transforms into a single-band attractor. This band-
merging curve starts from the band-merging point for the
unforced case (ε = 0) where a two-band chaotic attractor
in the Hénon map transforms smoothly to a single-band
chaotic attractor through a collision with its parent un-
stable fixed point. As ε is increased from zero, a natu-
ral generalization of the band merging for the unforced
case occurs for a two-band chaotic attractor when it col-
lides with the smooth unstable torus that is developed
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from the unstable fixed point of the (unforced) Hénon
map. Hereafter, we will call this generalized transition
from the unforced case as the “standard” band-merging
transition. Thus, the standard band-merging transition
curve continues smoothly in the (a, ε) plane. However,
it loses its differentiability at the two vertices denoted
by the pluses (+). Then, a nonstandard band-merging
transition occurs along the routes A, B, and C crossing
the segment bounded by the two vertices. [Above the
upper vertex, standard band mergings occur again for a
nonchaotic attractor (smooth torus and SNA) as well as
a chaotic attractor.] As in the case of interior crisis [22],
the nonstandard band merging of a two-band attractor
is a kind of “hard” transition, because the attractor size
is suddenly increased through an abrupt merging of the
two separate bands without direct touching. This is in
contrast to the “soft” transition occurring for the case
of the standard band merging where the two bands join
smoothly without any abrupt increase of the attractor
size. For the case of nonstandard band mergings, due to
a basin boundary metamorphosis [23], the smooth un-
stable torus becomes inaccessible from the interior of the
basin of the attractor, and hence it cannot induce any
band merging. For this case, through a collision with a
ring-shaped unstable set which has no counterpart for
the unforced case, a nonstandard band-merging tran-
sition occurs for a nonchaotic attractor [smooth torus
(route A) or SNA (route B)] as well as a chaotic attrac-
tor (route C), as will be shown below. Particularly, a
two-band smooth torus transforms into a single-band in-
termittent SNA along the route A, which corresponds to
a mechanism for the appearance of SNAs. Here, we are
interested in this type of band-merging route to inter-
mittent SNAs, and investigate its dynamical mechanism
by using the rational approximation to the quasiperiodic
forcing. (Although a similar case where a three-band
smooth torus abruptly transforms to a single-band in-
termittent SNA was observed in the study on the effect
of quasiperiodic forcing on the interior crisis occurring
for unforced case (ε = 0) [11], the unstable orbit induc-
ing such a transition was not explicitly located.)

As an example, we consider the case of a = 1.17
and study the band-merging transition from a two-band
torus to a single-band intermittent SNA by varying ε
along route A. It is convenient to investigate such a
band-merging transition in M2 (i.e., the second iterate
of the original map M). A two-band smooth torus in
M is transformed into a pair of conjugate tori in M2.
Fig. 1(b) shows a pair of upper and lower tori (denoted
by black curves) for ε = 0.12, whose basins are shown
in light gray and gray, respectively. For this case, the
basin of each smooth torus contains “holes” of the other
basin of the counterpart. Hence, the smooth unstable
torus (denoted by the dashed line) on a basin boundary
is not accessible from the interiors of the basins of the
conjugate attracting tori, so it cannot induce any band-
merging transition. For this case of a basin boundary
metamorphosis, conjugate tori and holes become closer

as the parameter ε increases. Eventually, for ε = ε∗

(= 0.126 662 718) an attractor-merging crisis occurs for
the conjugate tori via a collision with a hole boundary;
then, a single-band intermittent SNA appears in the orig-
inal map M . As shown in Fig. 1(c) for ε = 0.127, a typi-
cal trajectory on the newly-born intermittent SNA with
σ1 ' −0.029 and δ ' 4.60 spends most of its time near
the former two-band torus with sporadic large bursts
away from it.

Such a band-merging transition to an intermittent
SNA takes place through a collision with a ring-shaped
unstable set on a hole boundary, as will be shown be-
low. Using the rational approximation, the ring-shaped
unstable set, which has no counterpart in the unforced
case, was first discovered in a study of the intermittent
route to SNAs [15]. As the system parameters vary, both
the sizes and the shapes of rings constituting the unsta-
ble set are changed. Furthermore, as the level of the ra-
tional approximation increases, the ring-shaped unstable
set consists of a large number of rings; hence, it becomes
a complicated unstable set. (For details on the structure
and the evolution of a ring-shaped unstable set, refer to
Fig. 2 of Ref. [15].)

In terms of the rational approximation of level 8, we
now explain the mechanism for the band-merging route
to intermittent SNAs occurring in Figs. 1(b)-1(c) for
a = 1.17. Fig. 2(a) shows conjugate tori (denoted by
black curves), conjugate ring-shaped unstable sets (rep-
resented by dark gray curves), and holes (shown in gray
and light gray inside the basins of the upper and the
lower tori, respectively) in M2 for ε = 0.125. The ratio-
nal approximations to the conjugate smooth tori and the
ring-shaped unstable sets are composed of stable and un-
stable orbits with period F8 (= 21) in M2, respectively.
For this case, some part of each ring-shaped unstable
set (denoted by dark gray curves) lies on a hole bound-
ary (e.g., see a magnified view in Fig. 2(b), where holes
in the light gray basin are represented by gray dots).
With an increase in ε, the conjugate tori and the ring-
shaped unstable sets become closer, and eventually, for
ε = ε∗8 (= 0.125 669 395), a pair of phase-dependent
saddle-node bifurcations occurs for the conjugate sta-
ble and unstable F8-periodic orbits through collision be-
tween the conjugate tori and the ring-shaped unstable
sets. Then, F8 (= 21) “gaps,” where no orbits with pe-
riod F8 exist, are formed over the whole range of θ, as
shown in Fig. 2(c) for ε = 0.1257 [e.g., see the magnified
gap in Fig. 2(d)]. In these gaps, single-band intermit-
tent chaotic attractors (denoted by black dots) appear
(i.e., saddle-node bifurcations induce attractor-merging
crises in the gaps). Thus, the rational approximation
to the whole attractor in the original map M becomes
composed of the union of the two-band periodic com-
ponent and the single-band intermittent chaotic compo-
nent. Since the periodic component is dominant, its av-
erage Lyapunov exponent (〈σ1〉 ' −0.098) is negative,
where 〈· · ·〉 denotes the average over all θ. Hence, the
partially-merged 8th rational approximation to the at-
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Fig. 2. Dynamical mechanism for the transition from a
two-band smooth torus to a single-band intermittent SNA for
a = 1.17 in the quasiperiodically forced Hénon map M . In
(a)-(d), projections of the attractors, the ring-shaped unsta-
ble sets, and the smooth unstable torus (denoted by a dashed
curve) onto the θ − x plane and the 2D slices with y = 0.005
of the basins of the attractors are given in the rational approx-
imation of level 8. (a) and (b) Eighth rational approximation
to the conjugate smooth tori and ring-shaped unstable sets
for ε = 0.125 in M2. The basins of the upper and the lower
tori, denoted by black curves, are shown in light gray and
gray, respectively. The conjugate ring-shaped unstable sets,
represented by dark gray curves, lie close to the smooth tori
(e.g., see the magnified view in (b), where the holes in the
light gray basin are denoted by gray dots). (c) and (d) Eighth
rational approximation to the single-band intermittent SNA
for ε = 0.1257 in M . The attractors and the ring-shaped
unstable sets are shown in black and gray, respectively. The
rational approximation to the SNA is composed of the union
of the two-band periodic component and the single-band in-
termittent chaotic component, where the latter occupies the
F8 (= 21) gaps in θ. For a clear view, a magnified gap is given
in (d). (e) Plot of log10 |∆ε∗k| vs. log10 Fk for k = 12, . . . , 18
[∆ε∗k = ε∗k−ε∗]. Here, ε∗k (denoted by solid circles) represents
the threshold value for the saddle-node bifurcation (inducing
the attractor-merging crises in the gaps) in the rational ap-
proximation of level k, and ε∗ denotes the quasiperiodic limit.

tractor in Fig. 2(c) becomes nonchaotic and resembles
the single-band SNA in Fig. 1(c), although the level
k = 8 is low. By increasing the level of the rational ap-
proximation to k = 18, we study the band-merging tran-
sition of the two-band torus, and found that the thresh-
old value ε∗k, at which the phase-dependent saddle-node
bifurcation of level k (inducing the attractor-merging
crises in the gaps) occured, converged to the quasiperi-
odic limit ε∗ (= 0.126 662 718) in an algebraic manner,

|∆εk| ∼ F−α
k , where ∆εk = ε∗k−ε∗ and α ' 2.0, as shown

in Fig. 2(e). As the level k of the rational approximation
increases, the number of gaps, where phase-dependent
attractor-merging crises occur, becomes larger, and even-
tually in the quasiperiodic limit, the rational approxi-
mation to the attractor has a dense set of gaps, filled
by single-band intermittent chaotic attractors. Conse-
quently, an intermittent single-band SNA, containing the
ring-shaped unstable set, appears, as shown in Fig. 1(c).
We also note that this band-merging transition results
in a truncation of the torus-doubling cascade.

To confirm the above mechanism for the band-merging
transition, we also study the Toda oscillator with an
asymmetric exponential potential, which is quasiperiod-
ically forced at two incommensurate frequencies [16]:

ẍ + γẋ + ex − 1 = a cos ω1t + ε cos ω2t, (2)

where γ is the damping coefficient, a and ε represent the
amplitudes of the quasiperiodic forcing, and ω (≡ ω2/ω1)
is irrational. By making a normalization, ω1t → 2πt,
Eq. (2) can be reduced to three first-order differential
equations,

ẋ = y,

ẏ = −2π

ω1
γy +

4π2

ω2
1

(−ex + 1 + a cos 2πt + ε cos 2πθ),

θ̇ = ω (mod 1). (3)

By stroboscopically sampling the orbit points (xn, yn, θn)
at the discrete time n, we obtain the 3D Poincaré map
P with a constant Jacobian determinant of e−γT1 , where
T1 = 2π/ω1. Here, we set ω to be the reciprocal of
the golden mean [i.e., ω = (

√
5 − 1)/2)] and investigate

the band-merging route to intermittent SNAs in the 3D
Poincaré map P for the case of γ = 0.8 and ω1 = 2.0.
Fig. 3(a) shows a phase diagram in the a− ε plane. As
in the case of the quasiperiodically forced Hénon map, a
band-merging transition from a two-band smooth torus
to a single-band intermittent SNA occurs when passing
the white solid curve along route A. As an example, we
consider the case of a = 27. Fig. 3(b) shows a two-band
smooth torus in the Poincaré map P for ε = 0.21. When
passing a threshold value ε = ε∗ (= 0.242 953 437), such
a two-band torus transforms into a single-band intermit-
tent SNA (e.g., see the newly born intermittent SNA
with σ1 ' −0.051 and δ ' 6.2 in Fig. 3(c) for ε = 0.244).

Using the rational approximation of level 8, we explain
the mechanism for the band-merging transition to inter-
mittent SNAs occurring in Figs. 3(b)-3(c) for a = 27. In
P 2 (i.e., the second iterate of the Poincaré map P ), there
exists a pair of conjugate smooth tori denoted by black
curves, as shown in Fig. 3(d) for ε = 0.207. We note
that conjugate ring-shaped unstable sets, represented
by gray curves, lie close to the conjugate smooth tori.
For this case, the smooth unstable torus, denoted by a
black dashed line, is inaccessible from the interiors of the
basins of the conjugate smooth tori; hence, it cannot in-
duce any band-merging transition. As ε is increased, the
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Fig. 3. (a) Phase diagram of the quasiperiodically forced
Toda oscillator in the a − ε plane for the case of γ = 0.8,
ω1 = 2.0, and ω = (

√
5− 1)/2. Symbols and colors represent

the same things as in Fig. 1(a). (b) and (c) Band-merging
route to an intermittent SNA for a = 27 in the Poincaré
map P . In (b) and (c), projections of the two-band smooth
torus and the single-band intermittent SNA onto the θ − x
plane are given for ε = 0.21 and 0.244, respectively. (d) and
(e) Mechanism for the transition from a two-band smooth
torus to a single-band intermittent SNA for a = 27 in the
rational approximation of level 8. In the second iterate of the
Poincaré map P (i.e., P 2), projections of the conjugate tori
(denoted by black solid curves), the ring-shaped unstable sets
(represented by gray curves), and the unstable smooth torus
(denoted by a dashed curve) onto the θ−x plane are given in
(d) for ε = 0.207. Through collision between the conjugate
tori and ring-shaped unstable sets, F8 (= 21) “gaps,” filled by
single-band intermittent chaotic attractors denoted by black
dots, appear in the whole range of θ, as shown in (e) for
ε = 0.2409. In (e), projections of the attractors (denoted by
black dots) and the ring-shaped unstable sets (represented by
gray curves) are plotted in the Poincaré map P .

conjugate tori and the ring-shaped unstable sets become
closer. Eventually, when passing the threshold value ε∗8
(= 0.240 831 592), a pair of phase-dependent saddle-node
bifurcations occurs through collision between the con-
jugate tori and the ring-shaped unstable sets. Then,
F8 (= 21) “gaps” without F8-periodic attractors ap-
pear over the entire range of θ, as shown in Fig. 3(e)
for ε = 0.2409. In these gaps, single-band intermittent
chaotic attractors (denoted by black dots) appear. Thus,
the rational approximation to the whole attractor in the

Poincaré map P becomes composed of the union of the
two-band periodic component and the single-band inter-
mittent chaotic component. This partially-merged 8th
rational approximation to the attractor in Fig. 3(e) be-
comes nonchaotic because 〈σ1〉 ' −0.112 and resembles
the single-band intermittent SNA in Fig. 3(c), although
the level k = 8 is low. Increasing the level of the rational
approximation to k = 18, we obtain the threshold value
ε∗k, at which the phase-dependent saddle-node bifurca-
tion of level k (mediating the attractor-merging crises in
the gaps) occurs. As the level k is increased, the sequence
{ε∗k} is found to converge to the quasiperiodic limit ε∗

(= 0.242 953 437) in an algebraic manner, |∆εk| ∼ F−α
k ,

where ∆εk = ε∗k − ε∗ and α ' 2.0. In the quasiperi-
odic limit k → ∞, the rational approximation to the
attractor has a dense set of gaps, filled by single-band
intermittent chaotic attractors. As a result, an intermit-
tent single-band SNA, containing the ring-shaped unsta-
ble set, appears, as shown in Fig. 3(c). In addition to the
birth of SNAs, such a band-merging transition induces a
truncation of the torus-doubling sequence.

III. SUMMARY

Using rational approximations to quasiperiodic forc-
ing, we have investigated the dynamical mechanism for
the band-merging route to intermittent SNAs in the
quasiperiodically forced Hénon map. We have shown a
two-band smooth torus transforms into a single-band in-
termittent SNA through a collision with a ring-shaped
unstable set which has no counterpart in the unforced
case. As a result, the torus-doubling cascade is trun-
cated through this band-merging transition. The mech-
anism for this band-merging transition is also confirmed
in the quasiperiodically forced Toda oscillator. Since the
Hénon map and Toda oscillator are representative mod-
els for period-doubling systems, we believe that such a
band-merging route to intermittent SNAs may occur in
typical quasiperiodically forced period-doubling systems.
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