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Abstract

As a representative model for quasiperiodically forced period-doubling systems, we consider the quasiperiodical
logistic map, and investigate the mechanism for the band-merging transition. When the smooth unstable torus loses its ac
sibility from the interior of the basin of anattractor, it cannot induce the “standard” band-merging transition. For this case, w
use the rational approximation to the quasiperiodic forcing and show that a new type of band-merging transition oc
a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor through a collision with a
invariant ring-shaped unstable set which has no counterpart in the unforced case. Particularly, a two-band smooth toru
to transform into a single-band intermittent strange nonchaotic attractor via a new band-merging transition, which correspon
to a new mechanism for the appearance of strange nonchaotic attractors.Characterization of the intermittent strange nonchaot
attractor is made in terms of the average time between bursts and the local Lyapunov exponents.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamical transitions of attractors which occ
with variation of the system parameters have bee
topic of considerable interest[1]. Particularly, chaotic
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transitions attracted much attention. In a large c
of dissipative dynamical systems, a chaotic attra
appears via a period-doubling cascade when a no
earity parametera passes a threshold value[2]. Be-
yond the critical value ofa, successive band-mergin
(BM) transitions of the chaotic attractor occur throu
collision with unstable periodic orbits[3]. These BM
transitions in period-doubling systems are well st
ied.
.
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Here, we are interested in the BM transitions
quasiperiodically forced systems driven at two inco
mensurate frequencies. These dynamical systems
received much attention because they typically h
strange nonchaotic attractors (SNAs) that are geom
rically strange (fractal) but nonchaotic (no positi
Lyapunov exponent)[4]. Since the first suggestion o
the existence of SNAs by Grebogi et al.[5], dynami-
cal transitions in the quasiperiodically forced syste
have been extensively investigated both theoretic
[6–17] and experimentally[18]. There are some pre
vious works related to the BM transitions. In the qu
siperiodically forced logistic map, a transition from
period-doubled torus with two bands to a single-ba
SNA has been found to occur through a collision w
the unstable parent torus[7]. In some case, the unst
ble parent torus becomes inaccessible from the inte
of the basin of an attractor, and then it cannot ind
any BM transition. Even for this case, BMs of smoo
tori and SNAs were observed in other quasiperio
cally forced systems[9,15]. However, the dynamica
origin for this type of BM transitions remains unclea

This Letter is organized as follows. In Section2,
we consider the quasiperiodically forced logistic m
which is a representative model for quasiperiodica
forced period-doubling systems, and investigate
dynamical mechanism for the BM transitions by va
ing the nonlinearity parametera of the logistic map
and the quasiperiodic forcing amplitudeε. For smallε,
a standard BM transition of a chaotic attractor o
curs through a collision with the smooth unstable to
which is developed from the unstable fixed point
the (unforced) logistic map. However, whenε passes a
threshold value, a basin boundary metamorphosis
curs[19], and then the smooth unstable torus loses
accessibility from the interior of the basin of the a
tractor. For this case, the type of the BM transiti
changes. Using the rational approximations to the q
siperiodic forcing, it is found that a new type of BM
transition occurs for a nonchaotic attractor (smo
torus or SNA) as well as a chaotic attractor via a co
sion with an invariant “ring-shaped” unstable set. Su
a ring-shaped unstable set has no counterpart in
unforced case[17]. Particularly, for the case of a two
band smooth torus, the new BM transition results
the birth of a single-band intermittent SNA. This is
new mechanism for the appearance of SNAs. The
termittent SNA is also characterized in terms of
e

average time between bursts and the local Lyapu
exponents. Asε is further increased and passes anot
higher threshold value, the basin boundary metam
phosis no longer occurs, and then the smooth un
ble torus regains its accessibility from the interior
the basin of the attractor. For this case, a stand
BM transition of an attractor (smooth torus, SNA,
chaotic attractor) takes place again through a collisio
with the smooth unstable torus. (The BM transiti
in [7] corresponds to this standard transition.) Th
the BM transition curve in thea–ε plane loses its
differentiability at the two vertices bounding a seg
ment on which a new type of BM transitions occ
We also note that this kind of new BM transitions o
cur through the same mechanism in typical quasip
odically forced systems such as the quasiperiodic
forced Hénon map and Toda oscillator[20]. Finally, a
summary is given in Section3.

2. Band-merging transitions in the
quasiperiodically forced logistic map

We study BM transitions in the quasiperiodica
forced logistic mapM, which is often used as
representative model for the quasiperiodically forc
period-doubling systems:

(1)M :
{

xn+1 = (a + ε cos2πθn)xn(1− xn),

θn+1 = θn + ω (mod1),

wherex ∈ [0,1], θ ∈ S1, a is the nonlinearity para
meter of the logistic map, andω andε represent the
frequency and amplitude of the quasiperiodic fo
ing, respectively. This quasiperiodically forced log
tic mapM is noninvertible, because its Jacobian d
terminant becomes zero along the critical curve,L0 =
{x = 0.5, θ ∈ [0,1)}. Critical curves of rankk, Lk

(k = 1,2, . . .), are then given by the images ofL0,
(i.e.,Lk = Mk(L0); Mk is thekth iterate ofM). Seg-
ments of these critical curves can be used to defi
bounded trapping region of the phase space, calle
“absorbing area”, inside which, upon entering, traj
tories are henceforth confined[21].

Here, we set the frequency to be the reciproca
the golden mean,ω = (

√
5 − 1)/2. For the inverse

golden mean, its rational approximants are given
the ratios of the Fibonacci numbers,ωk = Fk−1/Fk ,
where the sequence of{Fk} satisfiesFk+1 = Fk +
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Fk−1 with F0 = 0 andF1 = 1. Instead of the quas
periodically forced system, we study an infinite s
quence of periodically forced systems with ration
driving frequenciesωk . We assume that the prope
ties of the original systemM may be obtained by
taking the quasiperiodic limitk → ∞. Using this tech-
nique, the mechanism for the BM transitions is inv
tigated.

Fig. 1(a) shows a phase diagram in thea–ε plane.
Each phase is characterized by the Lyapunov ex
nent σx in the x-direction and the phase sensitivi
exponentδ. The exponentδ measures the sensitivit
with respect to the phase of the quasiperiodic forc
and characterizes the strangeness of an attractor
quasiperiodically forced system[8]. A smooth torus
with two bands which is born via a (first-order) tor
doubling bifurcation of its parent torus with a sing
band exists in the region denoted by 2T and shown
in light gray. It has a negative Lyapunov expone
(σx < 0) and no phase sensitivity(δ = 0). When cross-
ing the solid line (corresponding to a second-or
torus doubling bifurcation line), the two-band tor
becomes unstable and bifurcates to a four-band t
which exists in the region denoted by 4T . Chaotic at-
tractors with positive Lyapunov exponents(σx > 0)

exist in the region shown in black. Between the
regular and chaotic regions, SNAs that have nega
Lyapunov exponents(σx < 0) and high phase sen
sitivity (δ > 0) exist in the region shown in gra
Because of their high phase sensitivity, these SN
have fractal structure[8]. A main interesting feature
of the phase diagram is the existence of a seco
order “tongue” that penetrates into the chaotic
gion. This tongue lies near the terminal point (d
noted by the cross) of the second-order torus doub
bifurcation curve, as in the case of the main (fir
order) tongue that exists near the terminal point
the first-order torus doubling bifurcation line (e.g., s
Fig. 1(a) in[17]). For a clear view of the second-ord
tongue, the rectangular region inFig. 1(a) is rotated
and magnified inFig. 1(b), using the new parame
ters,s1 ands2, defined bys1 = cos(27◦)(a − 3.48) −
sin(27◦)(ε − 0.12) and s2 = sin(27◦)(a − 3.48) +
cos(27◦)(ε − 0.12). Near this tongue, rich dynam
cal transitions such as BM transition (routesA, B,
and C), intermittency (routea), and interior crisis
(route b) occur through collision with an invarian
ring-shaped unstable set which has no counterpa
Fig. 1. (a) Phase diagram near the second-order tongue in the
a–ε plane. Regular, chaotic, and SNA regimes are shown in light
gray, black, and gray, respectively. For the case of regular attrac-
tor, tori with two and four bands exist in the regions denoted
by 2T and 4T , respectively. A second-order “tongue” that pene-
trates into the chaotic region lies near the terminal point (marked
with the cross) of the second-order torus doubling bifurcation
curve represented by the solidline. Through collision with the
smooth unstable torus, standard BM transitions of a chaotic at-
tractor, SNA, and smooth torus occur along the routesα, β, and
γ , respectively. For a clear view of the tongue, the rectangu-
lar region is rotated and magnified in (b), using the new para-
meters s1 [≡ cos(27◦)(a − 3.48) − sin(27◦)(ε − 0.12)] and s2
[≡ sin(27◦)(a − 3.48) + cos(27◦)(ε − 0.12)]. A new type of dy-
namical transitions such as BM transition (routesA, B, and C),
intermittency (routea), and interior crisis (routeb) occur through
collision with a ring-shaped unstable set born when passing the
dash-dotted line. As the dotted line is crossed, a basin boundary
metamorphosis occurs, and then the smooth torus becomes inacces-
sible from the interior of the basin of the attractor. Note that the BM
transition curve, denoted by the white solid curve, is not differen-
tiable at the two vertices, denoted by the pluses(+).
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the unforced case. Here, we are interested in the
transitions, which occur when crossing the white so
curve inFig. 1.

We first consider a BM transition of a chaotic a
tractor which occurs along the routeα (ε = a − 3.55)
in Fig. 1(a). For this case, it is convenient to investig
the BM transition inM2 (i.e., the second iterate ofM).
For a = 3.596 andε = 0.046, there exists a two
band chaotic attractor withσx = 0.159 in the original
map M. This chaotic attractor with two bands tur
into a pair of conjugate chaotic attractors inM2, which
is denoted by black dots and bounded by the c
cal curvesLk (k = 1, . . . ,8) in Fig. 2(a). The basins
of the upper and lower chaotic attractors are sho
in light gray and gray, respectively. A smooth uns
ble torus (denoted by the dashed line) lies on a b
boundary. As the parametersa andε increase, the con
jugate chaotic attractors become closer. Eventu
at a threshold value(a, ε) = (3.600 998,0.050 998),
they contact the smooth unstable torus simultaneou
and merge to form a single chaotic attractor (i.e.,
attractor-merging crisis occurs). Thus, fora = 3.603
and ε = 0.053, a single-band chaotic attractor w
σx = 0.196 appears inM, as shown inFig. 2(b). This
BM transition corresponds to a natural generalizat
of the BM transition occurring for the unforced ca
(ε = 0). Hence, we call it the “standard” BM trans
tion.

As ε is increased from zero, the standard BM tra
sition curve in thea–ε plane continues smoothl
However, at a lower vertex(a∗

l , ε∗
l ) � (3.552,0.085)

(denoted by a plus (+) in Fig. 1(a)), the standard BM
transition curve ceases and a new type of BM tra
tion curve begins by making a sharp turning. Hen
the BM transition curve is not differentiable at th
vertex. For this case, beyond the vertex the stand
BM transition curve is smoothly transformed into
curve of a basin boundary metamorphosis line
noted by a dotted line, while the new BM transitio
curve joins smoothly with an interior crisis line d
noted by a dashed line at the vertex (seeFig. 1(b)). As
the basin boundary metamorphosis line is passed
basin boundary abruptly jumps in size[19], and when
crossing the interior crisis line, a sudden widen
of an attractor (without band merging) occurs. No
that these double (BM and interior) crises plus a ba
boundary metamorphosis take place simultaneous
the vertex[22].
Fig. 2. (a), (b) Standard BM transition of a chaotic attractor. A
two-band chaotic attractor inM turns into a pair of conjugate
chaotic attractors inM2. Such chaotic attractors, denoted by black
dots and bounded by the critical curvesLk (k = 1, . . . ,8), are shown
in (a) for a = 3.596 andε = 0.046. The basins of the upper and
lower chaotic attractors are shown in light gray and gray, respec-
tively. Through collision with the unstable smooth torus (denoted by
a dashed line), the chaotic attractors merge to form a single chaotic
attractor, as shown in (b) fora = 3.603 andε = 0.053. (c) and (d)
Basin boundary metamorphosis inM2. (c) A pair of conjugate tori
(denoted by heavy black lines) exists inside their absorbing areas
bounded byLk (k = 1, . . . ,8) for a = 3.46 andε = 0.11. (d) The
basin of each torus contains “holes” of other basin of the coun-
terpart fora = 3.48 andε = 0.13 after breakup of the absorbing
area. (e), (f) Appearance of ring-shaped unstable sets in the rational
approximation of level 5 inM2. A pair of conjugate ring-shaped un-
stable sets exists inside the basins of smooth tori (denoted by a black
curve) for (e)a = 3.396 andε = 0.146 and (f)a = 3.4 andε = 0.15.
Each ring-shaped unstable set is composed ofF5 (= 5) small rings.
Magnified views of a ring are given in the insets. Note that each ring
consists of the unstable part (composed of unstable orbits with the
forcing periodF5 and shown in dark gray) and the attracting part
(shown in black).
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We consider a smooth doubled torus with tw
bands inM, which exists below the basin boun
ary metamorphosis line. This two-band torus is tra
formed into a pair of conjugate single-band tori inM2.
Fig. 2(c) shows the conjugate tori (denoted by hea
black lines) inside their absorbing areas bounded
the critical curvesLk (k = 1, . . . ,8) for a = 3.46 and
ε = 0.11. The basins of the upper and lower tori a
shown in light gray and gray, respectively. Howev
when passing the basin boundary metamorphosis
the absorbing areas become broken up through
lision with the unstable parent torus (denoted by
dashed line) on a basin boundary. Then, the b
of each torus becomes complex, because it cont
“holes” of other basin of the counterpart, as shown
Fig. 2(d) for a = 3.48 andε = 0.13. Due to this basin
boundary metamorphosis, the unstable parent t
becomes inaccessible from the interior of the bas
of the upper and lower tori, and hence it cannot ind
any BM transition. For this case, using the rational
proximations to the quasiperiodic forcing, we loca
an invariant ring-shaped unstable set that causes a
type of BM transition. When passing the dash-dot
line in Fig. 1, a pair of conjugate ring-shaped unsta
sets is born via phase-dependent saddle-node bifu
tions inM2 [17]. This bifurcation has no counterpa
in the unforced case. As an example, in the ratio
approximation of levelk = 5 we explain the structur
of the ring-shaped unstable set. As shown inFig. 2(e)
for a = 3.396 andε = 0.146, the rational approxima
tion to each ring-shaped unstable set, consisting oF5
(= 5) small rings, exists in the basin of the rational a
proximation to each smooth torus (denoted by a bl
curve and composed of stable orbits with periodF5).
At first, each ring is composed of the stable (shown
black) and unstable (shown in dark gray) orbits w
the forcing periodF5 (see the inset inFig. 2(e)). How-
ever, as the parametersa and ε are increased, thes
rings evolve, and then each ring consists of a la
unstable part (shown in dark gray) and a small attr
ing part (shown in black) (see the inset inFig. 2(f)).
With increase in the levelk of the rational approxima
tion, each ring-shaped unstable set becomes comp
of a larger number of rings with a smaller attracti
part. Hence, we believe that, in the quasiperiodic lim
the ring-shaped unstable set might become a com
cated invariant unstable set consisting of only unsta
orbits. Through a collision with this ring-shaped unsta
-

d

ble set which has no counterpart in the unforced c
a new type of BM transition occurs, as will be show
below.

As ε is further increased, both the new BM tran
tion curve and the basin boundary metamorphosis
cease simultaneously at the upper double-crisis
tex (denoted by a plus)(a∗

u, ε∗
u) � (3.404,0.163) in

Fig. 1(a). Then, the standard BM transition line, whi
is connected smoothly with the basin boundary me
morphosis line at the upper vertex, begins again
making an angle. Along the routesα, β , andγ beyond
the upper vertex, standard BM transitions of a cha
attractor, SNA, and smooth torus occur, respectiv
through a collision with the smooth unstable tor
On the other hand, the new BM transition curve tra
forms smoothly to a curve of intermittency at the upp
vertex. When passing the intermittency line (routea in
Fig. 1(b)), a transition from a smooth two-band tor
to an intermittent two-band SNA occurs through c
lision with a ring-shaped unstable set[17]. As in the
case of interior crisis (routeb Fig. 1(b)), the size of the
attractor abruptly increases (without band mergin
Hereafter, we will investigate the new BM transitio
which occur along the routesA, B, andC crossing
the segment bounded by the two double-crisis v
tices (seeFig. 1(b)). A new BM transition is found
to take place for a nonchaotic attractor (smooth to
(routeA) and SNA (routeB)) as well as a chaotic a
tractor (routeC) through a collision with a ring-shape
unstable set. Particularly, a single-band SNA appe
as a result of the new BM transition of a two-ba
smooth torus.

We now fix the value ofa ata = 3.43 and study the
BM transition from a two-band torus to a single-ba
intermittent SNA by varyingε along the routeA. A
two-band torus in the original mapM is transformed
into a pair of conjugate tori inM2. Fig. 3(a) shows a
pair of upper and lower tori (denoted by black curv
for ε = 0.161, whose basins are shown in light gr
and gray, respectively. For this case, the basin of e
smooth torus contains holes of other basin of the co
terpart. Hence, the smooth unstable torus (denote
the dashed line) is not accessible from the interio
the basins of the conjugate (attracting) tori. As
parameterε increases, conjugate tori and holes b
come closer. Eventually, forε = ε∗ (= 0.161 323 479)
an attractor-merging crisis of the conjugate tori o
curs through a collision with a hole boundary, a
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case, the ring-shaped unstable sets (represented by dark gray curves), some part of which exists on a hole boundary, lie close to the s
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then for ε = 0.163, a single-band intermittent SN
with σx = −0.019 andδ = 10.8 appears inM, as
shown inFig. 3(b). Using the rational approximatio
of level k = 8, we investigate the mechanism for t
BM transition of the smooth torus.Fig. 3(c) shows
conjugate tori (denoted by black lines), conjugate ri
shaped unstable sets (represented by dark gray li
and holes (shown in gray and light gray inside
basins of the upper and lower tori, respectively)
M2 for ε = 0.1597. The rational approximations
the smooth torus and the ring-shaped unstable se
composed of stable and unstable orbits with periodF8
(= 21), respectively. For this case, some part of e
ring-shaped unstable set (denoted by dark gray cur
,

lies on a hole boundary (e.g., see a magnified view
Fig. 3(d), where holes in the light gray basin are re
resented by gray dots). With increase inε, the conju-
gate tori and ring-shaped unstable sets become cl
and eventually, forε = ε∗

8 (= 0.159 750 121) a pair
of phase-dependent saddle-node bifurcations oc
through collision between the conjugate tori and ring
shaped unstable sets. Then,F8 (= 21) “gaps”, where
no orbits with periodF8 exist, are formed in the whol
range ofθ , as shown inFig. 3(e) for ε = 0.15976. In
these gaps, single-band intermittent chaotic attrac
(denoted by black dots) appear (i.e., saddle-node
furcations induce attractor-merging crises in the ga
(for a clear view, a magnified gap is given inFig. 3(f)).
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Thus, the rational approximation to the whole attr
tor in the original mapM becomes composed of th
union of the two-band periodic component and
single-band intermittent chaotic component. Since th
periodic component is dominant, the average L
punov exponent(〈σx〉 = −0.105) is negative, where
〈· · ·〉 denotes the average over the wholeθ . Hence,
the (partially-merged) 8th rational approximation
the attractor inFig. 3(e) becomes nonchaotic, and r
sembles the single-band SNA inFig. 3(b), although
the levelk = 8 is low. By increasing the level of th
rational approximation tok = 16, we study the BM
transition of the two-band torus. It is thus found th
the threshold valueε∗

k , at which the phase-depende
saddle-node bifurcation of levelk (inducing attractor-
merging crises in the gaps) occurs, converges to
quasiperiodic limitε∗ (= 0.161 323 479) in an alge-
braic manner,|
εk| ∼ F−α

k , where
εk = ε∗
k −ε∗ and

α � 2.0. As the levelk of the rational approximation
increases, the number of gaps, where phase-depe
attractor-merging crises occur, becomes larger, an
eventually in the quasiperiodic limit, the rational a
proximation to the attractor has a dense set of g
filled by single-band intermittent chaotic attracto
Consequently, an intermittent single-band SNA, c
taining the ring-shaped unstable set, appears, as sh
in Fig. 3(b). We note that this transition from a two
band torus to a single-band intermittent SNA cor
sponds to a new mechanism for the appearanc
SNAs.

The intermittent SNA, born via attractor-mergin
crisis [23], may be characterized in terms of the av
age time between bursts and the local Lyapunov
ponents[13–15]. A typical trajectory of the secon
iterate of Eq.(1) (i.e., M2) spends a long stretch o
time in the vicinity of one of the two former attracto
(i.e., smooth tori), then it bursts out from this regi
and comes close to the same or other former tori wh
it remains again for some time interval, and so on
this way the trajectory irregularly jumps between th
two former tori. For this case, the characteristic ti
τ is the average over a long trajectory of the time
tween bursts (i.e., jumps)[23]. As shown inFig. 4(a)
for a = 3.43, the average value ofτ exhibits a power-
law scaling behavior,

(2)〈τ 〉 ∼ (ε − ε∗)−γ , γ = 0.5± 0.002.
t

The scaling exponentγ is the same as that for the ca
of the intermittent route to SNAs occurring near t
main tongue of the quasiperiodically forced logis
map[13]. Since the dynamical mechanisms for the
pearance of intermittent SNAs near the main ton
[17] and the second-order tongue (in the present c
are the same (i.e., an intermittent SNA appears
a phase-dependent saddle-node bifurcation betwe
smooth torus and a ring-shaped unstable set), the i
mittent SNAs for both cases seem to exhibit the sa
scaling behaviors.Fig. 4(b) shows the plot of the Lya
punov exponentσx versus
ε (= ε−ε∗). We note that
σx abruptly increases during the transition from to
to SNA, which is similar to the case of the intermitte
route to SNA[13]. We also discuss the distribution
local (M-time) Lyapunov exponentsσM

x , causing the
sensitivity of the SNA with respect to the phaseθ of
the quasiperiodic forcing[8]. As an example, we con
sider the case ofa = 3.43 andε = 0.163 and obtain
the probability distributionP(σM

x ) of local (M-time)
Lyapunov exponentsσM

x by taking a long trajectory
dividing it into segments of lengthM and calculating
σM

x in each segment. ForM = 100, 500, and 1000
P(σM

x )’s are shown inFig. 4(c). In the limitM → ∞,
P(σM

x ) approaches the delta distributionδ(σM
x − σx),

whereσx (= −0.019) is just the usual averaged Ly
punov exponent. However, we note that the distri
tion P(σM

x ) has a significant positive tail which doe
not vanish even for largeM. To quantify this slow
decay of the positive tail, we define the fraction of p
itive local Lyapunov exponents as

(3)F+
M =

∞∫
0

P
(
σM

x

)
dσM

x .

These fractionsF+
M ’s are plotted forε = 0.163, 0.165,

and 0.1667 inFig. 4(d). Note that for each value ofε,
the fractionF+

M exhibits a power-law decay,

(4)F+
M ∼ M−η.

Here the values of the exponentη decreases asε in-
creases. Consequently, a trajectory on any SNA
segments of arbitrarily longM that have positive loca
Lyapunov exponents, and thus it has a phase sen
ity, inducing the strangeness of the SNA. As sho
in Fig. 4(d), asε increases the value ofF+

M becomes
larger. Hence, the degree of the phase sensitivity o
SNA increases.
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r

Fig. 4. (a) Plot of log10〈τ 〉 (〈τ 〉 is the average time between bursts) versus log10
ε (
ε = ε − ε∗) for a = 3.43. The data are well fitted with
the straight line with the slopeγ = 0.5 ± 0.002. (b) Plot ofσx versus
ε for a = 3.43. We note that abrupt change inσx near the transition
point. (c) Three probability distributionsP (σM

x ) of the localM-time Lyapunov exponents forM = 100, 500, and 1000 whena = 3.43 and
ε = 0.163. (d) Plots of log10F+

M
(F+

M
: fraction of the positive local Lyapunov exponents) versus− log10M . Note that the three plots fo

ε = 0.163 (circles), 0.165 (squares), and 0.1667 (triangles) are well fitted withthe straight lines with the slopesη = 0.45, 0.27, and 0.13,
respectively. HenceF+

M
decays with some powerη.
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When crossing the remaining part of the new B
transition curve along the routeB (C) in Fig. 1(b),
a transition from a two-band SNA (chaotic attract
into a single-band one occurs via a collision with
ring-shaped unstable set. We fix the value ofε at
ε = 0.1305 and investigate the BM transition of
two-band SNA by varyinga along the routeB. For
a = 3.5153, there exists a two-band SNA withσx =
−0.027 andδ = 1.752 in the original mapM. This
two-band SNA is transformed into a pair of conj
gate SNAs inM2, which is denoted by black dots i
Fig. 5(a). The basins of the upper and lower SN
are shown in light gray and gray, respectively. For t
case, the unstable smooth torus (denoted by a da
line) is not accessible from the interior of the bas
of the conjugate SNAs, because the basin of e
SNA contains holes of other basin of the counterp
As a is increased, conjugate SNAs and holes beco
closer. Eventually, an attractor-merging crisis of
conjugate SNAs occurs fora = a∗ (= 3.515 342 763)
through a collision with a hole boundary, and then
d

a = 3.5157, a single-band SNA withσx = −0.013 and
δ = 3.734 appears inM, as shown inFig. 5(b). As in
the case of the SNA, BM transition of a chaotic attr
tor also occurs along the routeC through a collision
with a hole boundary. For example, at a fixed value
ε = 0.105, we consider a two-band chaotic attrac
with σx = 0.023 in M for a = 3.535. This two-band
chaotic attractor turns into a pair of conjugate sing
band chaotic attractors inM2, which is represente
by black dots inFig. 5(c). An attractor-merging crisi
of the upper and lower chaotic attractors takes pl
when passing a threshold value ofa = 3.538 034 276,
and then fora = 3.545, a single-band chaotic attract
with σx = 0.077 appears inM, as shown inFig. 5(d).
Since the mechanism for the BM transition of t
chaotic attractor is the same as that for the cas
the SNA, it is sufficient to consider only the case
the SNA for presentation of the mechanism for
BM transition. Hence, using the rational approxim
tion of levelk = 8, we investigate the mechanism f
the BM transition of the SNA along the routeB for ε =
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Fig. 5. (a) and (b) BM transition of a two-band SNA for a fixed value ofε = 0.1305. A pair of conjugate SNAs inM2 is represented by blac
dots in (a) fora = 3.5153. The basins of the upper and lower SNAs are shown in light gray and gray, respectively. Due to a collision
hole boundary, the conjugate SNAs merge to form a single-band SNA, as shown in (b) fora = 3.5157. (c) and (d) BM transition of a two-ban
chaotic attractor for a fixed value ofε = 0.105. A pair of conjugate chaotic attractors inM2 is denoted by black dots in (c) fora = 3.535. The
basins of the upper and lower chaotic attractors are shown in light gray and gray, respectively. Because of a collision with a hole bound
the upper and lower chaotic attractors merge to forma single-band chaotic attractor, as shown in (d) fora = 3.545. (e)–(h) Investigation o
the mechanism for the BM transition of the SNA in the rational approximation of levelk = 8 for ε = 0.1305. The rational approximations
the conjugate SNAs and the conjugate ring-shaped unstable sets inM2 are denoted by black dots and dark gray curves, respectively, in (e
a = 3.5224. Some part of the ring-shaped unstable set, represented by dark gray lines, lies on ahole boundary (e.g., see a magnified view in (f),
where holes in the light gray basin are denoted by gray dots). Through collision between the chaotic components of the rational approximat
to the conjugate SNAs and the conjugate ring-shaped unstable sets,F8 (= 21) “gaps”, filled by single-band intermittent chaotic attractors,
formed, as shown in (g) fora = 3.5229 (for a clear view, see a magnified gap in (h)). In (g) and (h), attractors (denoted by black dots) a
ring-shaped unstable sets (represented by gray curves) are plotted in the original mapM .
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0.1305.Fig. 5(e) and (f) show the rational approxim
tions to the conjugate SNAs (denoted by black do
and conjugate ring-shaped unstable sets (represe
by dark gray curves) fora = 3.5224. For this case, th
rational approximation to a SNA is composed of p
riodic and chaotic components, and some part of
ring-shaped unstable set (denoted by dark gray lin
lies on a hole boundary (e.g., see a magnified v
in Fig. 5(f), where holes in the light gray basin a
denoted by gray dots). Asa is increased, the chaot
d

components of the rational approximations to the c
jugate SNAs and the conjugate ring-shaped unst
sets on the hole boundary become closer. Eventu
for a = a∗

8 (= 3.522 675 762), they make a collision
and then a phase-dependent attractor-merging c
occurs. Thus,F8 (= 21) “gaps”, filled by single-band
intermittent chaotic attractors (represented by bl
dots), are formed in the whole range ofθ , as shown in
Fig. 5(g) for a = 3.5229 (for a clear view, a magnifie
gap is given inFig. 5(h)). This (partially-merged) ra
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tional approximation to the attractor, composed of
union of the periodic and chaotic components, ha
negative average Lyapunov exponent (〈σx〉 = −0.046
in M), because its periodic component is domina
Hence, the 8th rational approximation to the attr
tor in Fig. 5(g) becomes nonchaotic, and is similar
the single-band SNA inFig. 5(b). Increasing the leve
of the rational approximation tok = 16, we find that
the threshold valuea∗

k , at which the phase-depende
attractor-merging crisis of levelk occurs, converges t
the quasiperiodic limita∗ (= 3.515 342 763) in an al-
gebraic manner,|
ak| ∼ F−α

k , where
ak = a∗
k − a∗

andα � 2.8. In the quasiperiodic limitk → ∞, there
appear a dense set of gaps, filled by single-band in
mittent chaotic attractors, in the rational approxim
tion to the attractor. Consequently, when passing
threshold valuea∗ along the routeB, a transition from
a two-band SNA to an intermittent single-band SN
containing the ring-shaped unstable set, occurs.

3. Summary

We have investigated the mechanism for the B
transitions in the quasiperiodically forced logistic m
which is a representative model for quasiperiodica
forced period-doubling systems. Using the ratio
approximations to the quasiperiodic forcing, a n
type of BM transition is found to occur for a non
chaotic attractor (smooth torus or SNA) as well a
chaotic attractor via a collision with an invariant rin
shaped unstable set which has no counterpart in
unforced case. Particularly, a single-band intermitt
SNA appears via a new BM transition of a two-ba
smooth torus, which corresponds to a new mec
nism for the birth of SNAs. Characterization of th
intermittent SNA has also been made in terms of
average time between bursts and the local Lyapu
exponents. This kind of new BM transition is in co
trast to the standard BM transition which takes pla
through a collision with the smooth unstable torus.
nally, we note that the new BM transition seems to
“universal”, in the sense that it occurs via the sa
mechanism in typical quasiperiodically forced perio
doubling systems of different nature, such as the q
siperiodically forced Hénon map and Toda oscilla
[20].
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