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Abstract

As a representative model for quasiperiodically forced period-doubling systems, we consider the quasiperiodically forced
logistic map, and investigate the mechanism for the bandingeteansition. When the smooth unstable torus loses its acces-
sibility from the interior of the basin of aattractor, it cannot induce the “standardirtd-merging transition. For this case, we
use the rational approximation to the quasiperiodic forcing and show that a new type of band-merging transition occurs for
a nonchaotic attractor (smooth torus aiasge nonchaotic attractor) as well as aatic attractor through a collision with an
invariant ring-shaped unstable set which has no counterpart in the unforced case. Particularly, a two-band smooth torus is found
to transform into a single-band intermittestrange nonchaotic attractor via a nemdbanerging transition, which corresponds
to a new mechanism for the appearance @&rgie nonchaotic attractoGharacterization of the tarmittent strange nonchaotic
attractor is made in terms of the average time between bursts and the local Lyapunov exponents.
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1. Introduction transitions attracted much attention. In a large class
of dissipative dynamical systems, a chaotic attractor
Dynamical transitions of attractors which occur appears via a period-doubling cascade when a nonlin-
with variation of the system parameters have been a earity parametex passes a threshold val(2]. Be-
topic of considerable intereft]. Particularly, chaotic yond the critical value of, successive band-merging
(BM) transitions of the chaotic attractor occur through
— ) collision with unstable periodic orbif8]. These BM
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Here, we are interested in the BM transitions in average time between bursts and the local Lyapunov
quasiperiodically forced systems driven at two incom- exponents. As is further increased and passes another
mensurate frequencies. These dynamical systems havéiigher threshold value, the basin boundary metamor-
received much attention because they typically have phosis no longer occurs, and then the smooth unsta-
strange nonchaotic attractors (SNAs) that are geomet-ble torus regains its accessibility from the interior of
rically strange (fractal) but nonchaotic (no positive the basin of the attractor. For this case, a standard
Lyapunov exponentfy]. Since the first suggestion of BM transition of an attractor (smooth torus, SNA, or
the existence of SNAs by Grebogi et f], dynami- chaotic attractor) takesgte again through a collision
cal transitions in the quasiperiodically forced systems with the smooth unstable torus. (The BM transition
have been extensively investigated both theoretically in [7] corresponds to this standard transition.) Thus,
[6-17]and experimentally18]. There are some pre- the BM transition curve in thei— plane loses its
vious works related to the BM transitions. In the qua- differentiability at the wo vertices bounding a seg-
siperiodically forced logistic map, a transition from a ment on which a new type of BM transitions occur.
period-doubled torus with two bands to a single-band We also note that this kind of new BM transitions oc-
SNA has been found to occur through a collision with cur through the same mechanism in typical quasiperi-
the unstable parent tor(ig]. In some case, the unsta- odically forced systems such as the quasiperiodically
ble parent torus becomes inaccessible from the interior forced Hénon map and Toda oscillaf@0]. Finally, a
of the basin of an attractor, and then it cannot induce summary is given in Sectia®
any BM transition. Even for this case, BMs of smooth
tori and SNAs were observed in other quasiperiodi-
cally forced system§9,15]. However, the dynamical 2. Band-merging transitionsin the
origin for this type of BM transitions remains unclear. quasiperiodically forced logistic map

This Letter is organized as follows. In Secti@n
we consider the quasiperiodically forced logistic map We study BM transitions in the quasiperiodically
which is a representative model for quasiperiodically forced logistic mapM, which is often used as a
forced period-doubling systems, and investigate the representative model for the quasiperiodically forced
dynamical mechanism for the BM transitions by vary- period-doubling systems:

ing the nonlinearity parameter of the logistic ma
9 yp 9 P y {xn+1 — (a +£€0S206,)x, (1 — x,),

and the quasiperiodic forcing amplituee=or smalle, (D)
a standgrd BFIJ\/I transition gf a Fc)haotic attractor oc- On+1=0n + o (mod 3,
curs through a collision with the smooth unstable torus wherex € [0, 1], 6 € S, a is the nonlinearity para-
which is developed from the unstable fixed point of meter of the logistic map, and ande represent the
the (unforced) logistic map. However, whepassesa  frequency and amplitude of the quasiperiodic forc-
threshold value, a basin boundary metamorphosis oc-ing, respectively. This quasiperiodically forced logis-
curs[19], and then the smooth unstable torus loses its tic map M is noninvertible, because its Jacobian de-
accessibility from the interior of the basin of the at- terminant becomes zer¢oag the critical curvelLo =
tractor. For this case, the type of the BM transition {x = 0.5, 6 € [0, 1)}. Critical curves of rankk, L
changes. Using the rational approximationsto the qua- (k = 1, 2, ...), are then given by the images @b,
siperiodic forcing, it is found that a new type of BM  (i.e., Ly = M¥(Lo); M* is thekth iterate ofM). Seg-
transition occurs for a nonchaotic attractor (smooth ments of these critical curves can be used to define a
torus or SNA) as well as a chaotic attractor via a colli- bounded trapping region of the phase space, called an
sion with an invariant “ring-shaped” unstable set. Such “absorbing area”, inside which, upon entering, trajec-
a ring-shaped unstable set has no counterpart in thetories are henceforth confing2fl].

unforced cas@l7]. Particularly, for the case of a two- Here, we set the frequency to be the reciprocal of
band smooth torus, the new BM transition results in the golden meanp = (+/5 — 1)/2. For the inverse
the birth of a single-band intermittent SNA. This is a golden mean, its rational approximants are given by
new mechanism for the appearance of SNAs. The in- the ratios of the Fibonacci numbers, = F;_1/Fy,
termittent SNA is also characterized in terms of the where the sequence ¢f}} satisfiesFy 1 = Fy +
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Fi—1 with Fp = 0 and F; = 1. Instead of the quasi- 0.36

periodically forced system, we study an infinite se-
quence of periodically forced systems with rational
driving frequenciesv,. We assume that the proper-
ties of the original systemM may be obtained by
taking the quasiperiodic limit — oco. Using this tech- w 0.20
nique, the mechanism for the BM transitions is inves-
tigated.
Fig. 1(a) shows a phase diagram in ties plane.
Each phase is characterized by the Lyapunov expo-

nento, in the x-direction and the phase sensitivity 0.04

exponents. The exponens measures the sensitivity 3.24 3.42 3.60
with respect to the phase of the quasiperiodic forcing a

and characterizes the strangeness of an attractor in a

quasiperiodically forced systef]. A smooth torus 0.037

with two bands which is born via a (first-order) torus
doubling bifurcation of its parent torus with a single
band exists in the region denoted by 2nd shown
in light gray. It has a negative Lyapunov exponent
(ox < 0) and no phase sensitivity = 0). When cross- -
ing the solid line (corresponding to a second-order ~ G:l2S o
torus doubling bifurcation line), the two-band torus ~ FER . s )
becomes unstable and bifurcates to a four-band torus et e
which exists in the region denoted b§ 4Chaotic at- :
tractors with positive Lyapunov exponenis, > 0)
exist in the region shown in black. Between these  -0.011
regular and chaotic regions, SNAs that have negative -0.12 0.00 0.12
Lyapunov exponentso, < 0) and high phase sen- I
sitivity (8§ > 0) exist in the region shown in gray.
Because of their high phase .Se.nSItIVIty’. these SNAs Fig. 1. (a) Phase diagram near the second-order tongue in the
have fractal structurf8]. A main interesting feature a—e plane. Regular, chaotic, and SNA regimes are shown in light
of the phase diagram is the existence of a second- gray, black, and gray, respectively. For the case of regular attrac-
order “tongue” that penetrates into the chaotic re- tor, tori with two and four bands exist in the regions denoted
gion. This tongue lies near the terminal point (de- by 27" and 4, respectively. A second-order “tongue” that pene-
noted by the cross) of the second-order torus doubling tr'?ltes into the chaotic region lies near the terml_nal pc_)lnt (marked

. : . . . with the cross) of the secondesr torus doubling bifurcation
bifurcation curve, as in the case of the main (flrSt' curve represented by the sollthe. Through collision with the
order) tongue that exists near the terminal point of smooth unstable torus, standard BM transitions of a chaotic at-
the first-order torus doubling bifurcation line (e.g., see tractor, SNA, and smooth torus occur along the routes, and
Fig. 1(a) in[17]). For a clear view of the second-order Il; : zzs?s:tii‘;e%tafg; ane;faV:]ei;VedOfinth(i)tOSgEer t:]hee nf:VCvta”agr‘;'
tongue, thg_rec?an_gular reg'o.” Fig. 1(a) is rotated metergsl [= cos27°)(a — 3.4?3) - sin(27°)£s - 0912)] and szp
and magnified inFig. 1(b), using the new parame- |_ gino%7)(, — 348) + cos27)(e — 0.12)]. A new type of dy-
ters,s; andsy, defined bys; = cog27°)(a — 3.48) — namical transitions such as BM transition (routés B, and C),
sin(27°)(e — 0.12) and s2 = sin(27°)(a — 3.48) + intermittency (router), and interior crisis (routé) occur through
co927°)(e — 0.12). Near this tongue, rich dynami- collision with'a ring-shaped unst'able. set born when passing the
cal transitions such as BM transition (routﬁs B, dash-dotted ||_ne. As the dotted line is crossed, a basin bogndary

. . . . L metamorphosis occurs, and then the smooth torus becomes inacces-

and C), intermittency (routea), and interior Crisis  gjyje from the interior of the basin of the attractor. Note that the BM
(route b) occur through collision with an invariant  transition curve, denoted by the white solid curve, is not differen-
ring-shaped unstable set which has no counterpart intiable at the two vertices, denoted by the pluses.
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1.0 =

the unforced case. Here, we are interested in the BM
transitions, which occur when crossing the white solid
curve inFig. 1L

We first consider a BM transition of a chaotic at-
tractor which occurs along the route(e = a — 3.55)
in Fig. 1(a). For this case, it is convenient to investigate
the BM transition inM? (i.e., the second iterate o).
For a = 3.596 ande = 0.046, there exists a two-
band chaotic attractor witk, = 0.159 in the original
map M. This chaotic attractor with two bands turns
into a pair of conjugate chaotic attractorslift, which
is denoted by black dots and bounded by the criti-
cal curvesLy (k=1,...,8) in Fig. 2(a). The basins
of the upper and lower chaotic attractors are shown
in light gray and gray, respectively. A smooth unsta-
ble torus (denoted by the dashed line) lies on a basin
boundary. As the parameter&nde increase, the con-
jugate chaotic attractors become closer. Eventually,
at a threshold valuéa, ¢) = (3.600998 0.050998,
they contact the smooth unstable torus simultaneously,
and merge to form a single chaotic attractor (i.e., an
attractor-merging crisis occurs). Thus, foe= 3.603
and ¢ = 0.053, a single-band chaotic attractor with > 0.5
oy = 0.196 appears in1, as shown irFig. 2(b). This
BM transition corresponds to a natural generalization
of the BM transition occurring for the unforced case
(¢ = 0). Hence, we call it the “standard” BM transi-
tion.

As ¢ is increased from zero, the standard BM tran-

= 0.6

sition curve in thea—e plane continues smoothly. ~'9- 2 (8). (b) Standard BM transition of a chaotic attractor. A
two-band chaotic attractor im/ turns into a pair of conjugate

However, at a lower \{em?wl* ’ ‘91* ) = (3.5520.089 chaotic attractors id/2. Such chaotic attractors, denoted by black
(denoted by a plus{) in Fig. 1(a)), the standard BM  qots and bounded by the critical cundeg (k = 1. ..., 8), are shown
transition curve ceases and a new type of BM transi- in (a) for a = 3.596 ande = 0.046. The basins of the upper and
tion curve begins by making a sharp turning. Hence, lower chaotic attractors are shown in light gray and gray, respec-
the BM transition curve is not differentiable at the tively. Through collision with the unstable smooth torus (denoted by
. a dashed line), the chaotic attractors merge to form a single chaotic
Vertex. FOI’ this Case_’ beyond the vertex the sFandard attractor, as shown in (b) far = 3.603 ands = 0.053. (c) and (d)
BM transition curve is smoothly transformed into a Basin boundary metamorphosis M. (c) A pair of conjugate tori
curve of a basin boundary metamorphosis line de- (denoted by heavy black lines) exists inside their absorbing areas
noted by a dotted line, while the new BM transition bounded byLi (k=1.....8) for a = 3.46 andz = 0.11. (d) The
curve joins smoothly with an interior crisis line de- basin of each torus contains “holes” of other basin of the coun-
. . terpart fora = 3.48 ande = 0.13 after breakup of the absorbing
noted bY adashed line at the verte_x (E@](b)) As area. (e), (f) Appearance of ring-shaped unstable sets in the rational
the basin boundary metamorphosis line is passed, theapproximation of level 5 /2. A pair of conjugate ring-shaped un-
basin boundary abruptly jumps in sigE9], and when stable sets exists inside the basins of smooth tori (denoted by a black
crossing the interior crisis line, a sudden widening curve)for (el = 3.396 ands = 0.146 and (flz = 3.4 ande = 0.15.
of an attractor (without band merging) occurs. Note E2ch ring-shaped unstable set is composebkof=5) small rings.
. . ; . Magnified views of a ring are given in the insets. Note that each ring
that these double (BM af‘d interior) Crlses plus a basin consists of the unstable part (composed of unstable orbits with the
boundary metamorphosis take place simultaneously atforcing period 75 and shown in dark gray) and the attracting part

the verteq22]. (shown in black).
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We consider a smooth doubled torus with two ble set which has no counterpart in the unforced case,
bands inM, which exists below the basin bound- a new type of BM transition occurs, as will be shown
ary metamorphosis line. This two-band torus is trans- below.
formed into a pair of conjugate single-band torit?. As ¢ is further increased, both the new BM transi-
Fig. 2(c) shows the conjugate tori (denoted by heavy tion curve and the basin boundary metamorphosis line
black lines) inside their absorbing areas bounded by cease simultaneously at the upper double-crisis ver-
the critical curved.; (k=1,...,8) fora = 3.46 and tex (denoted by a plus;, ) ~ (3.404 0.163) in
¢ = 0.11. The basins of the upper and lower tori are Fig. 1(a). Then, the standard BM transition line, which
shown in light gray and gray, respectively. However, is connected smoothly with the basin boundary meta-
when passing the basin boundary metamorphosis line, morphosis line at the upper vertex, begins again by
the absorbing areas become broken up through col- making an angle. Along the routes 8, andy beyond
lision with the unstable parent torus (denoted by the the upper vertex, standard BM transitions of a chaotic
dashed line) on a basin boundary. Then, the basin attractor, SNA, and smooth torus occur, respectively,
of each torus becomes complex, because it containsthrough a collision with the smooth unstable torus.
“holes” of other basin of the counterpart, as shown in On the other hand, the new BM transition curve trans-
Fig. 2(d) fora = 3.48 ands = 0.13. Due to this basin ~ forms smoothly to a curve of intermittency at the upper
boundary metamorphosis, the unstable parent torusvertex. When passing the intermittency line (rowia
becomes inaccessible from the interior of the basins Fig. 1(b)), a transition from a smooth two-band torus
of the upper and lower tori, and hence it cannot induce to an intermittent two-band SNA occurs through col-
any BM transition. For this case, using the rational ap- lision with a ring-shaped unstable 4&f7]. As in the
proximations to the quasiperiodic forcing, we locate case of interior crisis (route Fig. 1(b)), the size of the
an invariant ring-shaped unstable set that causes a newattractor abruptly increases (without band merging).
type of BM transition. When passing the dash-dotted Hereafter, we will investigate the new BM transitions
line in Fig. 1, a pair of conjugate ring-shaped unstable which occur along the routed, B, and C crossing
sets is born via phase-dependent saddle-node bifurcathe segment bounded by the two double-crisis ver-
tions in M2 [17]. This bifurcation has no counterpart tices (seeFig. 1(b)). A new BM transition is found
in the unforced case. As an example, in the rational to take place for a nonchaotic attractor (smooth torus
approximation of levek = 5 we explain the structure  (route A) and SNA (routeB)) as well as a chaotic at-
of the ring-shaped unstable set. As showikig. 2(e) tractor (routeC) through a collision with a ring-shaped
for a = 3.396 ands = 0.146, the rational approxima- unstable set. Particularly, a single-band SNA appears
tion to each ring-shaped unstable set, consistingsof  as a result of the new BM transition of a two-band
(=5) small rings, exists in the basin of the rational ap- smooth torus.
proximation to each smooth torus (denoted by a black ~ We now fix the value of ata = 3.43 and study the
curve and composed of stable orbits with perigyg. BM transition from a two-band torus to a single-band
At first, each ring is composed of the stable (shown in intermittent SNA by varying: along the routed. A
black) and unstable (shown in dark gray) orbits with two-band torus in the original mag is transformed
the forcing periodFs (see the inset ifrig. 2(e)). How- into a pair of conjugate tori id/2. Fig. 3a) shows a
ever, as the parametessand ¢ are increased, these pair of upper and lower tori (denoted by black curves)
rings evolve, and then each ring consists of a large for ¢ = 0.161, whose basins are shown in light gray
unstable part (shown in dark gray) and a small attract- and gray, respectively. For this case, the basin of each
ing part (shown in black) (see the insethig. Xf)). smooth torus contains holes of other basin of the coun-
With increase in the level of the rational approxima-  terpart. Hence, the smooth unstable torus (denoted by
tion, each ring-shaped unstable set becomes composedhe dashed line) is not accessible from the interior of
of a larger number of rings with a smaller attracting the basins of the conjugate (attracting) tori. As the
part. Hence, we believe that, in the quasiperiodic limit, parameters increases, conjugate tori and holes be-
the ring-shaped unstable set might become a compli- come closer. Eventually, far=¢* (= 0.161323479
cated invariant unstable set consisting of only unstable an attractor-merging crisis of the conjugate tori oc-
orbits. Through a collision ith this ring-shaped unsta-  curs through a collision with a hole boundary, and
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Fig. 3. BM transition of a two-band torus far= 3.43. There exists a pair of conjugate toriAf?, which are denoted by black lines in (a) for

¢ =0.161. The basins of the upper and lower tori are shown in light graygaay, respectively. Each basin is complex, because it contains
holes of other basin of the counterpart. Through a collision with abolmdary, the conjugate tori merge into a single-band SNA, as shown in
(b) for e = 0.163. (c)—(f) Analysis of the mechanism for the BM transition of the two-band torus £0B.43, using the rational approximation

of level 8. In (c), the eight rational approximation to the emgte tori and ring-shaped unstable sets are pIottM%rﬁor & =0.1597. For this

case, the ring-shaped unstable sets (repteddny dark gray curves), some part of which exists on a hole boundary, lie close to the smooth
tori (denoted by black lines) (e.g., see a magnified view in (d), wheles in the light gray basin are denoted by gray dots). Through collision
between the smooth tori and the ring-shaped unstable Bgts- 21) “gaps”, filled by single-band intermittent chaotic attractors denoted by
black dots, are formed, as shown in (e) for 0.15976. For a clear view, a magnified gap is give (f). In (e) and (f), attractors (denoted by
black dots) and ring-shaped unstable sets (repteddsy gray curves) are plotted in the original mdp

then fore = 0.163, a single-band intermittent SNA lies on a hole boundary (e.g., see a magnified view in
with o, = —0.019 ands = 10.8 appears inM, as Fig. 3(d), where holes in the light gray basin are rep-
shown inFig. 3(b). Using the rational approximation resented by gray dots). With increasesinthe conju-

of level k = 8, we investigate the mechanism for the gate tori and ring-shaped unstable sets become closer,
BM transition of the smooth torudzig. 3(c) shows and eventually, fore = e5 (= 0.15975012] a pair
conjugate tori (denoted by black lines), conjugate ring- of phase-dependent saddle-node bifurcations occurs
shaped unstable sets (represented by dark gray lines)through collision between éconjugate tori and ring-
and holes (shown in gray and light gray inside the shaped unstable sets. Théf, (= 21) “gaps”, where
basins of the upper and lower tori, respectively) in no orbits with periodFg exist, are formed in the whole
M? for ¢ = 0.1597. The rational approximations to range ofg, as shown irFig. 3(e) for e = 0.15976. In

the smooth torus and the ring-shaped unstable set arehese gaps, single-band intermittent chaotic attractors
composed of stable and unstable orbits with pefigd  (denoted by black dots) appear (i.e., saddle-node bi-
(= 21), respectively. For this case, some part of each furcations induce attractor-merging crises in the gaps)
ring-shaped unstable set (denoted by dark gray curves)(for a clear view, a magnified gap is givenkig. 3(f)).
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Thus, the rational approximation to the whole attrac-
tor in the original mapV becomes composed of the
union of the two-band periodic component and the
single-band intermittent @otic component. Since the
periodic component is dominant, the average Lya-
punov exponent(o,) = —0.105) is negative, where
(--+) denotes the average over the whéleHence,
the (partially-merged) 8th rational approximation to
the attractor irFig. 3(e) becomes nonchaotic, and re-
sembles the single-band SNA kig. 3(b), although
the levelk = 8 is low. By increasing the level of the
rational approximation t& = 16, we study the BM
transition of the two-band torus. It is thus found that
the threshold value;, at which the phase-dependent
saddle-node bifurcation of levél(inducing attractor-

389

The scaling exponent is the same as that for the case
of the intermittent route to SNAs occurring near the
main tongue of the quasiperiodically forced logistic
map[13]. Since the dynamical mechanisms for the ap-
pearance of intermittent SNAs near the main tongue
[17] and the second-order tongue (in the present case)
are the same (i.e., an intermittent SNA appears via
a phase-dependent saddle-node bifurcation between a
smooth torus and a ring-shaped unstable set), the inter-
mittent SNAs for both cases seem to exhibit the same
scaling behaviordzig. 4(b) shows the plot of the Lya-
punov exponent, versusiAe (= ¢ —¢&*). We note that

o, abruptly increases during the transition from torus
to SNA, which is similar to the case of the intermittent
route to SNA[13]. We also discuss the distribution of

merging crises in the gaps) occurs, converges to thelocal (M-time) Lyapunov exponents!, causing the

quasiperiodic limite* (= 0.161323479in an alge-
braic mannenAgy| ~ Fk“", whereAegy = ¢f —* and
a >~ 2.0. As the level of the rational approximation

sensitivity of the SNA with respect to the phagef
the quasiperiodic forcinf]. As an example, we con-
sider the case af = 3.43 ande = 0.163 and obtain

increases, the number of gaps, where phase-dependerthe probability distributionP (o) of local (M-time)
attractor-merging crisescour, becomes larger, and Lyapunov exponents¥ by taking a long trajectory
eventually in the quasiperiodic limit, the rational ap- dividing it into segments of lengti/ and calculating
proximation to the attractor has a dense set of gaps,o¥ in each segment. Fa¥/ = 100, 500, and 1000,
filled by single-band intermittent chaotic attractors. P(oM)'s are shown irFig. 4(c). In the limitM — oo,
Consequently, an intermittent single-band SNA, con- P(oj”) approaches the delta distributi&(v)ﬁ” —0y),
taining the ring-shaped unstable set, appears, as showrwheres, (= —0.019) is just the usual averaged Lya-
in Fig. 3(b). We note that this transition from a two- punov exponent. However, we note that the distribu-
band torus to a single-band intermittent SNA corre- tion P(a)?’[) has a significant positive tail which does
sponds to a new mechanism for the appearance ofnot vanish even for largdZ. To quantify this slow

SNAs.
The intermittent SNA, born via attractor-merging
crisis[23], may be characterized in terms of the aver-

age time between bursts and the local Lyapunov ex-

ponents[13-15] A typical trajectory of the second
iterate of Eq.(1) (i.e., M?) spends a long stretch of
time in the vicinity of one of the two former attractors
(i.e., smooth tori), then it bursts out from this region

decay of the positive tail, we define the fraction of pos-
itive local Lyapunov exponents as

o0
F;,;:fP(o)ﬁw)do;”.
0

These fractionsF;;’s are plotted foe = 0.163 0.165,
and Q1667 inFig. 4(d). Note that for each value of

3

and comes close to the same or other former tori where the fractionFﬁ exhibits a power-law decay,

it remains again for some time interval, and so on. In
this way the trajectory irgularly jumps between the
two former tori. For this case, the characteristic time
7 is the average over a long trajectory of the time be-
tween bursts (i.e., jump$23]. As shown inFig. 4(a)

for a = 3.43, the average value efexhibits a power-
law scaling behavior,

(t)y~(e—€"7Y, y=0540.002 (2)

+ —
Fyp~M™".

(4)
Here the values of the exponeptdecreases asin-
creases. Consequently, a trajectory on any SNA has
segments of arbitrarily longy that have positive local
Lyapunov exponents, and thus it has a phase sensitiv-
ity, inducing the strangeness of the SNA. As shown
in Fig. 4(d), ase increases the value df/[; becomes
larger. Hence, the degree of the phase sensitivity of the
SNA increases.
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Fig. 4. (a) Plot of logg(t) ((r) is the average time between bursts) versugdadg (Ae = ¢ — ¢*) for a = 3.43. The data are well fitted with
the straight line with the slopg = 0.5 & 0.002. (b) Plot ofo, versusAe for a = 3.43. We note that abrupt changedr near the transition
point. (c) Three probability distributions’(af”) of the local M-time Lyapunov exponents fa¥/ = 100, 500, and 1000 when= 3.43 and
& = 0.163. (d) Plots of logy F;} (F;/}: fraction of the positive local Lyapunov exponents) versu®g,gM. Note that the three plots for
& = 0.163 (circles), Q165 (squares), and. 1667 (triangles) are well fitted witthe straight lines with the slopes= 0.45, 027, and 013,
respectively. Hence?},; decays with some power.

When crossing the remaining part of the new BM a = 3.5157, a single-band SNA with, = —0.013 and
transition curve along the rout® (C) in Fig. 1(b), 8 = 3.734 appears i, as shown irFig. 5b). As in
a transition from a two-band SNA (chaotic attractor) the case of the SNA, BM transition of a chaotic attrac-
into a single-band one occurs via a collision with a tor also occurs along the route through a collision
ring-shaped unstable set. We fix the value ot with a hole boundary. For example, at a fixed value of
¢ = 0.1305 and investigate the BM transition of a ¢ = 0.105, we consider a two-band chaotic attractor
two-band SNA by varying: along the routeB. For with o, = 0.023 in M for a = 3.535. This two-band
a = 3.5153, there exists a two-band SNA with = chaotic attractor turns into a pair of conjugate single-
—0.027 ands = 1.752 in the original mapV/. This band chaotic attractors if/2, which is represented
two-band SNA is transformed into a pair of conju- by black dots inFig. 5(c). An attractor-merging crisis
gate SNAs inM2, which is denoted by black dots in  of the upper and lower chaotic attractors takes place
Fig. 5a). The basins of the upper and lower SNAs when passing a threshold valuecwf 3.538 034 276,
are shown in light gray and gray, respectively. For this and then fow = 3.545, a single-band chaotic attractor
case, the unstable smooth torus (denoted by a dashedvith o, = 0.077 appears i, as shown irFig. 5d).
line) is not accessible from the interior of the basins Since the mechanism for the BM transition of the
of the conjugate SNAs, because the basin of each chaotic attractor is the same as that for the case of
SNA contains holes of other basin of the counterpart. the SNA, it is sufficient to consider only the case of
As a is increased, conjugate SNAs and holes become the SNA for presentation of the mechanism for the
closer. Eventually, an attractor-merging crisis of the BM transition. Hence, using the rational approxima-
conjugate SNAs occurs far=a* (= 3.515342763 tion of level k = 8, we investigate the mechanism for
through a collision with a hole boundary, and then for the BM transition of the SNA along the rouBefor ¢ =
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Fig. 5. (a) and (b) BM transition of a two-band SNA for a fixed value ef 0.1305. A pair of conjugate SNAs i is represented by black
dots in (a) fora = 3.5153. The basins of the upper and lower SNAs are shown in light gray and gray, respectively. Due to a collision with a
hole boundary, the conjugate SNAs merge tarfar single-band SNA, as shown in (b) for= 3.5157. (c) and (d) BM transition of a two-band
chaotic attractor for a fixed value ef=0.105. A pair of conjugate chaotic attractorsAif? is denoted by black dots in (c) far= 3.535. The
basins of the upper and lower chaotic attractors are shown in liglytand gray, respectively. Because of a collision with a hole boundary,
the upper and lower chaotic attractors merge to farsingle-band chaotic attractor, as shown in (d)det 3.545. (e)—(h) Investigation of
the mechanism for the BM transition of the SNA in the rational approximation of leveB for ¢ = 0.1305. The rational approximations to
the conjugate SNAs and the conjtgaing-shaped unstable setshiff are denoted by black dots and dark gray curves, respectively, in (e) for
a = 3.5224. Some part of the ring-shaped unstablersgresented by dark gray lines, lies onade boundary (e.g., see agnified view in (f),
where holes in the light gray basin are denoted by gray dots). Throdligiarobetween the chaotic components of the rational approximations
to the conjugate SNAs and the caogate ring-shaped unstable sdtg,(= 21) “gaps”, filled by single-band intermittent chaotic attractors, are
formed, as shown in (g) faz = 3.5229 (for a clear view, see a magnified gap in (h)). Indggd (h), attractors (denoted by black dots) and
ring-shaped unstable sets (representedrhy gurves) are plotted in the original magp.

0.1305.Fig. 5(e) and (f) show the rational approxima- components of the rational approximations to the con-
tions to the conjugate SNAs (denoted by black dots) jugate SNAs and the conjugate ring-shaped unstable
and conjugate ring-shaped unstable sets (representedets on the hole boundary become closer. Eventually,
by dark gray curves) far = 3.5224. For this case, the  for a = ag (= 3.522675762, they make a collision
rational approximation to a SNA is composed of pe- and then a phase-dependent attractor-merging crisis
riodic and chaotic components, and some part of the occurs. ThusFg (= 21) “gaps”, filled by single-band
ring-shaped unstable set (denoted by dark gray lines) intermittent chaotic attractors (represented by black
lies on a hole boundary (e.g., see a magnified view dots), are formed in the whole rangefyfas shown in

in Fig. Xf), where holes in the light gray basin are Fig. 5g) fora = 3.5229 (for a clear view, a magnified
denoted by gray dots). As is increased, the chaotic gap is given inFig. 5h)). This (partially-merged) ra-
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tional approximation to the attractor, composed of the Acknowledgement
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Hence, the 8th rational approximation to the attrac-
tor in Fig. 5g) becomes nonchaotic, and is similar to
the single-band SNA iirig. 5b). Increasing the level

of the rational approximation tb = 16, we find that
the threshold value;, at which the phase-dependent
attractor-merging crisis of levéloccurs, converges to
the quasiperiodic limit* (= 3.515342763in an al-
gebraic mannefAai| ~ F_ %, whereAa, = af —a*
anda ~ 2.8. In the quasiperiodic limik — oo, there
appear a dense set of gaps, filled by single-band inter-
mittent chaotic attractors, in the rational approxima-
tion to the attractor. Consequently, when passing the
threshold value™ along the routeB, a transition from

a two-band SNA to an intermittent single-band SNA,
containing the ring-shaped unstable set, occurs.

3. Summary
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