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Mechanism for New Boundary Crises in Quasiperiodically Forced Systems
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As a representative model for the Poincaré map of quasiperiodically forced oscillators, we consider
the quasiperiodically forced Hénon map and investigate the mechanism for boundary crises. Using
rational approximations to quasiperiodic forcing, we show that a new type of boundary crisis occurs
for a nonchaotic attractor (smooth torus or strange nonchaotic attractor), as well as a chaotic
attractor, through a collision with an invariant “ring-shaped” unstable set which has no counterpart
in the unforced case. This new boundary crisis is in contrast to the “standard” boundary crisis that
occurs via a collision with smooth unstable torus.
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Dynamical transitions of attractors occurring as the
system parameters are changed have received much at-
tention. Particularly, abrupt qualitative changes in the
attractor are of great interest. Such discontinuous sud-
den changes, called crises, were first extensively stud-
ied by Grebogi et al. [1], and two kinds of bound-
ary and interior crises were discovered for the case of
chaotic attractors. Here, we consider the boundary cri-
sis (BC), through which a chaotic attractor is suddenly
destroyed when it collides with an unstable orbit on its
basin boundary. Such a boundary crisis has been well
investigated both theoretically [2] and experimentally
[3] in periodically forced systems.

In this paper, we are interested in the BC in quasiperi-
odically forced systems driven at two incommensurate
frequencies. These dynamical systems have attracted
much attention because of the typical appearance of
strange nonchaotic attractors which are strange (fractal),
but nonchaotic (no positive Lyapunov exponent) [4].
Dynamical behaviors of quasiperiodically forced systems
have been extensively investigated both theoretically [5–
14] and experimentally [15]. In a recent work [11], a new
type of BC was numerically observed to occur when the
smooth unstable torus is inaccessible from the interior
of the basin of the attractor due to the basin boundary
metamorphosis [16]. However, the unstable orbit induc-
ing such a BC was not located; thus, the mechanism for
the new BC remains unclear.

We investigate the dynamical origin for the new BC in
the quasiperiodically forced Hénon map M , often used as
a representative model for the Poincaré map of quasiperi-
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odically forced oscillators:

M :

 xn+1 = a− x2
n + yn + ε cos 2πθn,

yn+1 = bxn,
θn+1 = θn + ω (mod 1),

(1)

where a is the nonlinearity parameter of the unforced
Hénon map, and ω and ε represent the frequency and
amplitude of the quasiperiodic forcing, respectively. This
quasiperiodically forced Hénon map M is invertible be-
cause it has a nonzero constant Jacobian determinant
− b whose magnitude is less than unity (i.e., b 6= 0 and
− 1 < b < 1 ). Here we fix the value of the dissipation
parameter b at b = 0.05.

We set the frequency ω to be the reciprocal of the
golden mean, ω = (

√
5 − 1)/2. Then, using the ratio-

nal approximation (RA) to this quasiperiodic forcing,
we investigate the mechanism for the BC. For the in-
verse golden mean, its rational approximants are given
by the ratios of the Fibonacci numbers, ωk = Fk−1/Fk,
where the sequence of {Fk} satisfies Fk+1 = Fk + Fk−1

with F0 = 0 and F1 = 1. Instead of the quasiperiodically
forced system, we study an infinite sequence of period-
ically forced systems with rational driving frequencies
ωk. We assume that the properties of the original sys-
temM may be obtained by taking the quasiperiodic limit
k →∞.

Figure 1 shows a phase diagram in the a − ε plane.
Each phase is characterized by the (nontrivial) Lyapunov
exponents, σ1 and σ2 (≤ σ1), associated with the dynam-
ics of the variables x and y (besides the zero exponent
connected to the phase variable θ of the quasiperiodic
forcing), as well as the phase sensitivity exponent δ. The
exponent δ measures the sensitivity with respect to the
phase of the quasiperiodic forcing and characterizes the
strangeness of an attractor [8]. A smooth torus has neg-
ative Lyapunov exponents (σ1,2 < 0) and has no phase
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Fig. 1. Phase diagram in the a − ε plane for the case of
b = 0.05 and ω = (

√
5− 1)/2. Regular, chaotic, strange non-

chaotic attractor, and divergence regions are shown in light
gray, black, dark gray, and gray, respectively. A nonchaotic
attractor [smooth torus (route A) or strange nonchaotic at-
tractor (route B)], as well as a chaotic attractor (route C), is
suddenly destroyed when passing the white solid curve. For
other details, see the text.

sensitivity (i.e., δ = 0). Its region is denoted by T and
is shown in light gray. On the other hand, a chaotic at-
tractor has a positive Lyapunov exponent σ1 > 0, and
its region is shown in black. Between these regular and
chaotic regions, strange nonchaotic attractors that have
negative Lyapunov exponents (σ1,2 < 0) and positive
phase sensitivity exponents (δ > 0) exist in the regions
shown in dark gray. Due to their high phase sensitiv-
ity, strange nonchaotic attractors are observed to have a
strange fractal structure.

The attractors (smooth torus, strange nonchaotic at-
tractor, and chaotic attractor) are abruptly destroyed
via a BC inducing divergence (which occurs in the re-
gion shown in gray) when crossing the white solid curve
in Fig. 1. We note that the BC curve loses its differentia-
bility at the two vertices denoted by the crosses. A new
type of BC occurs along the routes A, B, and C crossing
the segment bounded by the two vertices. The new BC
is in contrast to the standard BC which takes place for
a chaotic attractor via a collision with the smooth un-
stable torus, which is developed from the unstable fixed
point for the unforced case, on the remaining part of the
BC curve. For the case of new BC, the smooth unsta-
ble torus becomes inaccessible from the interior of the
basin of the attractor; hence, it cannot induce any BC.
Through a collision with a new kind of ring-shaped un-
stable set, a nonchaotic attractor [smooth torus (route
A) or strange nonchaotic attractor (route B)], as well
as a chaotic attractor (route C), is suddenly destroyed.
Using the RA, such a ring-shaped unstable set, which
has no counterpart in the unforced case, was first dis-

Fig. 2. In (a)-(f), projections of the attractor, the ring-
shaped unstable set, and the smooth unstable torus onto the
θ−x plane and the 2D slice with y = 0 of the basin are given.
(a) and (b) BC of a smooth torus along the route A for a =
1.09. (a) Smooth torus (denoted by a black line) and its basin
(shown in gray) for ε = 0.435. The unstable smooth torus
(denoted by a dashed line) is not accessible from the interior
of the basin of the smooth attracting torus because of the
existence of holes (denoted by white dots). (b) Smooth torus
and holes just before the BC for ε = 0.44. (c)-(f) Analysis of
the mechanism for the BC of the smooth torus in the RA of
level 7 for a = 1.09. Magnified views near (θ, x) = (0.118, 0.6)
in (c) and (e) are given in (d) and (f), respectively. Here, the
smooth torus whose basin is shown in gray, a ring-shaped
unstable set, and holes are denoted by black, dark gray, and
white dots, respectively. In (c) and (d) for ε = 0.434, a ring-
shaped unstable set lies close to the smooth torus. For ε = ε∗7
(= 0.441 629 146), a BC occurs via phase-dependent saddle-
node bifurcations between the smooth torus and the ring-
shaped unstable set on the hole boundary. Then, F7 (= 13)
“gaps,” where divergence occurs, are formed, as shown in (e)
for ε = 0.442, [e.g., see a magnified gap in (f)].

covered in our previous study on the intermittent route
to strange nonchaotic attractors [13,14]. It appears via
a phase-dependent saddle-node bifurcation. As the sys-
tem parameters vary, both the sizes and the shapes of the
rings constituting the unstable set are changed. Further-
more, as the level of the RA increases, the ring-shaped
unstable set consists of a large number of rings; hence, it
becomes a complicated unstable set. (For details on the
structure and the evolution of the ring-shaped unstable
set, refer to Fig. 2 of Ref. [13].)

We fix the value of a at a = 1.09 and investigate
the BC of a smooth torus by varying ε along the route
A. Figure 2(a) shows a smooth torus (denoted by a
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black curve) whose basin is shown in gray for ε = 0.435.
We note that holes (shown in white), leading to diver-
gence, exist inside the basin of the smooth attracting
torus. Hence, the smooth unstable torus (denoted by
the dashed line) is not accessible from the interior of the
basin of the smooth attracting torus; hence, it cannot in-
duce any BC. As the parameter ε increases, the smooth
torus and holes become closer, as shown in Fig. 2(b) for
ε = 0.44. Eventually, the smooth (attracting) torus is
abruptly destroyed via a BC when it collides with the
hole boundary for ε = ε∗(= 0.457 113 401). Using the
RA of level k = 7, we explain the mechanism for the
BC of the smooth torus. Figure 2(c) shows the smooth
torus (denoted by a black line), the ring-shaped unsta-
ble set (represented by dark gray dots), and holes (shown
in white) for ε = 0.434. The RAs to the smooth torus
and the ring-shaped unstable set are composed of stable
and unstable orbits, respectively, with period F7 (= 13).
For this case, the ring-shaped unstable set is close to
the smooth torus. However, it does not lie on any hole
boundary [e.g., see a magnified view in Fig. 2(d)]. As the
parameter ε increases, the size of the holes increases, and
new holes appear. Then, some part of the ring-shaped
unstable set lies on a hole boundary. With further in-
creases in ε, the smooth torus and the ring-shaped un-
stable set on the hole boundary become closer, and even-
tually, for ε = ε∗7 (= 0.441 629 146), a phase-dependent
saddle-node bifurcation occurs through a collision be-
tween the smooth torus and the ring-shaped unstable
set. Then, “gaps,” where the former attractor (i.e., the
stable F7-periodic orbits) no longer exists and almost
all trajectories go to the infinity, are formed, as shown
in Fig. 2(e) for ε = 0.442 [e.g., see a magnified gap in
Fig. 2(f)]. As a result, a “partially-destroyed” torus with
F7 (= 13) gaps, where divergence occurs, is left. By in-
creasing the level of the RA to k = 18, we study the
BC of the smooth torus, and the threshold value ε∗k,
at which the phase-dependent saddle-node bifurcation
of level k occurs, is found to converge to the quasiperi-
odic limit ε∗ (= 0.457 113 401) in an algebraic manner:
|∆εk| ∼ F−αk , where ∆εk = ε∗k − ε∗ and α ' 2.01, as
shown in Fig. 3. With an increase in the level k of the
RA, the number of gaps where divergences take place be-
comes larger, and eventually in the quasiperiodic limit,
a BC occurs in a dense set of gaps covering the whole
θ-range. Consequently, the whole smooth torus disap-
pears suddenly via a new type of BC when it collides
with the ring-shaped unstable set. In a similar way, a
strange nonchaotic attractor and a chaotic attractor are
also destroyed suddenly through a collision with a ring-
shaped unstable set when passing the BC curve along
the routes B and C, respectively.

To sum up, by using the RAs to the quasiperiodic forc-
ing, we have investigated the mechanism for the new BC
in the quasiperiodically forced (invertible) Hénon map.
The BC curve in the a − ε plane loses its differentia-
bility at two vertices. On the segment bounded by the
two vertices, a new type of BC has been found to occur

Fig. 3. Plot of log10 |∆ε∗k| vs. log10 Fk for k = 12, . . . , 18
[∆ε∗k = ε∗k−ε∗]. Here, ε∗k (denoted by solid circles) represents
the threshold value for the saddle-node bifurcation in the RA
of level k, and ε∗ denotes the quasiperiodic limit.

for a nonchaotic attractor (smooth torus or strange non-
chaotic attractor), as well as a chaotic attractor, through
a collision with a ring-shaped unstable set. This new BC
is in contrast to the standard BC induced by the smooth
unstable torus. We also note that the mechanism for
the new BC is the same as that in the quasiperiodically
forced (noninvertible) logistic map [17]. Since both the
logistic and the Hénon maps are representative models
for period-doubling systems, we believe that this kind of
new BC might occur in typical quasiperiodically forced
period-doubling systems.
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