J. Phys. A: Math. GerB2(1999) 6727-6739. Printed in the UK PIl: S0305-4470(99)05029-5

Nonlinear dynamics of a damped magnetic oscillator
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Abstract. We consider a damped magnetic oscillator (MO), consisting of a permanent magnet
in a periodically oscillating magnetic field. A detailed investigation of the dynamics of this
dissipative magnetic system is made by varying the field amplitudeAs A is increased, the
damped MO, albeit simple looking, exhibits rich dynamical behaviours such as symmetry-breaking
pitchfork bifurcations, period-doubling transitions to chaos, symmetry-restoring attractor-merging
crises, and saddle-node bifurcations giving rise to new periodic attractors. Besides these familiar
behaviours, a cascade of ‘resurrections’ (i.e., an infinite sequence of alternating restabilizations
and destabilizations) of the stationary points also occurs. It is found that the stationary points
restabilize (destabilize) through alternating subcritical (supercritical) period-doubling and pitchfork
bifurcations. We also discuss the critical behaviours in the period-doubling cascades.

1. Introduction

We consider a permanent magnet of dipole momerglaced in a periodically oscillating
magnetic field. This magnetic oscillator (MO) can be described by a second-order non-
autonomous ordinary differential equation [1-3],

16 + b6 + mB coswt sind = 0 (1)

where the overdots denote the differentiation with respect to tinethe angle between the
permanent magnet and the magnetic fiélds the moment of inertia about a rotation ais,
is the damping parameter, aldandw are the amplitude and frequency of the periodically
oscillating magnetic field, respectively.

Making the normalizatiomwr — 27 (¢t + %) andd — 2 x, we obtain a dimensionless
form of equation (1),

X+Tx —AcosZrrsin2rx =0 (2)

wherex is a normalized angle with mod I, = 2nb/Iw andA = 2rmB/Iw?. Note also,
that equation (2) describes the motion of a particle in a standing wave field [4-6]. For the
conservative case of = 0, the Hamiltonian system exhibits period-doubling bifurcations and
large-scale stochasticity as the normalized field amplitdde increased, which have been
found both experimentally [1-3] and theoretically [4—6]. Here we are interested in the damped
case of" # 0 and make a detailed investigation of the dynamical behaviours of the damped
MO by varying the normalized amplitudée.

This paper is organized as follows. We first discuss bifurcations associated with stability
of periodic orbits and Lyapunov exponents in the damped MO in section 2. With incresing
up to sufficently large values, dynamical behaviours of the damped MO are then investigated in
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section 3. This very simple-looking damped MO shows arichness in its dynamical behaviours.
As A is increased, breakdown of symmetries via pitchfork bifurcations [7], period-doubling
transitions to chaos [8], restoration of symmetries via attractor-merging crises [9], the birth
of new periodic attractors through saddle-node bifurcations [7], and so on are numerically
found. In addition to these familiar behaviours, the stationary points exhibit a cascade of
‘resurrections’[10] (i.e., they restabilize after their instability, destabilize again, and scedrth,
infinitum). Itis found that the restabilizations (destabilizations) occur via alternating subcritical
(supercritical) period-doubling and pitchfork bifurcations. An infinite sequence of period-
doubling bifurcations, leading to chaos, also follows each destabilization of the stationary
points. In section 4, we also study the critical scaling behaviours in the period-doubling
cascades. Itis found that the critical behaviours are the same as those for the one-dimensional
(1D) maps [8]. Finally, a summary is given in section 5.

2. Stability, bifurcations and Lyapunov exponents

In this section we first discuss the stability of periodic orbits in the damped MO, using the
Floquet theory [11]. Bifurcations associated with the stability and Lyapunov exponents are
then discussed.

The second-order ordinary differential equation (2) is reduced to two first-order ordinary
differential equations:

x=y (3a)
y=—-Ly+Acos2Zrtsin2rx. (3b)
These equations have two symmetidgsandS,, because the transformations
Slix—>x:|:% y—>y t—>t:|:% (4)
Syix > —x y— —y t—t (5)

leave equation (3) invariant. The transformations in equations (4) and (5) are just the shift in
bothx andr and the (space) inversion, respectively. Hereafter, we willGadind S, the shift
and inversion symmetries, respectively. If an odgi) (= (x(y), y(¢))) is invariant undes;
(i =1, 2), itis called anS;-symmetric orbit. Otherwise, it is called &i-asymmetric orbit
and has its ‘conjugate’ orb; z(r).

The phase space of the damped MO is three-dimensional with the coordinatesd:.
Since the damped MO is periodic init is convenient to regard time as a circular coordinate
(with mod 1) in the phase space. We then consider the surface of sectiomthmane at
integer times (i.e.z = m, m: integer). The phase-space trajectiory intersects this plane in a
sequence of points. This sequence of points corresponds to a mapping on the plane. This map
plot of an initial pointzg (= (xo, yo)) can be conveniently generated by sampling the orbit
pointsz,, at the discrete time= m. We call the transformatios),, — z,,+1 the Poinca& map
and writez,+1 = P(zm).

The linear stability of aj-periodic orbit of P, such thatP?(zg) = zo, is determined from
the linearized-map matri® P4(zo) of P? at an orbit pointzg. Here P¢ means they-times
iterated map. Using the Floquet theory, the matfix= D P?) can be obtained by integrating
the linearized equations for small displacements,

8x = 8y (62)
8y = —I'§y + 2w A COS 2rt COS 2rxdx (6b)

with two initial displacement&x, §y) = (1, 0) and(0, 1) over the period. The eigenvalues,
A1 andx,, of M are called the Floquet (stability) multipliers, characterizing the orbit stability.
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By using the Liouville formula [12], we obtain the determinantMf(detM),
detM = e 19, (7

Hence, the pair of Floquet multipliers of a periodic orbit lies either on the circle of radiise

or on the real axis in the complex plane. The periodic orbit is stable when both multipliers lie
inside the unit circle. We first note that they never cross the unit circle, except at the real axis
and hence Hopf bifurcations do not occur. Consequently, it can lose its stability only when
a Floguet multiplier decreases (increases) throu@h1) on the real axis. When a Floquet
multiplier A decreases throughl, the periodic orbit loses its stability via period-doubling
bifurcation. On the other hand, when a Flogquet multipliencreases through 1, it becomes
unstable via pitchfork or saddle-node bifurcation. For each case of the period-doubling and
pitchfork bifurcations, two types of supercritical and subcritical bifurcations occur. For more
details on bifurcations, we refer the reader to [7].

Lyapunov exponents of an orbft,} in the Poincag map P, characterize the mean
exponential rate of divergence of nearby orbits [13]. There exist two Lyapunov exponents
o1 andos (01 > o03) such thaio; + 0o = —T, because the linearized PoineanapD P has
a constant Jacobian determinant, Bdt = e~''. We choose an initial perturbatidiz, to
the initial orbit pointzg and iterate the linearized mdpP for §z along the orbit to obtain the
magnitudel,, (= |6z,,]) of 8z,,. Then, for almost all infinitesimally small initial perturbations,
we have the largest Lyapunov exponengiven by

1, d,
op= lim —In—. (8)

m—o00 m do

If o1 is positive, then the orbit is called a chaotic orbit; otherwise, it is called a regular orbit.

3. Rich dynamical behaviours of the damped MO

In this section, by varying the normalized amplitudlewe investigate the evolutions of both

the stationary points and the rotational orbits of period 1 in the damped MO for a moderately
damped case of = 1.38. As A is increased, the damped MO, albeit simple looking,
exhibits rich dynamical behaviours, such as symmetry-breaking pitchfork bifurcations, period-
doubling transitions to chaos, symmetry-restoring attractor-merging crises, and saddle-node
bifurcations giving rise to new periodic attractors. In addition to these familiar behaviours, the
stationary points also undergo a cascade of resurrections (i.e. an infinite sequence of alternating
restabilizations and destabilizations). It is found that the restabilizations (destabilizations)
occur via alternating subcritical (supercritical) period-doubling and pitchfork bifurcations.
An infinite sequence of period-doubling bifurcations, leading to chaos, also follows each
destabilization of the stationary points.

3.1. Evolution of the stationary points

We first consider the case of the stationary points. The damped MO has two statipoarts.
One isz; = (0, 0), and the other one i§; = (%, 0). These stationary points are symmetric
ones with respect to the inversion symmefgywhile they are asymmetric and conjugate ones
with respect to the shift symmet§4. Hence they are partially symmetric orbits with only the
inversion symmetns,. We also note that the two stationary points are the fixed points of the
Poincaé mapP (i.e. P(2) =2 (2 = 21, 211)).

With increasingA we investigate the evolution of the two fixed poidisandz;;. Two
bifurcation diagrams starting frody andz;; are given in figures H) and b), respectively.
Each fixed point loses its stability via symmetry-conserving period-doubling bifurcation,
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Figure 1. Bifurcation diagrams starting frona) the So-symmetric,

L 4 but S1-asymmetric, stationary poind; and ) its Si-conjugate

I . 1 . 1 . 1 stationary point;;. The first and second P2s denote the stable
0 2 4 6 ranges of theS,-symmetric andS;-asymmetric orbits of period 2,
respectively. The other¥’ (N = 4, 8) also designates the stable
A-range of theSz-asymmetric periodic orbit with period.

giving rise to a stable&,-symmetric orbit with period 2. However, asis further increased
each S,-symmetric orbit of period 2 becomes unstable by a symmetry-breaking pitchfork
bifurcation, leading to the birth of a conjugate pair $5fasymmetric orbits of period 2.
(For the sake of convenience, only ofgasymmetric orbit of period 2 is shown.) After
breakdown of theS, symmetry, each 2-periodic orbit with completely broken symmetries
exhibits an infinite sequence of period-doubling bifurcations, ending at a finite critical point
A}, (=3.934787...). The critical scaling behaviours near the critical poifi are the same

as those for the 1D maps [8], as we see in section 4.

After the period-doubling transition to chaos, four small chaotic attractors with completely
broken symmetries appear; they are related with respect to the two symnSeiedS,. As
A is increased the different parts of each chaotic attractor coalease and form larger pieces. For
example, two chaotic attractors with (largest Lyapunov exponent) 0.11, denoted by,
andc,, near the unstable stationary poftare shown in figure &) for A = 3.937; their
conjugate chaotic attractors with respect tofheymmetry near the unstable stationary point
Z;; are not shown. Each one is composed of four distinct pieces. Howevarjsafurther
increased these pieces also merge into two larger pieces. An exampdg with.18 is shown
in figure 2p) for A = 3.94.

As A exceeds a critical valug=3.9484), the two chaotic attractorg andc; in figure 2p)
merge into a larger one, through anS,-symmetry-restoring attractor-merging crisis. For
example, a chaotic attractowith o7 ~ 0.37 and its conjugate one, denotedsbith respect
to the 1 symmetry are shown in figure 8(for A = 3.96. These two chaotic attractars
ands are S,-symmetric ones, although they are sfijlasymmetric and conjugate ones. Thus
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Figure 2. Band-merging of chaotic attractorsa)(For Figure 3. Attractor-merging crises. The two chaotic
A = 3.937, each of the chaotic attractarsandc, is  attractors:; andc; in figure 2f) merge into a larger one
composed of four pieces. However, asis increased c via Sp-symmetry-restoring crisis. Fot = 3.96 the
these pieces also merge to form two larger pieces. Achaotic attractor with the inversion symmetn$, and
example forA = 3.94 is shown inf). its conjugate one with respect to theS; symmetry are
shown in @). These twoS;-asymmetric small chaotic
attractorsc ands also merge to form a larger one via
S1-symmetry-restoring crisis. A single large chaotic
attractor with completely restore¥] andS, symmetries
is shown in b) for A = 3.98.

the inversion symmetry, is first restored. However, asincreases through a second critical
value (~3.9672, the two small chaotic attractotsands also merge into a larger one via
S1-symmetry-restoring attractor-merging crisis, as shown in figug 8¢ A = 3.98. Note

that the single large chaotic attractor with~ 0.64 is both theS;- and S;-symmetric one.
Consequently, the two symmetri§sands, are completely restored, one by one through two
successive symmetry-restoring attractor-merging crises. However, this large chaotic attractor
disappears foA ~ 4.513, and then the system is asymptotically attracted to a stable rotational
orbit of period 1 born through a saddle-node bifurcation, as shown in figure 4.

3.2. Evolution of the rotational orbits

We now investigate the evolution of the rotational orbits of period 1. A pair of stable and
unstable rotational orbits with period 1 is born for~ 2.771 via saddle-node bifurcation. In
contrast to the stationary points, these rotational orbitsSgisymmetric, butS;-asymmetric
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Figure 4. Jump to arotational orbit. The large symmetricFigure 5. Bifurcation diagram starting from th&;-
chaotic attractor in figure BJ disappears foA >~ 4.513, symmetric, butS,-asymmetric, rotational orbit with
and then the asymptotic state of the damped MO becomesriod 1. The first and second P1s denote the stable
astable rotational orbit with period 1 born viasaddle-nodei-ranges of thes;-symmetric ands;-asymmetric orbits
bifurcation. Such a saddle-node bifurcation, giving risef period 1, respectively. The othenP(N = 2,4, 8)

to a pair of stable and unstable orbits of period 1, occuralso designates the stablerange of theS;-asymmetric

for A ~ 2.771 (a stable orbit is denoted by a solid curveperiodic orbit with periodv.

while an unstable one is represented by a dashed curve).

A bifurcation diagram starting frorfy is also shown.

and conjugate, ones. The bifurcation diagram starting from a stable rotational orbit with
positive angular velocity is shown in figure 5. (For convenience, the bifurcation diagram
starting from itsS,-conjugate rotational orbit with negative angular velocity is omitted.) The
S1-symmetric rotational orbit of period 1 becomes unstable by a symmetry-breaking pitchfork
bifurcation, which results in the birth of a pair §f-asymmetric rotational orbits with period

1. (For the sake of convenience, only asieasymmetric orbit of period 1 is shown.) Then
each rotational orbit with completely broken symmetries undergoes an infinite sequence of
period-doubling bifurcations, accumulating at a finite critical polrit(= 12.252903 . .).

The critical behaviours near the accumulation peifitare also the same as those for the 1D
maps, as in the case of the stationary points.

For A > A¥, four chaotic attractors with completely broken symmetries appear; they are
related with respect to the two symmetrigsandsS,. Through a band-merging process, each
chaotic attractor eventually becomes composed of a single piece, as shown in fgure 6(
for A = 12.32. Four chaotic attractors with; ~ 0.36 are denoted by, ¢,, s1, and
s, respectively. However, ag passes through a critical valye:12.3424) the four small
chaotic attractors merge into a larger one via symmetry-restoring attractor-merging crisis. An
example forA = 12.38 is given in figure @f). Note that the single large chaotic attractor
with o1 ~ 0.64 has both th&; andS, symmetries. Thus the two symmetries are completely
restored through one symmetry-restoring attractor-merging crisis, which is in contrast to the
case of the stationary points.

However, as shown in figure 7, the large symmetric chaotic attractor in fighyelso
disappears fod ~ 13723, at which saddle-node bifurcations occur. After disappearence of
this large chaotic attractor, the system is asymptotically attracted to a Stafyenmetric, but
S1-asymmetric, orbit of period 2 born via saddle-node bifurcation. This stgbsymmetric
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Figure 6. Attractor-merging crisis for the rotational case. Through a
band-merging process, each of the four chaotic attractors, s1, and
s2 with completely broken symmetries eventually becomes composed

e of a single piece, as shown ia)(for A = 12.32. The four small
: : : asymmetric chaotic attractors merge into a larger one via symmetry-
-0.5 0.0 0.5  restoring crisis. A single large chaotic attractor with simultaneously
X restoredS; andS; symmetries is shown irbf for A = 12.38.

orbit with period 2 also exhibits rich dynamical behaviours similar to those of the stationary
points. Thatis, ad is increased, a symmetry-breaking pitchfork bifurcation, period-doubling
transition to chaos, merging of small asymmetric chaotic attractors into a large symmetric one
via symmetry-restoring attractor-merging crisis, and so on are found. However, unlike the
cases of the stationary points and the rotational orbits, the large symmetric chaotic attractor
disappears fod = 23.751799..., at which the two unstable stationary poigtsandz;;
become restabilized through subcritical period-doubling bifurcations. These ‘resurrections’
of the stationary points will be described below in some details.

3.3. Resurrections of the stationary points

The linear stability of the two stationary poirgs andz,; is determined by their linearized
equations,

8% +'éx F2mrAcos2rtéx =0 9)

where the— (+) sign of the third term corresponds to the casé ofz;;). (The linearized
equation ot;; can also be transformed into thatgfy just making a shiftin time, — t+%.)
Note that equation (9) is just a simple form of the more general damped Mathieu equation [14].
It is well known that the Mathieu equation has an infinity of alternating stable and ungtable
ranges. Hence, asis increased, the stationary points undergoes a cascade of ‘resurrections,’
i.e., they will restabilize after they lose their stability, destabilize again, and so fadith,
infinitum

Itis found that their restabilizations (destabilizations) occur through alternating subcritical
(supercritical) period-doubling and pitchfork bifurcations. As examples, we consider the
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Figure 7. Jump to an orbit with period 2. The large Figure 8. First resurrection of the stationary poift.
symmetric chaotic attractor in figuretfj(disappears for When A passes through the first restabilization value
A ~ 13723, at which a saddle-node bifurcation, giving(~23752), the unstable stationary poidt restabilizes
rise to a pair of stable and unstable orbits with period 2through a subcritical period-doubling bifurcation, giving
occurs. (A stable orbitis denoted by a solid curve, whilaise to an unstable orbit with periad= 2. The solid line
an unstable one is represented by a dashed curve.) Thamd dashed curves also denote stable and unstable orbits,
the damped MO is asymptotically attracted to the stableespectively.

So-symmetric, butSi-asymmetric, orbit with period

2. This stableSy-symmetric orbit also exhibits rich

dynamical behaviours similar to those of the stationary

points. In the left part, a bifurcation diagram starting

from a rotational orbit with period 1 is also given.

first and second resurrections of the stationary points. The first resurrectigrnisohown
in figure 8. WhenA passes through the first restabilization valee 23.751799...), the
rightmost large symmetric chaotic attractor in figure 7 disappears and the unstable stationary
pointz, restabilizes via subcritical period-doubling bifurcation, giving rise to an unstable orbit
of period 2. Two bifurcation diagrams starting from the restabilizeéndz,;; are given
in figures 96) and p), respectively. Each stationary point loses its stability via symmetry-
breaking pitchfork bifurcation, giving rise to a pair &f-asymmetric orbits with period 1; only
one asymmetric 1-periodic orbitis shown. Thisis in contrast to the case given in section 3.1 (cf
figures 1 and 9), where the stationary points become unstable via symmetry-conserving period-
doubling bifurcations. After breakdown of th symmetry, an infinite sequence of period-
doubling bifurcations follows and ends at its accumulation pdip} (= 24.148001..).
When A exceedsA;,, a second period-doubling transition to chaos occurs. The critical
scaling behaviours of period doublings near the second critical poiat A} , are also the
same as those near the first critical pokrt, .

Dynamical behaviours of the damped MO after the second period-doubling transition
to chaos are shown in figure H)( As A passes through a critical value-24.1549,
small chaotic attractors with completely broken symmetries merge into a large symmetric
chaotic attractor via symmetry-restoring attractor-merging crisis. However, the large chaotic
attractor also disappears far ~ 29.342, at which saddle-node bifurcations occur. After
disappearence of the large chaotic attractor, the damped MO is asymptotically attracted to a
stableS;-symmetric, butS,-asymmetric, orbit of period 1 born via saddle-node bifrucation.
The subsequent evolution of the stable 1-periodic orbit is shown in figut®.186te that it
is similar to that of the rotational orbit described in section 3.2 (cf figureb)X&o(d 7).
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Figure 9. Second bifurcation diagrams starting from:Figure 10. Dynamical behaviours after the second
(a) the restabilized stationary poiy and p) its S1-  period-doubling transition to chaos is shown &). (For
conjugate stationary poid;. Here the BV designates A =~ 24.1549 small chaotic attractors with completely
the stableA-range of theS;-asymmetric periodic orbit broken symmetries merge into a large symmetric chaotic
with periodN (N =1, 2, 4, 8). attractor via symmetry-restoring crisis. However, this
large symmetric chaotic attractor disappears Aor~
29.342, and then the damped MO is asymptotically
attracted to a stable orbit of period 1 born via saddle-node
bifurcation. As shown inlf), subsequent evolution of the
stableS;-symmetric, bufS;-asymmetric, 1-periodic orbit
is similar to that of the rotational orbit shown in figure 7.
Here the solid and dashed curves also denote stable and
unstable orbits, respectively. For other details see text.

The rightmost large symmetric chaotic attractor in figurebl@ppears via symmetry-
restoring attractor-merging crisis fot = 57.67. However, it also disappears far =
67.076913 .., at which each stationary point restabilizes again. Unlike the case of the
first resurrection (see figure 8), this second resurrection of each stationary point occurs via
subcritical pitchfork bifurcation, giving rise to a pair of unstable 1-periodic orbits with broken
symmetries. The second resurrections of the two stationary ppinénd z;; and their
subsequent bifurcation diagrams are shown in figurea)Zrd ), respectively. Note that
these third bifurcation diagrams are similar to those in figure 1. The critical scaling behaviours
near the third period-doubling transition poiaf ; (= 67.104872 ..) are also the same as
those near the first period-doubling transition point= A7 ;.
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Figure 11. Second resurrections of the stationary points and
third bifurcation diagrams starting from:a)(the restabilized
stationary pointz; and @) its Si-conjugate stationary point
Z71- When A passes through the second restabiliztion value
(~67.08), each unstable stationary point becomes restabilized
via subcritical pitchfork bifurcation, giving rise to a pair of
unstable orbits with periog = 1. The solid and dashed lines
represent stable and unstable orbits, respectively. The third
bifurcation diagrams are similar to those in figure 1; the symbols
are also the same as those of figure 1.
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4. Critical scaling behaviours in the period-doubling cascades

In this section, we study the critical scaling behaviours in the period-doubling cascades. The
orbital scaling behaviour and the power spectra of the periodic orbits born via period-doubling
bifurcations as well as the parameter scaling behaviour are particularly investigated.

The critical scaling behaviours for all cases studied are found to be the same as those for
the 1D maps. As an example, we consider the first period-doubling transition to chaos for
the case of the stationary points. As explained in section 3.1, each stationary point becomes
unstable through symmetry-conserving period-doubling bifurcation, giving rise to a stable
So-symmetric orbit of period 2. However, eaSh-symmetric orbit of period 2 also becomes
unstable via symmetry-breaking pitchfork bifurcation, which results in the birth of a conjugate
pair of S,-asymmetric orbits with period 2. Then, each 2-periodic orbit with completely
broken symmetries undergoes an infinite sequence of period-doubling bifurcations, ending
at its accumulation poinf?,. Table 1 gives thed values at which the period-doubling
bifurcations occur; ati;, a Floquet multiplier of an asymmetric orbit with periotli®comes
—1. The sequence of; converges geometrically to its limit valug ; with an asymptotic
ratio §:

Ak — A
T Ap — Ay
The sequence @}, is also listed in table 1. Note that its limit valdg€~4.67) agrees well with
that(= 4.669. . .) for the 1D maps [8]. We also obtain the valueAf; (= 3.934 787 024 by

superconverging the sequence af } [15].

8 8. (10)
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Table 1. Asymptotically geometric convergence of the parameter sequenge

k Ag Sk

1 3.911404100371

2 3.929795227873 4.690
3 3.933716964019 4.664
4 3.934557747089 4.667
5 3.934737918915 4.669
6 3.934776506700 4.668
7 3934784773689 4.673
8 3.934786542923

Table 2. Asymptotically geometric convergence of the orbital sequefeés) and{y®}.

x® oy i y(k) oy k

0.012394993 0.337125704

0.016 703927 —-2.354
0.014873276—2.607
0.015575414-2.451
0.015288893—-2.532
0.015402 057 —2.487
0.015356562—-2.511

0.350786135-3.410
0.346780101—-2.133
0.348658607—2.714
0.347966 417—-2.395
0.348255392-2.561
0.348142575-2.472

0O ~NO U WNPRE| >

0.015374678 0.348188212

We note that the normalized amplitude exhibiting a scaling, is proportional to the
magnetic field amplitude and the inverse square of its frequengyi.e. A ~ B/w?, see
equation (2)). Forthe case of a fixedthe stationary points undergo period-doubling cascades
asB is increased. Irrespective of the fixed valuewthe sequence @8, (the values at which
the period-doubling bifurcations occur) converges geometrically to its limit vAttevith
the same convergence ratipalthough the value of the accumulation poBit increases in
propotion to the square of the frequeney

As in the 1D maps, we are also interested in the orbital scaling behaviour near the most
rarified region. Hence, we first locate the most rarified region by choosing an orbit point
z® (= (x®, y®)) which has the largest distance from its nearest orbit pBft (z*) for
A = Ay. The two sequencds ®} and{y®}, listed in table 2, converge geometrically to their
limit valuesx* andy* with the 1D asymptotic ratia (= —2.502. . .), respectively:

x® _ &= y® — k=1

ok = W) _ 0 ¢ YO+ ®

Ay g = — . (11)

The values ofc* (= 0.015369 andy* (= 0.348175 are also obtained by superconverging
the sequences af® andy®, respectively.

We also study the power spectra of thgfriodic orbits at the period-doubling bifurcation
points A;. Consider the orbit of levet whose period ig; = 2%, {z® = (x®, y®), m =
0,1,...,q — 1}. Then its Fourier component of thi§-periodic orbit is given by
qg-1

(k)e—ia)jm

1
P ==Y ¢ (12)
9 .,=0

wherew; = 2rj/q,andj =0,1, ..
by

., q — 1. The power spectrum® (w;) of level k defined

PO = 129 (13)
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0 2 4 6 Figure 12. Power spectrunP ® () of level 8 forA = Ag
w (=3.934786542 9283

Table 3. Sequence 24X (1) (= ¢® (1)/¢® (I + 1)) of the ratios of the successive average heights
of the peaks in the power spectra.

1

3 4 5 6 7

182 225 210
181 221 211 215
181 220 20.7 216 214

0~

has discrete peaks ai = ;. In the power spectrum of the next + 1) level, new
peaks of the(k + 1)th generation appear at odd harmonics of the fundamental frequency,
w; = 2n(2j +1)/2%D (j = 0,...,2* — 1). To classify the contributions of successive
period-doubling bifurcations in the power spectrum of Igyele write

k 20-b_1
PO = Pos(@) +) Y PPs(@—wy) (14)
=1 j=0
where P,j,k) is the height of thejth peak of thelth generation appearing at = wy;

(= 27(2j + 1)/2). As an example, we consider the power spect®ffi(w) of level 8
shown in figure 12. The average height of the peaks oftthgeneration is given by

T —
& 71y — (k)
J:
It is of interest whether or not the sequence of the ratios of the successive average heights
2800 =P 0/¢P W+ (16)

converges. The ratios are listed in table 3. They seem to approach a limit vAlue, 2,
which also agrees well with thgt 20.96. . .) for the 1D maps [16].

5. Summary

Dynamical behaviours of the moderately-damped MO with= 1.38 are investigated in
detail by varying the normalized amplitude It is thus found that the damped MO, despite
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its apparent simplicity, exhibits very rich dynamical behaviours such as diverse bifurcations,
chaos, crises and so on. Hence, this MO may serve as a standard example for demonstrative
purposes to illustrate the basic ideas of the nonlinear dynamics and chaos. Furthermore,
note also that its experimental apparatus, suitable for student laboratory use, can be easily
constructed [1-3]. Thus we believe that our work may provide very useful information for
such basic experimentation.

Finally, we briefly mention the damping effect. For comparison with the case of moderate
damping, we also studied critical scaling behaviour in the period-doubling cascades for two
other high and low damping caseslof= 10 and 005, respectively. It is thus found that the
critical behaviours for both cases of high and low damping becomes eventually the same as those
for the moderately damped case, although the weakly damped (nearly Hamiltonian) system
with I" = 0.05 exhibits a Hamiltonian-like behaviour in a transient way (i.e., a crossover from
the Hamilotonian (parameter scaling factoe 8.721. .. [17]) to dissipative § = 4.669...)
cases occurs). Hence we believe that our results for the case of moderate damping also becomes
valid for the asymptotic dynamics of both the strongly and weakly damped MO.
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