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Torus Doublings in Symmetrically Coupled Period-doubling Systems
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As a representative model for Poincaré maps of coupled period-doubling oscillators, we consider
two symmetrically coupled Hénon maps. Each invertible Hénon map has a constant Jacobian b
(0 < b < 1) controlling the “degree” of dissipation. For the singular case of infinite dissipation
(b = 0), it reduces to the non-invertible logistic map. Instead of period-doubling bifurcations, anti-
phase periodic orbits (with a time shift of half a period) lose their stability via Hopf bifurcations,
and then smooth tori, encircling the anti-phase mother orbits, appear. We study the fate of these
tori by varying b. For large b, doubled tori are found to appear via torus doubling bifurcations.
This is in contrast to the case of coupled logistic maps without torus doublings. With decreasing b,
mechanisms for disappearance of torus doublings are investigated, and doubled tori are found to be
replaced with simple tori, periodic attractors, or chaotic attractors for small b. These torus doublings
are also observed in two symmetrically coupled pendula that individually display a period-doubling
transition to chaos.
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I. INTRODUCTION

Much attention has been paid to transitions from torus
to chaos in dissipative dynamical systems [1]. A well-
known route to chaos is a quasiperiodic transition to
chaos in systems with two competing frequencies. This
scenario was intensively investigated in the circle map
[2,3], and universal critical scaling behaviors were found.
Another interesting route to chaos is a torus-doubling
transition to chaos, which is a higher-dimensional phe-
nomenon, requiring at least a four-dimensional flow (or a
three-dimensional invertible Poincaré map) [4]. This sce-
nario was first studied by Kaneko [4]. He combined the
logistic map (exhibiting period doublings) [5] and the
circle map (showing quasiperiodicity) and found torus
doublings. However, unlike the period-doubling transi-
tion to chaos, only a finite number of torus doublings are
observed before chaos occurs. Similar results were ob-
tained in the three-dimensional dissipative map to model
the effect of periodic forcing on period-doubling systems
[6]. This type of torus-doubling transition to chaos was
also found in continuous-time systems governed by dif-
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ferential equations, such as the Navier-Stokes equation
[7] and the Ginzburg-Landau equation [8]. Furthermore,
this interesting phenomenon of torus doublings was ob-
served in experiments on Rayleigh-Bénard convection [9,
10], the convection in molten gallium [11], the electro-
chemical reaction [12], the ferroelectric KDP crystal [13],
and the metal-ferroelectric film-semiconductor capacitor
[14].

In this paper, we are interested in torus doublings oc-
curring in symmetrically coupled period-doubling sys-
tems. Our coupled system (composed of two period-
doubling subsystems) is in contrast to the previously-
studied combined system consisting of a period-doubling
subsystem and a quasiperiodic subsystem [4,6]. As a rep-
resentative model for Poincaré maps of coupled period-
doubling oscillators, we consider two symmetrically cou-
pled Hénon maps [15]. Each invertible Hénon map has
a constant Jacobian b (0 < b < 1) that controls the de-
gree of dissipation. In these two coupled Hénon maps,
a symmetric anti-phase periodic orbit with a time shift
of half a period is born via a period-doubling bifurca-
tion of the symmetric in-phase periodic orbit. Instead
of period-doubling bifurcations, these anti-phase orbits
become unstable via Hopf bifurcations [16–18]. Thus,
smooth tori, surrounding the anti-phase mother orbits,
appear. In Sec. II., we study the fate of these tori by
varying the dissipation parameter b. For large b, dou-
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bled tori are found to appear via torus-doubling bifur-
cations, in contrast to the case of coupled logistic maps
without torus doublings. With decreasing b, we inves-
tigate the mechanisms for disappearance of torus dou-
blings and find that doubled tori are replaced with simple
tori, periodic attractors, or chaotic attractors for small
b. These torus doublings are also observed in two sym-
metrically coupled pendula, which individually exhibit
period-doubling transition to chaos. Finally, in Sec. III.,
we give a summary.

II. TORUS DOUBLINGS IN
SYMMETRICALLY COUPLED

PERIOD-DOUBLING OSCILLATORS

As a representative model for Poincaré maps of cou-
pled period-doubling oscillators, we consider two sym-
metrically coupled Hénon maps:

T :





x1(n + 1) = −y1(n) + f(x1(n)) + ε [x2(n)− x1(n)],
y1(n + 1) = bx1(n),
x2(n + 1) = −y2(n) + f(x2(n)) + ε [x1(n)− x2(n)],
y2(n + 1) = bx2(n),

(1)

where f(x) = 1 − ax2, zi(n) [≡ (xi(n), yi(n))] is a state
variable of the ith (i = 1, 2) element at a discrete time
n, and ε is a coupling parameter. Each invertible Hénon
map has a constant Jacobian b (0 < b < 1) that con-
trols the degree of dissipation. For the singular case of
infinite dissipation (b = 0), it reduces to a non-invertible
one-dimensional logistic map [5]. In a single Hénon map,
a period-doubling transition to chaos occurs as the non-
linearity parameter a passes a threshold value a∗. We
also note that the coupled map T has an exchange sym-
metry S such that

S TS(z1, z2) = T (z1, z2); S(z1, z2) = (z2, z1). (2)

If an orbit is invariant under S, it is called a symmetric
orbit; otherwise, it is called an asymmetric orbit.

For the uncoupled case of ε = 0, the coupled map
of Eq. (1) breaks up into two uncoupled Hénon maps.
If they both have orbits with period q, then the com-
posite system has q different orbits distinguished by the
phase shift s (= 0, 1, . . . , q − 1). The case of s = 0 cor-
responds to that of an in-phase orbit, while the other
cases of s 6= 0 correspond to those of out-of-phase or-
bits. If s = q/2, then an anti-phase (180◦ out-of-phase)
orbit with a time shift of half a period exists; otherwise
(s 6= q/2), non-antiphase orbits appear. The in-phase
and the anti-phase periodic orbits are symmetric with
respect to the exchange symmetry S while other peri-
odic orbits are asymmetric. Two asymmetric period-q
orbits with phase shifts s and q − s are conjugate be-
cause one orbit is transformed into the other one under

an exchange of coordinates S. All periodic orbits associ-
ated with a period-doubling cascade of the Hénon map
persist when the coupling is introduced, at least while
its value is small enough. Hereafter, we classify such pe-
riodic orbits in terms of their periods and phase shifts
(q, s).

The stability of an orbit with period q in the two cou-
pled Hénon maps of Eq. (1) is determined from the Ja-
cobian matrix J of T q, which is the q-product of the
Jacobian matrix DT of T along the orbit:

J =
q∏

n=1

DT (x1(n), y1(n), x2(n), y2(n))

=
q∏

n=1




f ′(x1(n))− ε −1 ε 0
b 0 0 0
ε 0 f ′(x2(n))− ε −1
0 0 b 0


 , (3)

where f ′(x) = df(x)/dx. The eigenvalues of J (λ1, λ2,
λ3, and λ4) are called the stability multipliers of the or-
bit. An orbit is stable only when the moduli of all mul-
tipliers are less than unity (i.e., |λi| < 1 (i = 1, 2, 3, 4);
all of them lie inside a unit circle in the complex plane).
When a multiplier passes the unit circle at λ = 1 (−1),
the orbit becomes unstable via a saddle-node or pitch-
fork (period-doubling) bifurcation. On the other hand,
as a multiplier crosses the unit circle except λ = ±1 (i.e.,
λ becomes a complex number whose magnitude is larger
than unity), the orbit loses its stability through a Hopf
bifurcation. The type of attractors in the two coupled
maps is determined in terms of their Lyapunov expo-
nents (σ1, σ2, σ3, and σ4; σ1 ≥ σ2 ≥ σ3 ≥ σ4). By iter-
ating the Jacobian matrix of DT along a trajectory, such
Lyapunov exponents are obtained through the Gram-
Schmidt reorthonormalization procedure [19]. When the
largest Lyapunov exponent σ1 is negative (zero), the at-
tractor is a periodic (quasiperiodic) one. On the other
hand, it is a chaotic one when σ1 is positive. Further-
more, a hyperchaotic attractor with more than one pos-
itive Lyapunov exponents may appear.

We first consider the case of b = 0.5. Figure 1(a)
shows plots of the first two Lyapunov exponents (σ1 and
σ2) of an attractor versus a for ε = −0.305. The cor-
responding bifurcation diagram (i.e., plot of x1 versus
a) is also given in Fig. 1(b). An anti-phase period-4 at-
tractor becomes unstable for a = 2.018 012 via a Hopf
bifurcation when a pair of complex-conjugate stability
multipliers passes the unit circle (i.e., σ1 = σ2 = 0).
Thus, a smooth torus with σ1 = 0 and σ2 < 0 appears,
as shown in Fig. 1(c) for a = 2.04. As a is increased, the
second Lyapunov exponent σ2 begins to increase, and it
becomes zero for a = an (' 2.045) [see the point indi-
cated by n in Fig. 1(a)]. Then, through a normal torus-
doubling bifurcation [20], a doubled torus with σ1 = 0
and σ2 < 0 appears, as shown in Fig. 1(d) for a = 2.05.
As a is increased a little, the second Lyapunov expo-
nent of the doubled torus becomes zero again for a = ar

('2.055) [see the point indicated by r in Fig. 1(a)]. Then,
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Fig. 1. We set b = 0.5 and ε = −0.305 in (a)-(f). (a)
Plots of σ1 and σ2 versus a. The Lyapunov exponents of
the doubled torus are represented by black curves while the
Lyapunov exponents of other attractors are denoted by gray
curves. Normal and reverse torus-doubling bifurcations occur
for a = an and ar indicated by n and r, respectively. (b) Plot
of x1 versus a. The bifurcation diagram of the doubled torus
(other attractors) is shown in black (gray). (c) Smooth torus
with σ1 = 0 and σ2 = −0.024 for a = 2.04. (d) Doubled torus
with σ1 = 0 and σ2 = −0.017 for a = 2.05. (e) Period-108
attractor with σ1 = −0.007 and σ1 = −0.01 for a = 2.07.
(f) Chaotic attractor with σ1 = 0.049 and σ2 = −0.031 for
a = 2.08.

a reverse torus-doubling bifurcation occurs, and a simple
torus [like that shown in Fig. 1(c)] appears again. Thus,
a doubled torus exists in the interval (an, ar). The Lya-
punov exponents of the doubled torus are denoted by the
black curves in Fig. 1(a) while the Lyapunov exponents
of other attractors are represented by gray curves. Simi-
larly, the bifurcation diagram of the doubled torus (other
attracors) is shown in black (gray) in Fig. 1(b). As a is
further increased from ar and passes a threshold value a∗

(' 2.077), a transition to chaos, accompanied by mode
lockings, occurs. As examples, see the periodic and the
chaotic attractors shown in Figs. 1(e)-1(f) for a = 2.07
and 2.08, respectively.

We are interested in the effect of dissipation on torus
doublings. Figure 2(a) shows the state diagram near a
Hopf bifurcation curve of the anti-phase period-4 orbit
for b = 0.5. The anti-phase orbit of type (4,2) appears
via a period-doubling bifurcation of the in-phase orbit of
type (2,0) when passing the solid curve D2,0. The sta-
bility regions of the in-phase and the anti-phase orbits
are labeled as types (2,0) and (4,2), respectively. The
anti-phase orbit loses its stability via a Hopf bifurcation
at the dash-dotted curve H4,2. Consequently, mode lock-
ing (shown in black) and quasiperiodicity (shown in dark

Fig. 2. (a) State diagram for b = 0.5 near a Hopf bi-
furcation curve H4,2 of the anti-phase period-4 orbit. The
anti-phase orbit of type (4,2) appears via a period-doubling
bifurcation of the in-phase orbit of type (2,0) when passing
the curve D2,0. Mode locking, quasiperiodicity, chaos, hy-
perchaos, and divergence occur in the black, dark-gray, gray,
dotted, white regions, respectively. Note that doubled tori
exist in the light-gray region. (b) State diagram for b = 0.2.
No doubled tori exist.

gray) occur. We note that doubled tori, born via torus-
doubling bifurcations, exist in the light-gray region. This
is in contrast to the case of coupled logistic maps without
torus doublings. [If a torus doubling occurs in the two-
dimensional phase plane of the coupled logistic maps,
then the closed curve (corresponding to a cross section
of a torus) must intersect itself, which results in a viola-
tion of uniqueness of an orbit.] With further increases in
a, chaos, hyperchaos, and divergence occur in the gray,
dotted, and white regions, respectively. However, as the
dissipation parameter b is decreased, the region where
doubled tori exist shrinks, and eventually it seems to
disappear when b passes a threshold b∗(∼0.4). As an
example, see the state diagram for b = 0.2 in Fig. 2(b).
For this case, no regions of doubled tori are found, in
contrast to the case of b = 0.5 in Fig. 2(a).

We investigate the mechanisms for disappearance of
torus doublings by decreasing the dissipation parameter
b and find three cases. As b is decreased from b = 0.5 for
ε = −0.305, the normal and the reverse torus-doubling
points (indicated by n and r) in Fig. 1(a) approach;
hence, the parameter interval where doubled tori exist
decreases. Eventually, when passing a threshold value,
the two torus-doubling points merge; then, the σ2 curve
becomes detached from the σ1 curve without touching, as
shown in Fig. 3(a) for b = 0.4. Thus, no torus doublings
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Fig. 3. Lyapunov-exponent diagrams of σ1 and σ2 for (a)
b = 0.5 and ε = −0.305, (b) b = 0.5 and ε = −0.213, (c)
b = 0.4 and ε = −0.213, (d) b = 0.5 and ε = −0.153, and (e)
b = 0.4 and ε = −0.153.

occur for b = 0.4, in contrast to the case of b = 0.5.
This first case shows disappearance of torus doublings
through replacement of doubled tori with simple tori. A
second case for the disappearance of torus doublings oc-
curs through “invasion” of mode lockings with σ1 < 0.
Figures 3(b) and 3(c) show the Lyapunov exponent di-
agrams of σ1 and σ2 for b = 0.5 and 0.4 in the case
of ε = −0.213, respectively. For b = 0.5, doubled tori
exist in a parameter interval denoted by a black curve
(with endpoints indicated by n and r). However, such
a doubled-torus interval is replaced by a mode-locked
one for σ1 < 0 and b = 0.4. A third case for the dis-
appearance of torus doublings occurs via “invasion” of
chaotic attractors for σ1 > 0. The Lyapunov exponent
diagrams of σ1 and σ2 are shown in Figs. 3(d) and 3(e)
for b = 0.5 and 0.4 in the case of ε = −0.153, respec-
tively. The doubled-torus interval for b = 0.5 is replaced
with a chaotic one for σ1 > 0 and b = 0.4.

Finally, we confirm the above results (obtained in the
abstract system of coupled Hénon maps) in the Poincaré
map of two symmetrically coupled pendulums [21]:

ẋ1 = y1, ẏ1 = f(x1, y1, t) + ε(x2 − x1), (4a)
ẋ2 = y2, ẏ2 = f(x2, y2, t) + ε(x1 − x2), (4b)

where

f(x, ẋ, t) = −2πβΩẋ−2π(Ω2−A cos 2πt) sin 2πx, (5)

and ε is the coupling parameter. For each parametrically
forced pendulum [22], x is a normalized angle with range

x ∈ [− 1
2 , 1

2 ) , β is a normalized damping parameter, Ω
is the normalized natural frequency of the unforced pen-
dulum, and A is the normalized driving amplitude of the
vertical oscillation of the suspension point. Here, we set
β = 0.1 and Ω = 1.0. As the amplitude A of the vertical
oscillation is increased, the lowest stationary point with
x = 0 loses its stability via a (symmetry-breaking) pitch-
fork bifurcation; then, an infinite sequence of period-
doubling bifurcations, leading to chaos, follows, as in the
case of the logistic map [22].

Poincaré maps of Eq. (4) can be computed
by stroboscopically sampling the points z(n) [≡
(z1(n), z2(n)); zi = (xi, yi), i = 1, 2] at the discrete time
n, where n = 1, 2, 3, . . . . We call the transformation
z(n) → z(n + 1) the Poincaré map of the two coupled
pendula. This four-dimensional (4D) Poincaré map P
has an exchange symmetry such that

SPS(z1, z2) = P (z1, z2); S(z1, z2) = (z2, z1). (6)

Periodic orbits in P may be classified in terms of their
periods and phase shifts (q, p), as in the case of coupled
Hénon maps. In-phase (s = 0) and anti-phase orbits
(s = q/2) are symmetric with respect to the exchange
symmetry S while other periodic orbits are asymmetric.

The linear stability of a q-periodic orbit such that
P q(z(0)) = z(0) is determined from the linearized map
DP q(z(0)) of P q at an orbit point z(0), where P q means
the q-times iterated map. With the Floquet theory [23],
DP q can be obtained by integrating the linearized dif-
ferential equations for small perturbations. Let z∗(t) =
z∗(t + q) be a solution lying on the closed orbit corre-
sponding to the q-periodic orbit. In order to determine
the stability of the closed orbit, we consider an infinitesi-
mal perturbation δz [= (δx1, δy1, δx2, δy2)] to the closed
orbit. Linearizing Eq. (4) about the closed orbit, we ob-
tain




δẋ1

δẏ1

δẋ2

δẏ2


 = J(t)




δx1

δy1

δx2

δy2


 , (7)

where the Jacobian matrix J is given by

J(t) =




0 1 0 0
J21 J22 J23 0
0 0 0 1

J41 0 J43 J44


 ; (8a)

J21 = −4π2(Ω2 −A cos 2πt) cos 2πx∗1 − ε, (8b)
J22 = −2πβΩ, J23 = ε, (8c)
J41 = ε, J43

= −4π2(Ω2 −A cos 2πt) cos 2πx∗2 − ε, (8d)
J44 = −2πβΩ. (8e)

Note that J is a 4 × 4 q-periodic matrix. Let W (t) =
(w1(t), w2(t), w3(t), w4(t)) be a fundamental solution
matrix with W (0) = I. Here, w1(t), w2(t), w3(t), and
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Fig. 4. Torus doublings in the Poincaré map of symmetri-
cally coupled pendulums for β = 0.1, Ω = 1.0, and ε = 0.6.
(a) Plots of σ1 and σ2 versus A. Normal and reverse torus-
doubling bifurcations occur for A = An and Ar indicated by n
and r, respectively. The Lyapunov exponents of the doubled
tori are represented by black curves. (b) Plot of x1 versus A.
The doubled torus is shown in black. (c) Smooth torus with
σ1 = 0 and σ2 = −0.037 for A = 1.571. (d) Doubled torus
with σ1 = 0 and σ2 = −0.016 for A = 1.5714.

w4(t) are four independent solutions expressed in col-
umn vector forms, and I is the 4× 4 unit matrix. Then,
a general solution of the q-periodic system has the form




δx1(t)
δy1(t)
δx2(t)
δy2(t)


 = W (t)




δx1(0)
δy1(0)
δx2(0)
δy2(0)


 . (9)

Substitution of Eq. (9) into Eq. (7) leads to an initial-
value problem to determine W (t):

Ẇ (t) = J(t)W (t), W (0) = I. (10)

It is clear from Eq. (9) that W (q) is just the linearized
map DP q. Hence, DP q may be calculated through inte-
gration of Eq. (10) over the period q. A periodic or-
bit is stable only when the moduli of all four stabil-
ity multipliers (i.e., the eigenvalues of DP q) are less
than unity. (Detailed explanations of the bifurcations
through which a periodic orbit loses its stability are
given in the above case of coupled Hénon maps.) The
type of attractor in the Poincaré map P is determined
in terms of its Lyapunov exponents (σ1, σ2, σ3, and σ4;
σ1 ≥ σ2 ≥ σ3 ≥ σ4). Through an iteration of the lin-
earized Poincare map DP for an initial perturbation δz
along the orbit, such Lyapunov exponents are obtained
through the Gram-Schmidt reorthonormalization proce-
dure [19]. When the largest Lyapunov exponent σ1 is
negative, zero, and positive, the attractor is a periodic,
quasiperiodic, and chaotic, respectively.

Figure 4(a) shows Lyapunov-exponent diagrams of σ1

and σ2 of an attractor versus A in the Poincaré map P

of symmetrically coupled pendula for ε = 0.6. The cor-
responding bifurcation diagram (i.e., plot of x1 versus
A) is shown in Fig. 4(b). An anti-phase period-4 attrac-
tor becomes unstable at the Hopf bifurcation point of
A = 1.569 772, where σ1 = σ2 = 0. Then, a smooth tori
with σ1 = 0 and σ2 < 0 appears, as shown in Fig. 4(c) for
A = 1.571. As A is increased, the second Lyapunov expo-
nent σ2 begins to increase and becomes zero for A = An

(' 1.5712) [see the point indicated by n in Fig. 4(a)].
Then, a doubled torus with σ1 = 0 and σ2 < 0 ap-
pears via a normal torus-doubling bifurcation, as shown
in Fig. 4(d) for A = 1.5714. As A is increased a little, the
second Lyapunov exponent of the doubled torus becomes
zero again for A = Ar ('1.5715) [see the point indicated
by r in Fig. 4(a)]. Then, a reverse torus-doubling bi-
furcation occurs, and a simple torus [like that shown in
Fig. 4(c)] reappears. Thus, a doubled torus exists in the
interval (An, Ar), as in the case of coupled Hénon maps.

III. SUMMARY

We have investigated torus doublings in symmetrically
coupled period-doubling systems. As a representative
model for Poincaré maps of coupled period-doubling os-
cillators, we consider two symmetrically coupled Hénon
maps. Instead of period doubling bifurcations occurring
in each Hénon map, anti-phase periodic orbits lose their
stability via Hopf bifurcations. Consequently, smooth
tori, encircling the anti-phase orbits, appear. The fate of
these tori has been investigated by varying the dissipa-
tion parameter b. For large b doubled tori are found to
appear through torus-doubling bifurcations, in contrast
to the case of the coupled logistic map without torus
doublings. With decreasing b, we have investigated the
mechanisms for the disappearance of torus doublings and
have found that doubled tori are replaced with simple
tori, periodic attractors, or chaotic attractors for small
b. Similar torus doublings is also found in two sym-
metrically coupled pendula that individually display a
period-doubling route to chaos. Finally, these torus dou-
blings are expected to be observed in real experiments of
coupled period-doubling systems, such as two resistively
coupled p-n junction resonators [24] and two inductively
coupled electronic frequency generators [25].
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