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We consider an ensemble of globally coupled subthreshold Morris-Lecar neurons. As the couplingstrength passes a lower threshold, the coupling stimulates coherence between noise-induced spikings.This coherent transition is well described in terms of an order parameter. However, for su�cientlylarge J , \stochastic oscillator death" (i.e., quenching of noise-induced spikings), leading to breakupof collective spiking coherence, is found to occur. Using the techniques of nonlinear dynamics,we investigate the dynamical origin of stochastic oscillator death. Thus, we show that stochasticoscillator death occurs because each local neuron is attracted to a noisy equilibrium state via anin�nite-period bifurcation. Furthermore, we introduce a new \statistical-mechanical" parameter,called the average �ring probability Pf and quantitatively characterize a transition from �ring tonon-�ring states which results from stochastic oscillator death. For a �ring (non-�ring) state, Pftends to be non-zero (zero) in the thermodynamic limit. We note that the role of Pf for the �ring-non�ring transition is similar to that of the order parameter used for the coherence-incoherencetransition.
PACS numbers: 87.19.La, 05.40.CaKeywords: Coupled neural systems, Stochastic oscillator death

I. INTRODUCTION
In recent years, there has been great interest in brain

rhythms [1]. Synchronous oscillations in neural systems
are correlated with neural encoding of sensory stimuli
[2]. Population dynamics has been intensively investi-
gated in coupled systems consisting of spontaneously �r-
ing neurons; thus, three types of mechanisms for neural
synchronization have been found [3]. Here, we are inter-
ested in collective dynamics in neural networks composed
of subthreshold neurons. For an isolated single case, each
subthreshold neuron cannot �re spontaneously without
noise; it can �re only with the help of noise.
In this paper, we consider a large population of glob-

ally coupled subthreshold Morris-Lecar (ML) neurons [4{
7]. When the coupling strength J is small, the collective
state is incoherent because neurons �re independently.
However, as J passes a lower threshold J�l , a transition
to collective spiking coherence occurs because the cou-
pling stimulates coherence between noise-induced spik-
ings. As in globally coupled chaotic systems [8{10], this
coherent transition may be described in terms of an order
parameter O. However, for su�ciently large J , breakup
of collective spiking coherence occurs due to the e�ect
of \stochastic oscillator death" (i.e., quenching of noise-
induced spikings). This stochastic oscillator death is in
contrast to the deterministic oscillator death occurring
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in the absence of noise [11{15]. Using the techniques
of nonlinear dynamics, we study the dynamical origin
of stochastic oscillator death. For large J , the motion
of a local state on a noisy limit cycle is strongly non-
uniform because the local state spends much time near
a point. As J is further increased, such non-uniformity
of the motion along the noisy limit cycle is intensi�ed;
hence, the average interspike interval increases without
bound. Eventually, when passing a threshold J�o , sucha non-uniform noisy limit cycle transforms to a noisy
equilibrium point via an in�nite-period bifurcation [16].
Hence, stochastic oscillator death (i.e., cessation of noise-
induced spikings) occurs because each local neuron is
attracted to a noisy equilibrium state. This stochas-
tic oscillator death leads to a transition from �ring to
non-�ring states. We also introduce a new \statistical-
mechanical" parameter, called the average �ring proba-
bility Pf and characterize the �ring-non�ring transition
in terms of Pf . For a �ring (non-�ring) state, Pf tends
to be non-zero (zero) in the thermodynamic limit. We
note that the role of Pf is similar to that of the order
parameter O used for the coherence-incoherence transi-
tion.
This paper is organized as follows. In Sec. II, we make

both a dynamical analysis for the occurrence of stochas-
tic oscillator death and a characterization of the �ring-
non�ring transition in terms of Pf . Finally, a summary
is given in Sec. III.
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II. STOCHASTIC OSCILLATOR DEATH IN

GLOBALLY COUPLED ML NEURONS

We consider a system of N globally coupled neu-
rons. As an element in our coupled system, we choose
the conductance-based ML neuron model originally pro-
posed to describe the time-evolution pattern of the mem-
brane potential for the giant muscle �bers of barnacles
[4{6]. The population dynamics in this neural network
is governed by the following set of di�erential equations:

C dvi
dt = �Iion;i + IDC +D�i + Isyn;i; (1a)

dwi
dt = � (w1(vi)� wi)

�R(vi) ; i = 1; � � � ; N; (1b)
where
Iion;i = ICa;i + IK;i + IL;i (2a)

= gCam1(vi)(vi � ECa) (2b)
+gKwi(vi � EK) + gL(vi � EL); (2c)

Isyn;i = J
N � 1

NX
j(6=i)

�(vj � v�); (2d)
m1(v) = 0:5 [1 + tanh f(v � V1)=V2g] ; (2e)
w1(v) = 0:5 [1 + tanh f(v � V3)=V4g] ; (2f)
�R(v) = 1= cosh f(v � V3)=(2V4)g : (2g)

Here, the state of the ith neuron at a time t (measured
in units of ms) is characterized by two state variables:
the membrane potential vi (measured in units of mV)
and the slow recovery variable wi representing the acti-
vation of the K+ current (i.e., the fraction of open K+

channels). In Eq. (1a), C represents the capacitance of
the membrane of each neuron and the time evolution of
vi is governed by four kinds of source currents.
The total ionic current Iion;i of the ith neuron con-

sists of the calcium current ICa;i, the potassium current
IK;i and the leakage current IL;i. Each ionic current
obeys Ohm's law. The constants gCa, gK and gL are
the maximum conductances for the ion and the leakage
channels and the constants ECa, EK and EL are the re-
versal potentials at which each current is balanced by
the ionic concentration di�erence across the membrane.
Since the calcium current ICa;i changes much faster thanthe potassium current IK;i, the gate variable mi for theCa2+ channel is assumed to always take its saturation
valuem1(vi). On the other hand, the activation variablewi for the K+ channel approaches its saturation value
w1(vi) with a relaxation time �R(vi)=�, where �R has a
dimension of ms and � is a (dimensionless) temperature-
like time scale factor.
Each ML neuron is also stimulated by the common DC

current IDC and an independent Gaussian white noise �
[see the second and third terms in Eq. (1a)] satisfying
h�i(t)i = 0 and h�i(t) �j(t0)i = �ij �(t � t0), where h� � � i
denotes the ensemble average. The noise �i randomly

perturbs the strength of the applied current IDC and its
intensity is controlled by the parameterD. The last term
in Eq. (1a) represents the coupling of the network. Each
neuron is connected to all the other ones through global
instantaneous pulse-type synaptic couplings. Isyn;i of
Eq. (2c) represents such a synaptic current injected into
the ith neuron. The coupling strength is controlled by
the parameter J , �(x) is the Heaviside step function
(i.e., �(x) = 1 for x � 0 and �(x) = 0 for x < 0) and
v� is the threshold value for the spiking state (i.e., for
vi > v�, a local spiking state of the ith neuron appears).
Here, we consider the excitatory coupling of J > 0 and
set v� = 0 mV.
The ML neuron may exhibit either type-I or type-

II excitability, depending on the system parameters.
Throughout this paper, we consider the case of type-
II excitability where gCa = 4:4 mS=cm2; gK =
8 mS=cm2; gL = 2 mS=cm2; ECa = 120 mV; EK =
�84 mV; EL = �60 mV; C = 5 �F=cm2; � = 0:04;
V1 = �1:2 mV; V2 = 18 mV; V3 = 2 mV; and V4 =
30 mV [17]. As IDC passes a threshold in the absence
of noise, each single type-II ML neuron begins to �re
with a nonzero frequency that is relatively insensitive to
changes in IDC [18,19]. Numerical integration of Eq. (1)
is done using the Heun method [20] (with the time step
�t = 0:01 ms), which is similar to the second-order
Runge-Kutta method and data for (vi; wi) (i = 1; : : : ; N)
are obtained with the sampling time interval �t = 1 ms.
For each realization of the stochastic process in Eq. (1),
we choose a random initial point [vi(0); wi(0)] for the ith(i = 1; : : : ; N) neuron with uniform probability in the
range of vi(0) 2 (�60; 60) and wi(0) 2 (0:1; 0:5).
We consider a large population of globally coupled ML

neurons for a subthreshold case of IDC = 84 �A=cm2.
For an isolated single case, each subthreshold neuron
cannot �re spontaneously in the absence of noise and
it may generate �rings only with the aid of noise. We set
D = 0:3 �A �ms1=2=cm2 and numerically study collective
coherence of noise-induced spikings by varying the cou-
pling strength J for N = 103. Emergence of global spik-
ing coherence in the population may be described by the
global potential VG (i.e., the population-averaged mem-
brane potential) and the global recovery variable WG,

VG(t) = 1
N

NX
i=1

vi(t) and WG(t) = 1
N

NX
i=1

wi(t):(3)

For small J , neurons �re independently and hence inco-
herent states appear. For an incoherent state of J = 4
�A=cm2, the phase portrait of the global state (VG;WG)and the time series of the global potential VG are shown
in Figures 1(a) and 1(b), respectively. The global state
lies at a noisy equilibrium point and the global poten-
tial is nearly stationary. However, as J passes a lower
threshold J�l (' 6:7 �A=cm2), a coherent transition oc-
curs because the coupling stimulates collective coherence
between noise-induced spikings. Then, collective spiking
coherence occurs, as shown in Figures 1(c) and 1(d) for
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Fig. 1. Coherent and incoherent states for N = 103 andD = 0:3 �A �ms1=2=cm2. Phase portraits of the global stateand the time series of the global potential VG for J = 4�A=cm2 [(a) and (b)] and J = 8 �A=cm2 [(c) and (d)]. (e)Plots of log10O versus log10 J .

J = 8 �A=cm2. For this coherent case, the global state
exhibits a counterclockwise rotation on a noisy limit cy-
cle; hence, a collective coherent oscillatory motion of
the global potential VG occurs. As in globally coupled
chaotic systems [8{10], the mean square deviation of the
global potential VG (i.e., time-averaged uctuations of
VG),

O � (VG(t)� VG(t))2; (4)
plays the role of the order parameter used for describing
the coherence-incoherence transition, where the overbar
represents the time averaging. Here, we discard the �rst
time steps of a stochastic trajectory as transients during
103 ms; then, we numerically compute O by following
the stochastic trajectory during 104 ms. For the coherent
(incoherent) state, the order parameter O approaches a
non-zero (zero) limit value in the thermodynamic limit of
N !1. Figure 1(e) shows a plot of the order parameter
versus the coupling strength J . For J < J�l , incoherentstates exist because the order parameter O tends to zero
as N !1. As J passes the lower threshold J�l , a coher-ent transition occurs because the coupling stimulates co-
herence between noise-induced spikings. However, when
J passes a higher threshold J�h (' 141:9 �A=cm2), such
coherent states disappear (i.e., a transition to an inco-
herent state occurs) due to the e�ect of stochastic oscil-
lator death occurring for large J (which will be discussed
below).
Using the techniques of nonlinear dynamics, we inves-

tigate the dynamical origin of stochastic oscillator death,
leading to a breakup of collective spiking coherence, for

Fig. 2. Dynamical origin for the occurrence of the stochas-tic oscillator death for N = 103 and D = 0:3 �A �ms1=2=cm2.Time series of the local potential of the �rst neuron v1(t) andthe global potential VG(t) for J = 141 [(a1) and (b1)], 141.7[(a2) and (b2)], 141.8 [(a3) and (b3)] and 142 �A=cm2 [(a4)and (b4)]. Projections of the noisy equilibrium state onto thev1 � w1 plane for (c) J = 142 and (d) J = 143 �A=cm2.

N = 103. Since our neural network is globally coupled,
any local neuron may be a representative one. Figures
2(a1)-2(a4) and 2(b1)-2(b4) show the time series of the
local potential v1(t) of the �rst neuron and the global po-tential VG(t) for J = 141, 141.7, 141.8 and 142 �A=cm2,
respectively. The �rst three cases correspond to coher-
ent (�ring) states (with oscillating VG). With increase in
J , the time spent near v1(VG) ' 9:3 mV increases (i.e.,
the average interspike interval increases) and the ampli-
tude of the global potential VG decreases. Eventually,
when passing the higher threshold J�h , a transition to an
incoherent (�ring) state occurs [e.g., see Figures 2(a4)
and 2(b4) for J = 142 �A=cm2, where VG is nearly sta-
tionary because neurons �re independently]. For this
incoherent case, the phase portrait of the �rst local state
(v1; w1) is shown in Figure 2(c). We note that the mo-
tion on the noisy limit cycle is strongly non-uniform be-
cause the local state (v1; w1) spends much time near the
point of (v1; w1) ' (9:3; 0:6) [i.e., the point density near
(v1; w1) ' (9:3; 0:6) is very high]. As J is increased,
such non-uniformity of the motion along the noisy limit
cycle is intensi�ed; hence, the average interspike inter-
val increases. Eventually, when passing a threshold J�o(' 142:6 �A=cm2), the noisy limit cycle is transformed
into a noisy equilibrium point (e.g., see Figure 2(d) for
J = 143 �A=cm2), which is similar to the case of an
in�nite-period bifurcation (also called the saddle-node
bifurcation on an invariant circle) in the deterministic
case (without noise) [16]. Consequently, stochastic os-
cillator death (i.e., quenching of noise-induced spikings)
occurs for J > J�o because each local neuron is attracted
to the noisy equilibrium state.
As a result of the stochastic oscillator death, a transi-
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Fig. 3. Characterization of the �ring-non�ring transitionfor D = 0:3 �A �ms1=2=cm2. Raster plots of neural spikingsand �ring probabilities Pf for N = 103 and J = 141 [(a1)and (b1)], 141.7 [(a2) and (b2)] and 141.8 �A=cm2 [(a3) and(b3)]. (c) Plot of log10 Pf versus log10 J .

tion from �ring to non-�ring states occurs when pass-
ing the threshold J�o . We introduce a \statistical-
mechanical" parameter, called the average �ring prob-
ability Pf and quantitatively characterize the �ring-
non�ring transition in terms of Pf . Figures 3(a1)-3(a3)show the raster plots of neural spikings (i.e., spatiotem-
poral plot of neural spikings) for N = 103 and J =
141, 141.7 and 141.8 �A=cm2, respectively. The raster
plot consists of the coherent component (composed of
nearly synchronized spikes in the stripes) and the in-
coherent component (composed of randomly scattered
spikes). From each raster plot, one can obtain a �ring
probability as follows. We divide a long-time interval
into bins of width � (=5 ms) and calculate the �ring
probability in each bin (i.e., the fraction of �ring neu-
rons in each bin),

Pf (i) = Nf (i)
N ; (5)

where Nf (i) is the number of �ring neurons in the ith bin(i = 1; 2; : : : ) and N is the total number of neurons. For
N = 103, Figures 3(b1)-3(b3) show oscillatory behaviors
of Pf for J=141, 141.7 and 141.8 �A=cm2, respectively.
As J is increased, the average oscillating period of Pf in-creases and the average amplitude of Pf decreases. Thus,a transition to a non-�ring state occurs when J exceeds
a threshold J�o (' 142:6�A=cm2). For describing this
non-�ring transition, we introduce the time-average Pfof the �ring probability over su�ciently many bins,

Pf = 1
Nb

NbX
i=1

Pf (i); (6)

where Nb is the number of bins for averaging. For nu-
merical calculation of Pf , the �rst time steps during

103 ms are discarded as transients; then, the averag-
ing is performed over su�ciently large number of bins
(Nb = 4000). We note that the role of the average �ring
probability Pf is similar to that of the order parameter
O (used for the coherence-incoherence transition). For
the �ring (non�ring) state, the average �ring probability
Pf approaches a nonzero (zero) limit value in the ther-
modynamic limit of N ! 1. Figure 3(c) shows a plot
of the average �ring probability Pf versus the coupling
strength. We note that for J > J�o , non-�ring states
appear because Pf tends to zero in the thermodynamic
limit.

III. SUMMARY
We have numerically studied stochastic oscillator

death by varying the coupling strength J in a population
of globally coupled subthreshold ML neurons. For suf-
�ciently large J , breakup of collective spiking coherence
occurs due to the e�ect of stochastic oscillator death. Us-
ing the techniques of nonlinear dynamics (e.g., time se-
ries of the membrane potentials and the local phase por-
traits), we investigated dynamical origin of the stochastic
oscillator death. Thus, we showed that stochastic oscilla-
tor death occurs because each local neuron is attracted to
a noisy equilibrium point via an in�nite-period bifurca-
tion. This stochastic oscillator death leads to a transition
from �ring to non-�ring states. To quantitatively charac-
terize the �ring-non�ring transition, we have introduced
a new statistical-mechanical parameter, called the aver-
age �ring probability Pf . (The role of Pf is similar to
that of the order parameter O used for the coherence-
incoherence transition.) For a �ring (non-�ring) state,
Pf goes to non-zero (zero) in the thermodynamic limit.
Finally, in connection with oscillator death of the sin-
gle ML neuron, we make some qualitative comments on
why stochastic oscillator death occurs for large J . For
the single ML neuron, oscillator death occurs through
stabilization of an unstable equilibrium point for su�-
ciently large value of the DC current IDC [5]. That is,
when the strength of a stimulus is large, quenching of
neural spikings occurs. For our coupled case, in addition
to IDC , the synaptic current also stimulates each local
neuron. The value of IDC is not large for our subthresh-
old case. However, for large J , where collective spiking
coherence occurs, the magnitude of the synaptic current
becomes large. Hence, the strength of the total stimulus
(given to each local neuron) becomes large, which might
lead to the oscillator death, as in the single case.
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