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Strange Nonchaotic Spiking in the Quasiperiodically-forced
Hodgkin-Huxley Neuron

Woochang Lim∗ and Sang-Yoon Kim†

Department of Physics, Kangwon National University, Chunchon 200-701

(Received 3 June 2010)

We study the transition from a silent state to a spiking state by varying the dc stimulus in the
quasiperiodically-forced Hodgkin-Huxley neuron. For this quasiperiodically-forced case, a new type
of strange nonchaotic (SN) spiking state is found to appear between the silent state and the chaotic
spiking state as intermediate one. Using a rational approximation to the quasiperiodic forcing, we
investigate the mechanism for the appearance of such an SN spiking state. We thus find that a
smooth torus (corresponding to the silent state) is transformed into an SN spiking attractor via a
phase-dependent saddle-node bifurcation. This is in contrast to the periodically-forced case where
the silent state transforms directly to a chaotic spiking state. SN spiking states are characterized
in terms of the interspike interval, so they are found to be aperiodic complex ones, as in the case of
chaotic spiking states. Hence, aperiodic complex spikings may result from two dynamically different
states with strange geometry (one is chaotic and the other one is nonchaotic).
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I. INTRODUCTION

To probe the dynamical properties of a system, one
often applies an external stimulus to the system and in-
vestigate its response. Particularly, periodically stimu-
lated biological oscillators have attracted much attention
in various systems such as the embryonic chick heart-cell
aggregates [1], squid giant axons [2,3], and cortical pyra-
midal neurons [4]. These periodically-stimulated systems
have been found to exhibit rich regular (such as phase
locking and quasiperiodicity) and chaotic responses [5,
6]. On the other hand, the quasiperiodically forced case
has received little attention [7,8]. Hence, it is necessary
to make further intensive investigations on the dynami-
cal responses of quasiperiodically-forced biological oscil-
lators.

Strange nonchaotic (SN) attractors typically appear in
quasiperiodically-forced dynamical systems [9–12]. They
exhibit some properties of regular as well as chaotic
attractors. Like regular attractors, their dynamics is
nonchaotic in the sense that they do not have a posi-
tive Lyapunov exponent; like usual chaotic attractors,
they have a geometrically strange (fractal) structure.
Here, we are interested in the dynamical behaviors of
quasiperiodically-forced neurons, and SN spikings are ex-
pected to occur.
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This paper is organized as follows. In Sec. II., we
consider the Hodgkin-Huxley (HH) model neuron, which
was originally introduced to describe the behavior of the
squid giant axon [13], and investigate the transition from
a silent state to a spiking state by varying the dc stim-
ulus. This work is in contrast to previous works on the
effect of periodic and quasiperiodic forcings on the HH
neuron in the spiking state of self-sustained oscillations
of the membrane potential [3,8,14]. For the periodically-
forced case (i.e., in the presence of only one ac stimu-
lus source), an intermittent transition from a silent state
(with subthreshold oscillation) to a chaotic spiking state
occurs when the dc stimulus passes a threshold value.
The effect of the quasiperiodic forcing on this intermit-
tent route to chaotic spiking is investigated by adding
another independent ac stimulus source. Thus, a new
type of SN spiking is found to occur between the silent
state and the chaotic spiking state. Using a rational
approximation to the quasiperiodic forcing [11, 12], we
investigate the mechanism for the appearance of such
SN spikings. Thus, a smooth torus, corresponding to a
silent state, is found to transform to an SN spiking at-
tractor via a phase-dependent saddle-node bifurcation.
Together with chaotic spikings, these SN spikings are
characterized in terms of the interspike interval. Both
the chaotic and the SN spiking states are found to be ape-
riodic complex ones. Such aperiodic complexity comes
from the strange geometry of both spiking states with
qualitatively different dynamics (one is chaotic and the
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other is nonchaotic). These complex spikings might be
one of the origins of the complex physiological rhythms
which are central to life [6]. Finally, a summary is given
in Sec. III.

II. SN SPIKINGS IN THE
QUASIPERIODICALLY-FORCED HH

NEURON

We consider the conductance-based HH neuron model,
which serves as a canonical model for spiking neurons
[13]. The dynamics of the HH neuron, which is quasiperi-
odically forced at two incommensurate frequencies f1

and f2, is governed by the following set of differential
equations:

C
dV

dt
= −Iion + Iext = −(INa + IK + IL) + Iext

= −gNam3h(V − VNa)− gKn4(V − VK)
−gL(V − VL) + Iext, (1a)

dx

dt
= αx(V )(1− x)− βx(V )x; x = m,h, n, (1b)

where the external stimulus current density (measured in
units of µA/cm2) is given by Iext = Idc +A1 sin(2πf1t)+
A2 sin(2πf2t), Idc is a dc stimulus, A1 and A2 are am-
plitudes of quasiperiodic forcing, and ω(≡ f2/f1) is irra-
tional (f1 and f2: measured in units of kHz). Here, the
state of the HH neuron at a time t [measured in units
of millisecond (ms)] is characterized by four variables:
the membrane potential V (measured in units of mV),
the activation (inactivation) gate variable m (h) of the
Na+ channel [i.e., the fraction of sodium channels with
open activation (inactivation) gates], and the activation
gate variable n of the K+ channel (i.e., the fraction of
potassium channels with open activation gates). In Eq.
(1a), C represents the membrane capacitance per sur-
face unit (measured in units of µF/cm2) and the total
ionic current Iion consists of the sodium current INa, the
potassium current IK , and the leakage current IL. Each
ionic current obeys Ohm’s law. The constants gNa, gK ,
and gL are the maximum conductances for the ion and
the leakage channels, and the constants VNa, VK , and
VL are the reversal potentials at which each current is
balanced by the ionic concentration difference across the
membrane. The three gate variables obey the first-order
kinetics of Eq. (1b). The rate constants are given by

αm(V ) =
0.1[25− (V − Vr)]

exp[{25− (V − Vr)}/10]− 1
,

βm(V ) = 4 exp[−(V − Vr)/18], (2a)
αh(V ) = 0.07 exp[−(V − Vr)/20],

βh(V ) =
1

exp[{30− (V − Vr)}/10] + 1
, (2b)

αn(V ) =
0.01[10− (V − Vr)]

exp[{10− (V − Vr)}/10]− 1
,

βn(V ) = 0.125 exp[−(V − Vr)/80], (2c)

where Vr is the resting potential when Iext = 0. For
the squid giant axon, typical values of the parameters
(at 6.3 ◦C) are: C = 1µF/cm2, gNa = 120 mS/cm2,
gK = 36 mS/cm2, gL = 0.3 mS/cm2, VNa = 50 mV,
VK = −77 mV, VL = −54.4 mV, and Vr = −65 mV [15].

To obtain the Poincaré map of Eq. (1), we make a
normalization f1t → t; then, Eq. (1) can be reduced to
the following differential equations:

dV

dt
= F1(x, θ)

=
1

C f1
[−gNam3h(V − VNa)− gKn4(V − VK)

− gL(V − VL) + Iext], (3a)
dm

dt
= F2(x, θ) =

1
f1

[αm(V )(1−m)− βm(V )m],

(3b)
dh

dt
= F3(x, θ) =

1
f1

[αh(V )(1− h)− βh(V )h], (3c)

dn

dt
= F4(x, θ) =

1
f1

[αn(V )(1− n)− βn(V )n], (3d)

dθ

dt
= ω (mod 1), (3e)

where x[= (x1, x2, x3, x4)] ≡ (V,m, h, n) and Iext =
Idc + A1 sin(2πt) + A2 sin(2πθ). The phase space of the
quasiperiodically-forced HH oscillator is six dimensional
with coordinates V , m, h, n, θ, and t. Because the sys-
tem is periodic in θ and t, they are circular coordinates in
the phase space. Then, we consider the surface of a sec-
tion, the V -m-h-n-θ hypersurface at t = n (n: integer).
The phase-space trajectory intersects with the surface
of a section at a sequence of points. This sequence of
points corresponds to a mapping on the five-dimensional
hypersurface. The map can be computed by stroboscop-
ically sampling the orbit points vn [≡ (xn, θn)] at the
discrete time n (corresponding to multiples of the first
external driving period T1). We call the transformation
vn → vn+1 the Poincaré map and write vn+1 = P (vn).

Numerical integrations of Eqs. (1) and (3) are done
using the fourth-order Runge-Kutta method. A dynam-
ical analysis is performed in both the continuous-time
system (i.e., flow) and the discrete-time system (i.e.,
Poincaré map). For example, the time series of the
membrane potential V (t), the phase flow, and the in-
terspike interval are obtained in the flow. On the other
hand, the Lyapunov exponent [16] and the phase sen-
sitivity exponent [11] of an attractor are calculated in
the Poincaré map. To obtain the Lyapunov exponent
of an attractor in the Poincaré map, we choose 20 ran-
dom initial points {(Vi(0),mi(0), hi(0), ni(0), θi(0)); i =
1, . . . , 20} with uniform probability in the range of
Vi(0) ∈ (−60, 20), mi(0) ∈ (0.2, 0.8), hi(0) ∈ (0.1, 0.5),
ni(0) ∈ (0.4, 0.7), and θi(0) ∈ [0, 1). For each initial
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Fig. 1. Intermittent transition to a chaotic spiking state for
the case of periodic forcing with A1 = 1.0 µA/cm2 and f1 =
60 Hz (A2 = 0). (a) Time series of V (t) for the silent state
exhibiting subthreshold oscillations for Idc = 2.5 µA/cm2.
(b) Time series of V (t) for the chaotic spiking state with
σ1 ' 0.247 for Idc = 3.5 µA/cm2. (c) Bifurcation diagram
(i.e., plot of V versus Idc) in the Poincaré map. We obtain at-
tractors by iterating the Poincaré map at 500 equally-spaced
values of Idc in the range of Idc ∈ [2, 4]. For each chosen Idc,
we choose a random initial point (V (0), m(0), h(0), n(0), θ(0))
with uniform probability in the range of V (0) ∈ (−60, 20),
m(0) ∈ (0.2, 0.8), h(0) ∈ (0.1, 0.5), n(0) ∈ (0.4, 0.7), and
θ(0) ∈ [0, 1), and obtain the attractor through 200-times
iterations of the Poincaré map after transients of the 1000
Poincaré maps.

point, we get the Lyapunov exponent [16] and choose
the average value of the 20 Lyapunov exponents. (The
method of obtaining the phase sensitivity exponent will
be explained below.)

Here, we set ω to be the reciprocal of the golden
mean [i.e., ω = (

√
5 − 1)/2] and numerically investi-

gate dynamical transition from a silent state to a spik-
ing state by varying Idc in the HH neuron under ex-
ternal stimulus. We first consider the case of periodic
forcing (i.e., A2 = 0) when A1 = 1.0 µA/cm2 and
f1 = 60 Hz. Figure 1(a) shows the time series of V (t)
for the silent state when Idc = 2.5 µA/cm2. We note
that this silent state with the largest Lyapunov expo-
nent σ1 ' −1.569 exhibits subthreshold oscillations. As
Idc passes a threshold value of Idc = 3.058 824 µA/cm2,
a chaotic spiking state appears, as shown in Fig. 1(b) for
Idc = 3.5 µA/cm2. This transition from a silent state to a
chaotic spiking state is investigated by varying Idc in the
Poincaré map. Figure 1(c) shows the bifurcation diagram
(i.e., plot of V versus Idc). The solid curve represents a
stable fixed point corresponding to the silent state. The
stable fixed point loses its stability for Idc = 3.058 824
µA/cm2 via a saddle-node bifurcation when it absorbs
the unstable fixed point denoted by the dashed curve,

Fig. 2. Appearance of SN spiking states for the
quasiperiodically-forced case when A1 = 1.0 µA/cm2 and
f1 = 60 Hz. (a) State diagram in the Idc − A2 plane. Silent,
SN, and chaotic states are represented by S, SN, and C, re-
spectively. We set A2 = 0.3 µA/cm2. Time series of V (t) of
(b) the silent state for Idc = 1.7 µA/cm2, (c) the SN spiking
state for Idc = 2.85 µA/cm2, and (d) the chaotic spiking state
for Idc = 3.9 µA/cm2.

and then a chaotic spiking attractor, corresponding to a
chaotic spiking state, appears.

From now on, we consider the quasiperiodically forced
case when A1 = 1.0 µA/cm2 and f1 = 60 Hz. Figure 2(a)
shows a state diagram in the Idc−A2 plane. Each state is
characterized by both the largest (nontrivial) Lyapunov
exponent σ1, associated with dynamics of the variable x
[besides the (trivial) zero exponent, related to the phase
variable θ of the quasiperiodic forcing] and the phase sen-
sitivity exponent δ. The exponent δ measures the sensi-
tivity of the variable x with respect to the phase θ of the
quasiperiodic forcing and characterizes the strangeness
of an attractor [11]. A (regular) silent state, which has
a negative Lyapunov exponent (i.e., σ1 < 0) and has no
phase sensitivity (i.e. δ = 0), exists in the region repre-
sented by S. On the other hand, a chaotic spiking state,
which has a positive Lyapunov exponent σ1 > 0, exists
in the region denoted by C. Between these regular and
chaotic regions, a new type of SN spiking state that has
a negative Lyapunov exponent (σ1 < 0) and a positive
phase sensitivity exponent (δ > 0) exist in the region rep-
resented by SN. Due to their high phase sensitivity, SN
spiking states have a strange fractal phase-space struc-
ture. As an example, we consider the case of A2 = 0.3
µA/cm2 and investigate the dynamical behaviors of the
quasiperiodically forced HH neuron by varying Idc. As
Idc passes a threshold I∗dc ('1.9169 µA/cm2), the silent
state becomes unstable, and a transition to an SN spik-
ing state occurs. As Idc is further increased and passes
another threshold value of Idc ' 3.572 µA/cm2, the SN
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Fig. 3. Characterization of the silent and the spiking states
for A1 = 1.0 µA/cm2, A2 = 0.3 µA/cm2, and f1 = 60
Hz. Projections of attractors onto the θ − V plane in the
Poincaré map are shown for the (a) silent, (b) SN spiking,
and (c) chaotic spiking states when Idc = 1.7, 2.85, and 3.9
µA/cm2, respectively. (d) Lyapunov-exponent (σ1) diagram
(i.e., plot of σ1 versus Idc); for the SN spiking attractor is

shown in black. (e) Phase-sensitivity functions Γ
(1)
N are shown

for the silent and the SN spiking attractors when Idc = 1.7
and 2.85 µA/cm2, respectively. For the SN spiking attractor,
the graph is well fitted with a dashed straight line with slope
δ ' 1.69. (f) Plot of the phase-sensitivity exponent δ versus
∆Idc (= Idc − I∗dc) for the SN spiking attractor; I∗dc ' 1.9169
µA/cm2.

spiking state transforms to a chaotic spiking state. Fig-
ures 2(b) - 2(d) show the time series of the membrane
potential V (t) of a silent state (exhibiting subthreshold
oscillations), an SN spiking state, and a chaotic spiking
state for Idc = 1.7, 2.85, and 3.9 µA/cm2, respectively.

The silent and the spiking states for A2 = 0.3 µA/cm2

are analyzed in terms of the largest Lyapunov exponent
σ1 and the phase sensitivity exponent δ in the Poincaré
map. Projections of attractors onto the θ − V plane for
the above three cases are given in Figs. 3(a) - 3(c), re-
spectively. For the silent case, a smooth torus exists in
the θ−V plane [see Fig. 3(a)]. On the other hand, nons-
mooth spiking attractors appear for both SN and chaotic
spiking states, as shown in Figs. 3(b) and 3(c). A dy-
namical property of each state is characterized in terms
of the largest Lyapunov exponent σ1 (measuring the de-
gree of sensitivity to initial conditions). The Lyapunov-

exponent diagram is given in Fig. 3(d). When passing
the spiking transition point I∗dc('1.9169 µA/cm2), an
SN spiking attractor appears. The graph of σ1 for the
SN spiking state is shown in black, and its value is neg-
ative as in the case of a smooth torus. However, as Idc

passes the chaotic transition point Idc ('3.572 µA/cm2),
a chaotic spiking attractor with a positive σ1 appears.
Although SN and chaotic spiking attractors are dynam-
ically different, they both have strange geometry, lead-
ing to aperiodic complex spikings. To characterize the
strangeness of an attractor, we investigate the sensitivity
of the attractor with respect to the phase θ of the exter-
nal quasiperiodic forcing [11]. This phase sensitivity may
be characterized by differentiating x with respect to θ at
a discrete time t = n. Using Eq. (3), we may obtain the
following governing equation for ∂xi

∂θ (i = 1, 2, 3, 4):

d

dt

(
∂xi

∂θ

)
=

4∑
j=1

∂Fi

∂xj
· ∂xj

∂θ
+

∂Fi

∂θ
, (4)

where (x1, x2, x3, x4) = (V,m, h, n) and Fi’s (i =
1, 2, 3, 4) are given in Eq. (3). Starting from an ini-
tial point (x(0), θ(0)) and an initial value ∂x/∂θ = 0
for t = 0, we may obtain the derivative values of S

(i)
n

(≡ ∂xi/∂θ) at all subsequent discrete time t = n by in-
tegrating Eqs. (3) and (4). One can easily see the bound-
edness of S

(i)
n by looking only at the maximum

γ
(i)
N (x(0), θ(0)) = max

0≤n≤N
|S(i)

n (x(0), θ(0))| (i = 1, 2, 3, 4).

(5)

We note that γ
(i)
N (x(0), θ(0)) depends on a particular

trajectory. To obtain a “representative” quantity that
is independent of a particular trajectory, we consider an
ensemble of randomly chosen initial points {(x(0), θ(0))}
and take the minimum value of γ

(i)
N with respect to the

initial orbit points [11],

Γ(i)
N = min

{(x(0),θ(0))}
γ

(i)
N (x(0), θ(0)) (i = 1, 2, 3, 4). (6)

Figure 3(e) shows a phase sensitivity function Γ(1)
N , which

is obtained in an ensemble containing 20 random ini-
tial orbit points {(Vi(0),mi(0), hi(0), ni(0), θi(0)); i =
1, . . . , 20} that are chosen with uniform probability in
the range of Vi(0) ∈ (−60, 20), mi(0) ∈ (0.2, 0.8),
hi(0) ∈ (0.1, 0.5), ni(0) ∈ (0.4, 0.7) and θi(0) ∈ [0, 1).
For the silent case of Idc = 1.7, Γ(1)

N grows up to the
largest possible value of the derivative |∂x1/∂θ| along
a trajectory and remains there for all subsequent time.
Thus, Γ(1)

N saturates for large N ; hence, the silent state
has no phase sensitivity (i.e., it has smooth geometry).
On the other hand, for the case of SN spiking, Γ(i)

N grows
unboundedly with the same power δ, independently of i:

Γ(i)
N ∼ N δ. (7)
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Here, the value of δ ' 1.69 is a quantitative characteris-
tic of the phase sensitivity of the SN spiking attractor for
Idc = 2.85 µA/cm2, and δ is called the phase sensitivity
exponent. For obtaining satisfactory statistics, we con-
sider 20 ensembles for each Idc, each of which contains
20 randomly-chosen initial points and choose the average
value of the 20 phase sensitivity exponents obtained in
the 20 ensembles. Figure 3(f) shows a plot of δ versus
∆Idc (= Idc − I∗dc). Note that the value of δ monoton-
ically increases from zero as Idc is increased away from
the spiking transition point I∗dc ('1.9169 µA/cm2). As
a result of this phase sensitivity, the SN spiking attrac-
tor has strange geometry, leading to aperiodic complex
spikings, as in the case of the chaotic spiking attractor.

Using the rational approximation to the quasiperiodic
forcing, we explain the mechanism for the transition from
a silent to an SN spiking state. For the inverse golden
mean, its rational approximants are given by the ratios
of the Fibonacci numbers, ωk = Fk−1/Fk, where the se-
quence of {Fk} satisfies Fk+1 = Fk + Fk−1 with F0 = 0
and F1 = 1. Instead of the quasiperiodically forced sys-
tem, we study an infinite sequence of periodically forced
systems with rational driving frequencies ωk. For each
rational approximation of level k, a periodically-forced
system has a periodic or a chaotic attractor that depends
on the initial phase θ0 of the external forcing. Then,
the union of all attractors for different θ0 gives the kth
approximation to the attractor in the quasiperiodically-
forced system. For this rational approximation of level
k, it is sufficient to change the initial phase θ0 in the
interval [0, 1/Fk) in order to get all possible attracting
sets because the set of all θ values fills the whole interval
[0, 1).

We consider the rational approximation of level k = 6
for A2 = 0.3 µA/cm2. As shown in Fig. 4(a) for Idc = 1.9
µA/cm2, the rational approximation to a stable smooth
torus (represented by the black curve), corresponding
to a silent state, consists of stable orbits with period
F6 (= 8). On the other hand, the rational approxima-
tion to an unstable smooth torus (denoted by the gray
curve) consists of unstable F6-periodic orbits and lies
very close to the stable torus [see a magnified view near
F6θ = 0.5 in Fig. 4(b)]. As Idc passes a threshold value
I
(6)
dc ('1.9375 µA/cm2), a phase-dependent saddle-node

bifurcation occurs through collision of the stable and the
unstable tori at specific θ-values (not at all θ values). As
a result, “gaps,” where no orbits with period F6 exist,
are formed. A magnified gap is shown in Fig. 4(c) for
Idc = 2.6 µA/cm2. Note that this gap is filled with in-
termittent chaotic attractors, together with orbits with
regular attractors with periods higher than F6 embed-
ded in very small windows. As shown in Fig. 4(d), the
rational approximation to the whole attractor consists of
the union of the periodic component and the intermittent
chaotic component, where the latter occupies the F6 gaps
in θ. Figure 4(e) shows the Lyapunov-exponent diagram
(i.e., plot of σ1(θ) vs. F6θ) for Idc = 2.6 µA/cm2. The

Fig. 4. Investigation of the transition from a smooth torus
(corresponding to a silent state) to an SN attractor (corre-
sponding to an SN spiking state) in the rational approxima-
tion of level k = 6 for A1 = 1.0 µA/cm2, A2 = 0.3 µA/cm2,
and f1 = 60 Hz. (a) Smooth stable and unstable tori for
Idc = 1.9 µA/cm2. The unstable torus (shown in gray) lies
very close to the stable torus (shown in black). A magnified
view near F6θ = 0.5 is given in (b). (c) and (d) The 6th
rational approximation to the intermittent SN attractor for
Idc = 2.6 µA/cm2. A magnified gap near F6θ = 0.5 is given
in (c). (e) Lyapunov-exponent diagram for Idc = 2.6 µA/cm2

in the Poincaré map.

angle-averaged Lyapunov exponent 〈σ1〉 [〈· · · 〉 denotes
the average over the whole θ] is given by the sum of the
“weighted” Lyapunov exponents of the periodic and the
chaotic components, Λp and Λc, (i .e., 〈σ1〉 = Λp + Λc),
where Λp(c) = Mp(c)〈σ1〉p(c), and Mp(c) and 〈σ1〉p(c) are
the Lebesgue measure in θ and the average Lyapunov
exponent of the periodic (chaotic) component, respec-
tively. Since the periodic component is dominant, the
average Lyapunov exponent (〈σ1〉 ' −0.392) is nega-
tive. Hence, the rational approximation to the spiking
attractor in Fig. 4(d) is nonchaotic. We note that Fig.
4(d) resembles Fig. 3(b), although the level k = 6 is low.
Increasing the level to k = 10, we confirm that the ratio-
nal approximations to the whole attractor have Fk gaps
(filled with intermittent chaotic attractors), which ap-
pear via phase-dependent saddle-node bifurcations and
that their average Lyapunov exponents are negative. In
this way, an SN spiking attractor appears in the case of
quasiperiodic forcing, as shown in Fig. 3(b).
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Fig. 5. Characterization of the SN (Idc = 2.85 µA/cm2)
and the chaotic (Idc = 3.9 µA/cm2) spiking states for A1 =
1.0 µA/cm2, A2 = 0.3 µA/cm2, and f1 = 60 Hz. Sequences
of interspike intervals for (a) SN and (c) chaotic spikings; i
represents the spiking index. Histograms of the interspike
intervals for (b) SN and (d) chaotic spikings. For histograms
of ISI, 200 equally-spaced bins are chosen in the range of ISI
∈ (0, 100). We get the number of spikes (N) in each bin from
a total number of 2000 spikes.

Finally, we characterize both the SN and the chaotic
spiking states for A2 = 0.3 µA/cm2 in terms of the in-
terspike interval. Figures 5(a) and 5(c) show sequences
of the interspike intervals for the SN and chaotic spik-
ing states when Idc = 2.85 and 3.9 µA/cm2, respec-
tively. Both sequences are aperiodic complex ones. His-
tograms for the interspike intervals for the SN and the
chaotic spiking states are also given in Figs. 5(b) and
5(d), respectively. They are multimodal ones. As Idc is
increased, the heights of the peaks for short interspike
intervals increase, while those for longer ones decrease.
Hence, the average interspike interval decreases (i.e., the
mean spiking rate increases) as Idc is increased. Thus,
both the SN and the chaotic spiking states exhibit aperi-
odic complex spikings, although their dynamics are dif-
ferent (one is chaotic and the other one is nonchaotic).
We note that such aperiodic complexity results from
the strange geometry of the SN and the chaotic spiking
states.

III. SUMMARY

We have investigated the dynamical transition from a
silent state to a spiking state by varying the dc stimulus
Idc in the quasiperiodically forced HH neuron. For this
quasiperiodically-forced case, a transition from a silent
state to an SN spiking state (with negative Lyapunov
exponent and positive phase-sensitivity exponent) has

been found to occur when Idc passes a threshold value.
With a further increase in Idc, such an SN spiking state
transforms to a chaotic spiking state (with a positive
Lyapunov exponent). Thus, a new type of SN spiking
state appears between the silent state and the chaotic
spiking state as an intermediate one. Using a rational ap-
proximation to the quasiperiodic forcing, we have studied
the mechanism for the appearance of SN spiking states.
Thus, a smooth torus, corresponding to a silent state, is
found to transform to an SN spiking attractor through
a phase-dependent saddle-node bifurcation. Both the
SN and the chaotic spiking states have been character-
ized in terms of the interspike interval. As a result of
their strange geometry, both spiking states are found to
be aperiodic complex ones, although their dynamics are
qualitatively different. These kinds of complex spikings
might be one of the origins of complex physiological bod-
ily rhythms.
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