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Characterization of Stochastic Spiking Coherence in Coupled Neurons
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We consider a large population of globally coupled subthreshold Morris-Lecar neurons. By vary-
ing the noise intensity D, we investigate numerically stochastic spiking coherence (i.e., noise-induced
coherence between neural spikings). As D passes a threshold, a transition from an incoherent to a
coherent state occurs. This coherent transition is described in terms of the “thermodynamic” order
parameter O, which concerns a macroscopic time-averaged fluctuation of the global potential. We
note that such stochastic spiking coherence may be well visualized in terms of the raster plot of neu-
ral spikings (i.e., spatiotemporal plot of neural spikings), which is directly obtained in experiments.
To quantitatively measure the degree of stochastic spiking coherence (seen in the raster plot), we
introduce a new type of “spiking coherence measure,” Ms, by taking into consideration the average
contribution of (microscopic) local neural spikings to the (macroscopic) global membrane poten-
tial. Hence, the spiking coherence measure may be regarded as a “statistical-mechanical” measure.
Through competition between the constructive and the destructive roles of noise, stochastic spik-
ing coherence is found to occur over a large range of intermediate noise intensities and to be well
characterized in terms of the mutually complementary quantities of O and Ms. Particularly, Ms

reflects the degree of stochastic spiking coherence seen in the raster plot very well.
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I. INTRODUCTION

In recent years, much attention has been paid to
brain rhythms [1]. Synchronization of the firing activ-
ity of groups of neurons may be used for efficient sen-
sory processing (e.g., visual binding) [2]. In addition
to a constructive role of encoding sensory stimuli, neu-
ral synchronization is also correlated with pathological
rhythms associated with neural diseases (e.g., epileptic
seizures and tremors in Parkinson’s disease) [3]. To un-
derstand the mechanisms of synchronized firings, collec-
tive dynamical behaviors have been investigated in cou-
pled systems composed of spontaneously firing (i.e., self-
oscillating) neurons. As a result of these studies, three
mechanisms for neural synchronization have been found
[4]. In this paper, we are interested in noise-induced
coherent dynamics in neural networks consisting of sub-
threshold neurons. (Each subthreshold neuron in the
absence of coupling cannot fire spontaneously without
noise; it can fire only with the help of noise.) A main
subject of our study is to investigate collective coher-
ence between noise-induced firings, which is in contrast
to studies of synchronization between spontaneous (self-
sustained) firings. Noise is usually considered as a nui-
sance, degrading the performance of dynamical systems.
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However, in certain circumstances, noise plays a con-
structive role in the emergence of dynamical order. A dis-
tinguished example of such manifestations is the stochas-
tic resonance through which noise-enhanced detection of
a weak signal may occur [5,6]. Recently, there has been
great interest in noise-induced coherence in coupled ex-
citable systems [7].

This paper is organized as follows. In Sec. II, we con-
sider a large population of globally coupled subthresh-
old Morris-Lecar (ML) neurons [8–10]. By varying the
noise intensity D, we investigate numerically stochastic
spiking coherence (i.e., noise-induced coherence between
neural spikings) for a fixed coupling strength. For small
D, neurons fire independently; hence, the global output
signal (i.e., the ensemble-averaged membrane potential)
becomes incoherent. However, as the noise amplitude
passes a threshold, the global output signal becomes co-
herent (i.e., it exhibits a collective motion on a noisy
limit cycle). As in globally coupled chaotic systems [11–
13], this kind of coherent transition may be described
in terms of an order parameter O. For our case, the
mean square deviation of the global output signal plays
the role of O, which is a “thermodynamic” quantity be-
cause it concerns a macroscopic time-averaged fluctua-
tion of the global potential. Such stochastic spiking co-
herence may be well visualized in terms of the raster plot
of neural spikings (i.e., a spatiotemporal plot of neural
spikings) which is directly obtained in experiments. To
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quantitatively measure the degree of stochastic spiking
coherence (seen in the raster plot), we introduce a new
type of coherence measure, Ms, called the spiking co-
herence measure, by considering the average contribu-
tion of (microscopic) local spikings to the (macroscopic)
global membrane potential. Hence, Ms may be regarded
as a “statistical-mechanical” measure, in contrast to the
thermodynamic order parameter O. Through competi-
tion between the constructive and the destructive roles of
noise, stochastic spiking coherence is found to occur over
a large range of intermediate noise intensities, and to be
well characterized in terms of the mutually complemen-
tary quantities of O and Ms. As the noise amplitude
is increased from the threshold, Ms increases dramati-
cally at first, showing onset of coherence, because noise
stimulates collective coherence between neural spikings.
Then, the values of Ms become nearly the same over a
large range of intermediate D, but for large D, Ms de-
creases because noise spoils spiking coherence. In this
way, Ms reflects the degree of stochastic spiking coher-
ence seen in the raster plot very well. Hence, we expect
that Ms may be implemented for characterizing the de-
gree of coherence in the experimentally-obtained raster
plot of neural spikings. Finally, a summary is given in
Sec. III.

II. CHARACTERIZATION OF STOCHASTIC
SPIKING COHERENCE

We consider a system of N globally coupled neu-
rons. As an element in our coupled system, we choose
the conductance-based ML neuron model, originally pro-
posed to describe the time-evolution pattern of the mem-
brane potential for the giant muscle fibers of barnacles
[8–10]. The population dynamics in this neural network
is governed by the following set of differential equations:

C
dvi

dt
= −Iion,i + IDC + Dξi + Isyn,i, (1a)

dwi

dt
= φ

(w∞(vi)− wi)
τR(vi)

, i = 1, · · · , N, (1b)

where

Iion,i = ICa,i + IK,i + IL,i (2a)
= gCam∞(vi)(vi − ECa)
+gKwi(vi − EK) + gL(vi − EL), (2b)

Isyn,i =
J

N − 1

N∑

j(6=i)

Θ(vj − v∗), (2c)

m∞(v) = 0.5 [1 + tanh {(v − V1)/V2}] , (2d)
w∞(v) = 0.5 [1 + tanh {(v − V3)/V4}] , (2e)
τR(v) = 1/ cosh {(v − V3)/(2V4)} . (2f)

Here, the state of the ith neuron at a time t (measured
in units of ms) is characterized by two state variables:

the membrane potential vi (measured in units of mV)
and the slow recovery variable wi representing the acti-
vation of the K+ current (i.e., the fraction of open K+

channels). In Eq. (1a), C represents the capacitance of
the membrane of each neuron, and the time evolution of
vi is governed by four kinds of source currents.

The total ionic current Iion,i of the ith neuron con-
sists of the calcium current ICa,i, the potassium current
IK,i, and the leakage current IL,i. Each ionic current
obeys Ohm’s law. The constants gCa, gK and gL are
the maximum conductances for the ion and the leakage
channels, and the constants ECa, EK and EL are the
reversal potentials at which each current is balanced by
the ionic concentration difference across the membrane.
Since the calcium current ICa,i changes much faster than
the potassium current IK,i, the gate variable mi for the
Ca2+ channel is assumed to always take its saturation
value m∞(vi). On the other hand, the activation variable
wi for the K+ channel approaches its saturation value
w∞(vi) with a relaxation time τR(vi)/φ, where τR has a
dimension of ms and φ is a (dimensionless) temperature-
like time scale factor.

Each ML neuron is also stimulated by the common DC
current IDC and an independent Gaussian white noise ξ
[see the second and third terms in Eq. (1a)] satisfying
〈ξi(t)〉 = 0 and 〈ξi(t) ξj(t′)〉 = δij δ(t − t′), where 〈· · · 〉
denotes the ensemble average. The noise ξi is a para-
metric one and randomly perturbs the strength of the
applied current IDC , and its intensity is controlled by
the parameter D. The last term in Eq. (1a) represents
the coupling of the network. Each neuron is connected
to all the others through global instantaneous pulse-type
synaptic couplings. Isyn,i of Eq. (2c) represents such a
synaptic current injected into the ith neuron. The cou-
pling strength is controlled by the parameter J , Θ(x) is
the Heaviside step function (i.e., Θ(x) = 1 for x ≥ 0
and Θ(x) = 0 for x < 0) and v∗ is the threshold value
for the spiking state (i.e., for vi > v∗, a local spiking
state of the ith neuron appears). Here, we consider the
excitatory coupling of J > 0 and set v∗ = 0 mV.

The ML neuron may exhibit either type-I or type-
II excitability, depending on the system parameters.
Throughout this paper, we consider the case of type-
II excitability where gCa = 4.4 mS/cm2, gK =
8 mS/cm2, gL = 2 mS/cm2, ECa = 120 mV, EK =
−84 mV, EL = −60 mV, C = 5 µF/cm2, φ = 0.04,
V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV and V4 =
30 mV [14]. As IDC passes a threshold in the absence
of noise, each single type-II ML neuron begins to fire
with a nonzero frequency that is relatively insensitive
to the change in IDC [15,16]. Numerical integration of
Eq. (1) is done using the Heun method [17] (with the time
step ∆t = 0.01 ms) similar to the second-order Runge-
Kutta method, and data for (vi, wi) (i = 1, . . . , N) are
obtained with the sampling time interval ∆t = 1 ms.
For each realization of the stochastic process in Eq. (1),
we choose a random initial point [vi(0), wi(0)] for the ith
(i = 1, . . . , N) neuron with uniform probability in the
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Fig. 1. Coherent and incoherent states for J = 50 µA/cm2.
Snapshot profiles for a coherent state at (a1) t = 1070 ms and

(a2) 1135 ms for N = 103 and D = 0.3 µA ·ms1/2/cm2. Local
states (vi, wi) (i = 1, . . . , 103) are represented by black dots
and the global state (VG, WG) is denoted by a cross. The
global state makes a counterclockwise rotation on a noisy
gray limit cycle. (b) Time series of VG(t) for N = 103 and

D = 0.3 µA ·ms1/2/cm2. Snapshot profiles for an incoherent
state at (c1) t = 1070 ms and (c2) 1135 ms for N = 103

and D = 30 µA ·ms1/2/cm2. Local and global states are
represented in the same way as in (a). (d) Time series of

VG(t) for N = 103 and D = 30 µA ·ms1/2/cm2. (e) Plots of
log10O versus log10 D.

range of vi(0) ∈ (−60, 60) and wi(0) ∈ (0.1, 0.5).
We consider a large excitatory population of globally

coupled ML neurons for a subthreshold case of IDC = 84
µA/cm2. For an isolated single case, each subthreshold
neuron cannot fire spontaneously in the absence of noise,
and it may generate firings only with the aid of noise. We
set J = 50 µA/cm2 and numerically investigate stochas-
tic spiking coherence (i.e., collective coherence between
noise-induced firings) by varying the noise amplitude D.
Emergence of global spiking coherence in the population
may be described by the population-averaged membrane
potential VG (corresponding to the global potential) and
the global recovery variable WG,

VG(t) =
1
N

N∑

i=1

vi(t) and WG(t) =
1
N

N∑

i=1

wi(t).(3)

For N = 103 and D = 0.3 µA ·ms1/2/cm2, snapshots for
a coherent state are shown in Figures 1(a1) and 1(a2)
at t = 1070 ms and 1135 ms, respectively. Local states
(vi, wi) (i = 1, · · · , N) are denoted by black dots, and
the global state (VG,WG) is represented by a cross. As
time goes on, the global state exhibits a counterclock-

Fig. 2. Raster plots of noise-induced spikings (i: neuron
index and t: time) [time series of VG(t)] for D = (a1)-(b1)
0.12, (a2)-(b2) 0.3, (a3)-(b3) 3, (a4)-(b4) 10 and (a5)-(b5) 13

µA ·ms1/2/cm2 when J = 50 µA/cm2 and N = 103.

wise rotation on a noisy gray limit cycle; hence, col-
lective coherent oscillatory motion occurs, as shown in
Figure 1(b). On the other hand, Figures 1(c1) and 1(c2)
show snapshots of an incoherent state, where neurons fire
independently, for N = 103 and D = 30 µA ·ms1/2/cm2.
For this case, the global potential VG is nearly stationary
[see Figure 1(d)]. As in globally coupled chaotic systems
[11–13], the mean square deviation of the global potential
VG,

O ≡ (VG(t)− VG(t))2, (4)

plays the role of the order parameter used for describing
the coherence-incoherence transition, where the overbar
represents time averaging. Such an order parameter is a
“thermodynamic” quantity because it concerns just the
macroscopic time-averaged fluctuation of VG. Here, we
discard the first time steps of a stochastic trajectory as
transients for 103 ms; then, we numerically compute O
by following the stochastic trajectory for 104 ms. For
the coherent (incoherent) state, the order parameter O
approaches a nonzero (zero) limit value in the thermo-
dynamic limit of N → ∞. Figure 1(e) shows a plot
of the order parameter versus the noise intensity. For
D < D∗

l (' 0.115 µA ·ms1/2/cm2), incoherent states
exist because the order parameter O tends to zero as
N → ∞. As D passes the lower threshold D∗

l , a coher-
ent transition occurs because of the constructive role of
noise to stimulate coherence between noise-induced spik-
ings. However, for large D > D∗

h (' 16 µA ·ms1/2/cm2)
such coherent states disappear (i.e., a transition to an
incoherent state occurs when D passes the higher thresh-
old D∗

h) due to the destructive role of noise to spoil the
spiking coherence.

Stochastic spiking coherence may be well visualized
in terms of the raster plot of neural spikings (i.e., spa-
tiotemporal plot of neural spikings), which is directly
obtained in experiments. Figures 2(a1)-2(a5) show such
raster plots for N = 103 in the coherent region for
D = 0.12, 0.3, 3, 10 and 13 µA ·ms1/2/cm2, respec-
tively, and the time series of their corresponding global
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Fig. 3. Spiking coherence measure for J = 50 µA/cm2

and N = 103. Time series of (a) the global potential VG(t)

and (b) the global phase Φ(t) for D = 0.3 µA ·ms1/2/cm2.
Here, the cross represents the beginning point of each global
spiking state. Plots of the spiking coherence measure Mi of
the ith neuron for D = (c1) 0.12, (c2) 0.3, (c3) 3, (c4) 10 and

(c5) 13 µA ·ms1/2/cm2. (d) Plot of the (ensemble-averaged)
spiking coherence measure, Ms, versus log10 D.

potentials VG are also given in Figures 2(b1)-2(b5). For
an optimal noise intensity D∗ (' 0.3 µA ·ms1/2/cm2),
clear stripes (consisting of local neural spikings) appear
successively at nearly regular time intervals ∆t (' 82
ms), as shown in Figure 2(a2). For this optimal case,
the degree of stochastic spiking coherence seems to be
maximal. As D is increased from D∗, such an optimal
degree of stochastic spiking coherence is nearly preserved
over a large range of D [e.g., see Figure 2(a3) for D = 3
µA ·ms1/2/cm2] because only a little smearing of stripes
occurs. We also note that the amplitude of the global po-
tential VG for D = 3 µA ·ms1/2/cm2 is nearly the same
as that for D = 0.3 µA ·ms1/2/cm2, although the fre-
quency increases with D. However, for large D, stripes
in the raster plots become more and more smeared [e.g.,
see Figures 2(a4) and 2(a5)] and the amplitude of VG

decreases [e.g., see Figures 2(b4) and 2(b5)] because of
the destructive role of noise to spoil the stochastic spik-
ing coherence. Hence, the degree of stochastic spiking
coherence decreases. In contrast to the case of large D,
for small D (less than D∗) not only smearing but also
skipping of stripes occur in the raster plot; due to skip-
ping the number of stripes in a given time interval de-
creases. As an example, see Figure 2(a1) for D = 0.12
µA ·ms1/2/cm2. Thus, the corresponding global poten-
tial becomes irregular, particularly due to skipping, as
shown in Figure 2(b1). In this way, the degree of stochas-
tic spiking coherence decreases as D is decreased from
D∗.

To quantitatively measure the degree of stochastic

spiking coherence seen in the raster plot, we first intro-
duce a global phase of the global potential VG(t). Figure
3(a) shows a time series of the global potential for D =
0.3 µA ·ms1/2/cm2. When VG is larger (smaller) than a
threshold value V ∗

G [= (VG,max + VG,min)/2;VG,max(min)

is the maximum (minimum) of VG], a spiking (silent)
state appears. For the jth spiking state of VG (j =
1, 2, 3, . . . ), its beginning point at t = t∗j is represented
by a cross. Thus, a combination of a spiking state (de-
noted by a black curve) and the following silent state
(represented by a gray curve) forms a global cycle G.
Two complete global cycles, G1 and G2, are shown in
Figure 3(a). Here, the first global cycle G1 begins from
the global spiking state that first appears after a tran-
sient process of 103 ms. It is then possible to introduce
an instantaneous global phase Φ(t) by using linear inter-
polation [18],

Φ(t) = 2π(j − 1) + 2π(
t− t∗j

t∗j+1 − t∗j
) for

t∗j ≤ t ≤ t∗j+1 (j = 1, 2, 3, . . . ). (5)

The global phase Φ(t) for D = 0.3 µA ·ms1/2/cm2 is
,thus, obtained, as shown in Figure 3(b). Then, the de-
gree of stochastic spiking coherence (seen in the raster
plot) is measured by taking into consideration the av-
erage contribution of (microscopic) local spikings to the
(macroscopic) global potential VG. Hence, Ms may be
regarded as a “statistical-mechanical” measure, which is
in contrast to the “thermodynamic” order parameter O.
We follow 200 global cycles and obtain local spikings.
Consider an sth local spiking of the ith neuron begin-
ning at the time t

(s)
i . Then, the contribution of the sth

local spiking to VG is given by cos Φ(s)
i , where Φ(s)

i is
just the global phase at the sth local spiking time [i.e.,
Φ(s)

i ≡ Φ(t(s)i )]. A local spiking makes the most construc-
tive (in-phase) contribution to VG when the correspond-
ing global phase Φ(s)

i is 2πn (n = 0, 1, 2, . . . ), while it
makes the most destructive (anti-phase) contribution to
VG when Φ(s)

i is 2π(n+1/2). By averaging the contribu-
tion of all local spikings, we obtain the spiking coherence
measure of the ith neuron,

Mi =
1
Li

Li∑
s=1

cosΦ(s)
i , (6)

where Li is the total number of local spikings of the ith
neuron. Figures 3(c1)-3(c5) show plots of Mi versus i for
D = 0.12, 0.3, 3, 10 and 13 µA ·ms1/2/cm2, respectively.
Fluctuations occur in Mi. By averaging Mi over all neu-
rons, we get the (population-averaged) spiking coherence
measure Ms,

Ms =
1
N

N∑

i=1

Mi. (7)

For a coherent state, 0 < Ms ≤ 1, while for an incoherent
state, Ms = 0. Figure 3(d) shows the plot of Ms versus
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the noise amplitude D. As D is increased from the lower
threshold D∗

l , Ms increases abruptly at first, indicating
onset of coherence, and then a wide plateau with nearly
constant large Ms is followed. Thus, stochastic spik-
ing coherence with large Ms becomes stable against a
large range of intermediate noise intensity. However, for
large D Ms decreases due to the destructive role of noise
to spoil the spiking coherence. In this way, the spiking
coherence measure Ms reflects the degree of stochastic
spiking coherence seen in the raster plots well.

III. SUMMARY

We have numerically investigated stochastic spiking
coherence in a population of globally coupled subthresh-
old ML neurons by varying the noise amplitude D. As
D passes a threshold, a transition to a coherent state
occurs. This coherent transition has been described in
terms of the “thermodynamic” order parameterO, which
concerns just the macroscopic time-averaged fluctuation
of the global potential. We note that such stochastic
spiking coherence is well visualized in the raster plots
of neural spikings which are directly obtained in experi-
ments. To quantitatively measure the degree of stochas-
tic spiking coherence seen in the raster plots, we intro-
duce a new type of “statistical-mechanical” spiking co-
herence measure Ms by considering the average contribu-
tion of (microscopic) local spikings to the (macroscopic)
global potential. Through competition between the con-
structive and the destructive roles of noise, stochastic
spiking coherence is found to occur over a large range
of intermediate noise intensity and to be well charac-
terized in terms of the mutually complementary quan-
tities of O and Ms. Particularly, Ms reflects the de-
gree of stochastic spiking coherence seen in the raster
plot very well. Hence, we expect that Ms may be im-
plemented to characterize the degree of coherence in an
experimentally-obtained raster plot of neural spikings.
(Such implementation of Ms for analyzing real experi-
mental data is beyond the present work, and is left as a
future work.) We also make some comments on another
type of “phase coherence” measure Mp, which is defined
by considering the difference between local phases as-
sociated with spikings of neighboring neurons [19]. Mp

has often been used to characterize phase coherence in a
system of coupled neurons. However, the direct relation
between Mp and stochastic spiking coherence seen in the
raster plot is not so clear because Mp reflects just the
average correlation between local phases of neighboring
neurons. On the other hand, the newly-introduced Ms

directly reflects the degree of coherence seen in the raster
plot. Finally, we note that stochastic spiking coherence
might be an origin for synchronous brain rhythms in a

noisy environment, which correlate with the brain func-
tion of encoding sensory stimuli or are associated with
neural diseases.
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