Stochastic Burst Synchronization in A Scale-Free Neural Network with Spike-Timing-Dependent Plasticity

S.-Y. Kim and W. Lim Institute for Computational Neuroscience Daegu National University of Education

• Stochastic Burst Synchronization (SBS)

Subthreshold neurons: Fire only with the help of noise and exhibit irregular discharges like Geiger counter Bursting: Neuronal activity alternates, on a slow timescale, between a silent phase and an active (bursting) phase of fast repetitive spikings SBS: Population synchronization between complex noise-induced burstings of subthreshold neurons & correlated with brain function of encoding sensory stimuli in the noisy environment Previous works on SBS: Synaptic strengths were static.

• Spike-Timing-Dependent Plasticity (STDP)

Synaptic Plasticity: In real brains synaptic strengths may vary to adapt to environment (potentiated or depressed) STDP: Plasticity depending on the relative time difference between the pre-and

the post-synaptic burst onset times

• Purpose of Our Study

Investigation of Effect of the STDP on the SBS in the Scale-Free Network (SFN)

Excitatory SFN of Subthreshold Izhikevich Neurons

• Scale-Free Network (SFN) of Subthreshold Izhikevich Neurons Barabási-Albert SFN with symmetric attachment degree $l^*=10$ (Growth and preferential directed attachment with l_{in} incoming edges and l_{out} outgoing edges; $l_{in} = l_{out} = l^*$)

Subthreshold Izhikevich Neurons for the DC current $I_{DC,i} \in [3.55, 3.65]$

• Hebbian STDP

Update of coupling strengths: Additive nearest-burst pair-based STDP rule

$$J_{ij} \rightarrow J_{ij} + \delta \Delta J_{ij} (\Delta t_{ij}) \qquad \qquad \Delta t_{ij} = t_i^{(post)} - t_j^{(pre)}, \ \delta = 0.005$$
$$J_{ij} \in [J_i (= 0.000), J_h (= 5.0)]$$

Initial synaptic strengths: Mean $J_0=2.5$ & standard deviation $\sigma=0.02$

Asymmetric time window for ΔJ_{ij} $\Delta J_{ij} = \begin{cases} A_+ e^{-\Delta t_{ij}/\tau_+} & \text{for } \Delta t_{ij} > 0 \\ -A_- e^{\Delta t_{ij}/\tau_-} & \text{for } \Delta t_{ij} < 0 \end{cases}$ $A_+ = 1.0, A_- = 0.6, \tau_+ = 15 \text{ msec}, \tau_- = 30 \text{ msec}, \Delta J_{ij} (\Delta t_{ij} = 0) = 0.$ $\Delta t_{ij} > 0 \rightarrow \text{LTP, } \Delta t_{ij} < 0 \rightarrow \text{LTD}$

Initial coupling strengths $\{J_{ij}\}$: Gaussian distribution with mean $J_0=2.5$ and standard deviation $\sigma_0=0.02$

• Raster Plots of Burst Onset Times

Appearance of stripes in the raster plot for synchronous case

• Instantaneous Population Burst Rate (IPBR)

• Thermodynamic Bursting Order Parameter: $\mathcal{O}_b \equiv (R_b(t) - \overline{R_b(t)})^2$

Synchronized (desynchronized) state: O_b approach non-zero (zero) limit values for $N \rightarrow \infty$

SBS in $D_l^*(\simeq 0.1173) < D < D_h^*(\simeq 18.4)$ via competition between the constructive and the destructive roles of noise.

Effect of the STDP on the SBS

• Time-Evolution of Population-Averaged Synaptic Strength <*J*_{ii}>

D=0.3, 5, 9 and 13: $\langle J_{ij} \rangle$ increases monotonically above its initial value J_0 (=2.5), and it approaches a saturated limit value $\langle J_{ij}^* \rangle \rightarrow$ LTP D=0.1175 and 17.5: $\langle J_{ij} \rangle$ decreases monotonically below J_0 , and it approaches $\langle J_{ij}^* \rangle \rightarrow$ LTD

• Histograms for Fraction of Synapses J_{ii}^* (Saturated limit value of J_{ij})

 $\langle J_{ij}^* \rangle$ becomes larger (smaller) than the initial value for the case of LTP (LTD). The standard deviations are very larger than the initial one (=0.02).

• Population-Averaged Limit Values of Synaptic Strengths $\ll J_{ij}^* \gg r$

LTP occurs in $(\tilde{D}_{l}[\simeq 0.1179], \tilde{D}_{h}[\simeq 17.336])$ In most range of the SBS LTP occurs, while LTD takes place only near both ends.

"Mathew" Effect of the STDP

• Characterization of the Synchronization Degree via Statistical-Mechanical Bursting Measure M_b

Pacing degree of the *i*th bursting stripe: averaging the contributions to $R_b(t)$ of all microscopic burst onset times in the *i*th bursting stripe

$$P_i^{(b)} = \frac{1}{B_i} \sum_{k=1}^{B_i} \cos \Phi_k^{(b)}$$

B_i: Number of burst onset times in the *i*th bursting stripe $\Phi_k^{(b)}$: global phase of burst onset time

 $M_b = \frac{1}{N_b} \sum_{i=1}^{N_b} P_i^{(b)}$ N_b : No. of bursting stripe

 $\text{LTP} \rightarrow \text{Good}$ burst synchronization gets better. LTD \rightarrow Bad burst synchronization gets worse.

Open circles : Additive STDP & Crosses : Absence of STDP 5

Microscopic Investigation on Emergences of LTP and LTD

• Population-Averaged Histograms $H(\Delta t_{ij})$ for $\{\Delta t_{ij}\}$ during t=0~saturation time t^* (=2000sec)

• Population-Averaged Synaptic Modification $\langle \Delta J_{ij} \rangle_r$ Obtained from $H(\Delta t_{ij})$

Population-averaged limit values of synaptic strengths agree well with direct-obtained values.

$$\left\langle \left\langle \Delta J_{ij} \right\rangle \right\rangle_{r} \simeq \sum_{b \text{ ins}} H(\Delta t_{ij}) \cdot \Delta J_{ij}(\Delta t_{ij})$$
$$\ll J_{ij}^{*} \gg_{r} (= J_{0} + \delta \ll \Delta J_{ij} \gg_{r})$$

Microscopic Cross-Correlations between Synaptic Pairs

• Microscopic Correlation Measure M_c

M_c: Average "in-phase" degree between the pre- and the post-synaptic pairs

$$M_{c} = \frac{1}{N_{syn}} \sum_{(i,j)} C_{i,j}(0), \quad C_{i,j}(\tau) = \frac{\Delta r_{i}(t+\tau) \Delta r_{j}(t)}{\sqrt{\Delta r_{i}^{2}(t)}} \sqrt{\Delta r_{j}^{2}(t)}$$

- Widths w_b of Bursting Stripes Strong (weak) $M_c \rightarrow w_b$ decreases (increases) \rightarrow Narrow (wide) distribution of $\Delta t_{ij} \rightarrow$ LTP (LTD)
- Time-Evolutions of Normalized Histogram $H(\Delta t_{ij})$ for $\{\Delta t_{ij}\}$

LTP: 3 peaks → Peaks become narrowed.
→ Main peak becomes symmetric.
LTD: 3 peaks → Merged into the single broad peak → Peak becomes symmetric.

• Time-Evolutions of $\langle \Delta J_{ij} \rangle$ Obtained from $H(\Delta t_{ij})$ $D=13 \ (D=17.5): \langle \Delta J_{ij}(t) \rangle$ is positive (negative) $\langle \Delta J_{ij}(t) \rangle$ approach 0 because $H(\Delta t_{ij})$ become symmetric. \rightarrow LTP (LTD)

• Mathew Effect in M_c

 M_c : Matthew effect also occurs.

Open circles: AdditiveSTDP Crosses: Absenceof STDP

Black : LTP & Gray : LTD

Summary

• Stochastic Burst Synchronization (SBS) in the Absence of STDP

- SBS between complex noise-induced burstings of subthreshold neurons: Correlated with brain function of encoding sensory stimuli in the noisy environment.
- Occurrence of SBS in intermediated noise intensities via competition between the constructive and the destructive roles of noise.
- Previous works on SBS: Synaptic strengths were static.

• Investigation of The Effect of STDP on the SBS

- Occurrence of "Matthew" effect in synaptic plasticity
 - → Good burst synchronization gets better via LTP, while bad burst synchronization gets worse via LTD.
- Emergences of LTP and LTD: Intensively investigated via microscopic studies based on both the distributions of time delays between the preand the post-synaptic burst onset times and the pair-correlations between the pre- and the post-synaptic IIBRs.