Effect of Adult-Born Immature Granule Cells on Pattern Separation in The Hippocampal Dentate Gyrus

Sang-Yoon Kim and Woochang Lim

Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, S. Korea

Introduction

• Hippocampus

- Consisting of the dentate gyrus (DG) and the areas CA3 and CA1
- Play a key role in memory formation, storage, and retrieval

• Pattern Separation

- Pattern Separation: Transforming input patterns into sparser and orthogonalized patterns
- DG: Pre-processor for the CA3: Granule cells (GCs) in the DG performs pattern separation, facilitating pattern storage and retrieval in the CA3
- Sparsity \rightarrow Enhancing the pattern separation
- Young Adult-Born Immature Granule Cells (imGCs)
 - Young adult-born imGCs: High excitability (causing high activation) and low excitatory innervation (reducing activation)

• Purpose of Our Study

Investigation of Adult-Born Immature Granule Cells on Pattern Separation in The Hippocampal Dentate Gyrus

Effect of Adult-born Immature GCs (imGCs) on the Pattern Separation

- Double Averaging over 30 Realizations and 9 Pairs
- 9 pairs of input patterns with $P_{OL} = 90 \% \sim 10 \%$
- \rightarrow 9 realization-averaged Pearson's correlation coefficients for each P_{OL} via 30 realizations

1.0 ----

0.0

0.50

0.25

0.00

1.0

- \rightarrow Average Pearson's correlation coefficient over all the 9 pairs
- \rightarrow Average pattern correlation degree and the average orthogonalization degree
- Low Excitatory Innervation of imGCs
 - Connection probability p_c from the EC cells and the MCs to the mGCs = 20 %
 - imGCs: p_c is decreased to 20 x % [x (synaptic connectivity fraction); $0 \le x \le 1$]
- Effect of Low Excitatory Innervation for The imGCs
- Pattern Integration by imGCs
 With decreasing x from 1, the imGCs receive low excitatory drive from the EC cells and the MCs
- $\rightarrow D_a^{(im)}$ of the imGCs decreases so rapidly.
- \rightarrow Effect of imGCs becomes weaker
- $C^{(im)}$ of the imGCs are very high

0.5

0.0

Ŋ[™] 2.1

 $Q^{a, 5}$

0.0

0.0

1.9

1.0

1.0

Hippocampal Dentate Gyrus (DG) Network

- Cells in The DG Network
- DG receives inputs from the entorhinal cortex (EC) via the perforant paths (PPs)
- Granular Layer:
 - Excitatory granule cells (GCs): providing the output to the CA3 via the mossy fibers (MFs) Inhibitory basket cells (BCs)

- Hilus:

Excitatory mossy cells (MCs) Inhibitory hilar perforant path-associated (HIPP) cells

• Architecture of The DG Network

- EC Network N_{EC} (=400) EC cells - Granular-layer Network N_C (=20) GC clusters N_{GC} (=100) GCs & one BC in each GC cluster \rightarrow Total No. of GCs = 2000 No. of BCs N_{BC} = 20 Fraction of imGCs = 10 % 10 imGCs in each GC cluster \rightarrow Total No. of imGCs (mGCs) = 200 (1800) - Hilus Ring Network N_{MC} (=60) MCs N_{HIPP} (=20) HIPP cells

→ imGCs: good pattern integrators with the pattern integration \mathcal{E}_{U} 0.5 degree $\mathcal{I}_{d} [= C^{(im)}/C^{(in)}] > 1$

- Pattern Separation by mGCs With decreasing x from 1, the feedback inhibition to the mGCs is decreased due to decrease $D_a^{(im)}$ \rightarrow Increase in $D_a^{(m)}$
 - → Decrease in pattern separation efficacy $S_d^{(m)}$ of the mGCs
- Pattern Separation Efficacy of The mGCs $\mathcal{S}_{d}^{(m)}$ varies by competition between high excitability and low excitatory innervation of the imGCs
- Effect of high excitability > Effect of low excitatory $[1 \ge x > x^* (\simeq 0.4)]$ \rightarrow Pattern separation efficacy of the mGCs: Enhanced Effect of low excitatory innervation > Effect of high excitability $(x > x^* \ge 0)$

 \rightarrow Pattern separation efficacy of the mGCs: Worsened

Pattern Integration in The Presence of Only imGCs

- Pattern Correlation Degree $C^{(im)} > C^{(in)}$ for all range of P_{OL}
- Pattern Integration Efficacy of The imGCs

 Pattern integration efficacy of the imGCs:
 Better for dissimilar input patterns
 Worse for similar input patterns
 cf. Pattern separation of the mGCs
 better for similar input patterns

0.5

lamellar connection; —— cross-lamellar connection; —— random connection

• Firing Transitions of mGCs and Adult-Born imGCs

- Each BG cells are modeled by leaky integrate-and-fire neuron models with additional afterhyperpolarization currents
- mGC with leakage reversal potential $V_{L_*} = -75 \text{ mV}$
- \rightarrow Threshold for the firing transition: $I^* = 80 \text{ pA}$
- imGC with $V_L = -72 \text{ mV} \rightarrow I^* = 69.7 \text{ pA} \rightarrow \text{Lower firing threshold} \rightarrow \text{High excitability}$

Pattern Separation in The Presence Only The mGCs without imGCs

• Binary Representation of Spiking Activity of EC Cells

- Direct Excitatory EC Inputs via PP

Input density = $10 \% \rightarrow 40$ active EC cells & Remaining ones: silent

Active EC cells: at least one spike during the stimulus stage (1) otherwise, silent EC cells (0)

- A⁽ⁱⁿ⁾ : Randomly-chosen input pattern

Construct another input patterns $B_i^{(in)}$ from the with the overlap percentage P_{OL}

• Binary Representation of Spiking Activity of GCs

- Active GCs: at least one spike during the stimulus stage (1) otherwise, silent GCs (0)

Summary

- Investigation of Effect of The Young Adult-Born Immature GCs (imGCs) on The Pattern Separation
- In contrast to the mature GCs (mGCs), the imGCs exhibit two competing distinct properties of high excitability (causing high activation) and low excitatory innervation (reducing activation degree)
- The pattern separation efficacy the mGCs varies via competition between high excitability and low excitatory innervation of the imGCs

State I ($0 \le x < x^*$) with lower synaptic maturity:

Effect of the effect of low excitatory innervation to the imGCs > Effect of high excitability

- \rightarrow Activation degree $D_a^{(im)}$ of the imGCs becomes lower.
- \rightarrow Reduction of inhibition to the mGCs (imGC \rightarrow BC/HPP \rightarrow mGC)
- \rightarrow Increase in $D_a^{(m)}$ of the mGCs \rightarrow Pattern separation degree $\mathcal{S}_d^{(m)} < \mathcal{S}^*$

 $(S^*: in the presence of only mGCs without imGCs)$

→ Worsened pattern separation efficacy State II ($x^* < x \le 1$) with higher synaptic maturity: Effect of high excitability > Effect of the effect of low excitatory innervation → Activation degree $D_a^{(im)}$ of the imGCs becomes higher. → Strong feedback inhibition to the mGCs → Lower $D_a^{(m)}$ of the mGCs → Pattern separation degree $S_d^{(m)} > S^*$ → Enhanced pattern separation efficacy