## Introduction

- Burst Synchronization (BS)
- Bursting: Neuronal activity alternates, on a slow timescale, between a silent phase and an active (bursting) phase of fast repetitive spikings [e.g., see the bursting behavior of HR neuron (given below)]
- Representative bursting neurons: Bursting and chattering neurons in the cortex, thalamic relay neurons and thalamic reticular neurons in the thalamus, hippocampal pyramidal neurons, Purkinje cells in the cerebellum, pancreatic  $\beta$ -cells, and respiratory neurons in pre-Botzinger complex
- BS: Population synchronization on the slow bursting timescale between the burst onset times Associated with the fundamental brain function (e.g., learning, memory, and development) and neural diseases (e.g., Parkinson's disease and epilepsy)
- Previous works on BS: Synaptic strengths were static [1].

# Inhibitory Spike-Timing-Dependent Plasticity (iSTDP)

- Synaptic Plasticity: In real brains synaptic strengths may vary to adapt to environment (potentiated or depressed)
- STDP: Plasticity depending on the relative time difference between the pre-and the post-synaptic burst onset times
- Study of STDP: Mainly focused on excitatory synapses (eSTDP)
- iSTDP: Less attention because of experimental obstacles and diversity of inhibitory interneurons. (With the advent of fluorescent labeling and optical manipulation iSTDP has begun to be focused.)

### Purpose of Our Study

Investigation of Effect of the iSTDP on the BS in the Scale-Free Network (SFN)

# SFN of Inhibitory Hindmarsh-Rose (HR) Bursting Neurons

## • Governing Equations

| dx                                                                                    | $1 \frac{N}{N}$                                                                             | 2            | $I_{DC} = 1.35$ |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|-----------------|
| $\frac{dx_i}{dt} = y_i - ax_i^3 + bx_i^2 - z_i + I_{DC,i} + D\xi_i - I_{syn,i},$      | $I_{syn,i} = \frac{1}{d_i^{in}} \sum_{j=1(j \neq i)} J_{ij} W_{ij} S_j(t) (x_i - X_{syn}),$ | 2            |                 |
| $\frac{dy_i}{dt} = c - dx_i^2 - y_i,$                                                 | $s_{j}(t) = \sum_{f=1}^{F_{j}} E(t - t_{f}^{(j)} - \tau_{l});$                              | * 0          |                 |
| $dz_i$                                                                                | f=1                                                                                         | 1000         | 2000            |
| $\frac{dz_i}{dt} = r[s(x_i - x_o) - z_i,  i = 1,, N,$                                 | $E(t) = \frac{1}{\tau_d - \tau_r} (e^{-t/\tau_d} - e^{-t/\tau_r}) \Theta(t).$               |              | t (msec)        |
| $a = 1, b = 3, c = 1, d = 5, r = 0.001, s = 4, x_0 = -1.6$                            | $\tau_d - \tau_r$                                                                           | Dotted lines | : Bursting th   |
| $\tau_{l} = 1, \tau_{r} = 0.5, \tau_{d} = 5, X_{svn} = -2$                            |                                                                                             | Dashed line: | s : Spiking th  |
| Suprathreshold Neurons: $I_{DC,i} \in [1.3]$                                          | , 1.4]                                                                                      | Solid & oper | n circles : Bui |
| ,                                                                                     |                                                                                             | of           | ffset times, r  |
| <ul> <li>Barabási-Albert SFN</li> <li>Growth and proformatial directed att</li> </ul> | tachmont with 1 incoming ada                                                                | as and 1 a   | utaoina         |

- Growth and preferential directed attachment with  $l_{in}$  incoming edges and  $l_{out}$  outgoing edges - Power-law degree distribution
- $\rightarrow$  A few percent of hubs with exceptionally large number of connections - Symmetric attachment:  $l_{in} = l_{out} = l^*$

# BS for $l^*=15$ in the Absence of iSTDP

Initial coupling strengths  $\{J_{ii}\}$ : Gaussian distribution with mean  $J_0=12$  and standard deviation  $\sigma=0.1$ Aim: Investigation of emergence of BS by varying the noise intensity D

|                                                                                                                                                                                                                                                                                                                       |                                    | <i>J</i> |                                                  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------|--------------------------------------------------|------|
| <ul> <li>Raster Plots of Burst Onset Times         Appearance of bursting stripes (composed of             burst onset times and representing BS)             for smaller values of D             Desynchronization for D=0.08 → Burst onset tir             Completely scattered without forming any     </li> </ul> | mes:                               | D=0.03   | D=0.05 D=0                                       | 0.00 |
| <ul> <li>Instantaneous Population Burst Rate (IPBR)</li> </ul>                                                                                                                                                                                                                                                        |                                    |          |                                                  |      |
| $R_b(t) = \frac{1}{N} \sum_{i=1}^N \sum_{s=1}^{n_i} K_h(t - t_b^{(i)}); \qquad K_h(t) = \frac{1}{\sqrt{2\pi h}} e^{-t}$                                                                                                                                                                                               | $h^{2/2h^2}, -\infty < t < \infty$ |          | A DATE DE LE |      |
| • Thermodynamic Bursting Order Parameter:<br>Synchronized (desynchronized) state: $\mathcal{O}_b \equiv \overline{(R_b(t))}$<br>$\mathcal{O}_b$ approach non-zero (zero) limit values for $N-2$                                                                                                                       | $(\overline{R_b(t)})^2$            |          | 2, -⊽-N=10 <sup>4</sup>                          |      |

0.05

Occurrence of sparse BS for  $D < D^*$  (~ 0.072)



| ronal Network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| LTD and LTP for <i>l</i> *=15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 0 ~ 103 sec), III (250 ~ 253 sec), IV (500 ~ 503 sec), V (800 ~ 803 sec)<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| $<\Delta \widetilde{J}_{ij}(\Delta t_{ij})>_{k}$ Obtained from $H(\Delta t_{ij})$<br>$\Delta \widetilde{J}_{ij}(\Delta t_{ij})>_{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| $ \begin{array}{c} 0.006 \\ 0.000 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 \\ 0.006 $ |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| ale between the burst onset times<br>al diseases                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| DP)<br>d diversity of inhibitory interneurons.<br>window for eSTDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| burst synchronization gets worse via LTP.<br>f BS) and LTP (decreasing the degree of<br>hose in eSTDP where the degree of<br>(LTD).<br>croscopic studies based on the<br>en the pre- and the post-synaptic burst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |