Effect of Diverse Recoding of Granule Cells on Delay Eyeblink Conditioning in A Cerebellar Network

Sang-Yoon Kim and Woochang Lim Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education, Daegu 42411, S. Korea

 ΔLTP_{ii} : LTP in the presence of PF signals alone without association with the CF signal

- increase in the (top) width of the step well and the width of the zero-bottom.

- Firing Activity of CN during Learning - 140th trial: No firing due to strong
- inhibition from PC - CN neuron begins to fire in the middle
- part at the 141th trial due to appearance of a zero-bottom in PC
- Instantaneous individual firing rates $f_{CN}(t)$: Bell-shaped curve.

• Learning Efficiency Degree

- Timing degree \mathcal{T}_d : Matching degree between the firing activity $\mathfrak{S}^{\circ 0.6}$ of CN and US signal
- Cross-correlation between $f_{CN}(t) \& f_{US}(t)$ at the zero-time lag Reflecting width of the bottom base of the bell curve With the trial, decrease in \mathcal{T}_d , and saturated at about the 250th trial
- Strength \mathcal{S} of CR: Representing the amplitude of the eyelid closure Modulation [(maximum – minimum)/2] of $f_{CN}(t)$
- Learning efficiency degree \mathcal{L}_e for CR: $\mathcal{L}_e = \mathcal{T}_d \cdot \mathcal{S}$
- With the trial, increase in $\mathcal{L}_{e_{i}}$ and saturated at about the 250th trial

Learning Progress in The IO System

- Learning Progress
- Two inputs into IO: Excitatory US signal for the desired timing and the inhibitory signal from CN (representing a realized eye-movement)
- After acquisition of CR, with increasing trial, increase in inhibitory input from the CN,
- Learning progress degree $\mathcal{L}_p = I_{\text{GABA}}^{(\text{IO,CN})} / \left| I_{\text{AMPA}}^{(\text{IO,US})} \right|$
- Firing Activity of IO neuron during Learning
- Before the 141th threshold trial, dense spikes appear in the middle part due to excitatory US signal.
- With increasing the trial from the threshold, spikes become sparse, because of increased inhibitory input from the CN neuron, and saturated at abut the 250th trial

Efficiency

- Diversity Degree (D) & Saturated Learning Efficiency Degree (\mathcal{L}_e^*)
- Bell-shaped curves with maximum at the same optimal value of $p_{c}^{*} = 0.029$
- Strong Correlation between \mathcal{D} and \mathcal{L}_{e}^{*} The more diverse in temporal recoding of granule cells \rightarrow The more effective in motor learning for the Pavlovian EBC

Summary

- Diverse Temporal Recoding in The GR clusters Characterized in terms of conjunction index and diversity degree
- Effect of Diverse Recoding on The EBC Effective depression at the PF-PC synapses \rightarrow Effective modulation in firing of PCs & CN Neuron
- Relation between Diverse Recoding and Learning Efficiency Degree Pavlovian EBC

Appearance of diverse well- and ill-matched spiking patterns, due to inhibitory coordination of GO cells

Well-matched PF signals: Strong LTD by the CF signals, Ill-matched PF signals: Practically no LTD

Strong Correlation between Diversity Degree \mathcal{D} and Saturated Learning Efficiency Degree \mathcal{L}_e^*

 \rightarrow The more diverse in temporal recoding of granule cells, the more effective in motor learning for the