# Cluster Burst Synchronization in A Scale-Free Network of Inhibitory Bursting Neurons

S.-Y. Kim and W. Lim Institute for Computational Neuroscience Daegu National University of Education

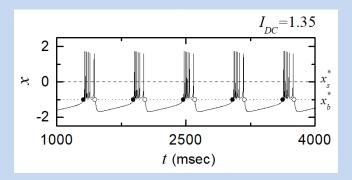
#### • Burst Synchronization

- Bursting: Neuronal activity alternates, on a slow timescale, between a silent phase and an active (bursting) phase of fast repetitive spikings
- Representative bursting neurons: Bursting and chattering neurons in the cortex, thalamic relay neurons and thalamic reticular neurons in the thalamus, hippocampal pyramidal neurons, Purkinje cells in the cerebellum, pancreatic β-cells, and respiratory neurons in pre-Botzinger complex
- Burst Synchronization: Population synchronization on the slow bursting timescale between the burst onset times
  - Associated with the fundamental brain function (e.g., learning, memory, and development) and neural diseases (e.g., Parkinson's disease and epilepsy)

## • Cluster Synchronization

- Cluster Synchronization: The whole population is segregated into synchronous subpopulations (called also as clusters) with phase lag among them.
  Investigated experimentally, numerically, or theoretically in a variety of contexts in diverse coupled (physical, chemical, biological, and neural) oscillators; Josepson junction
- arrays, globally-coupled chemical oscillators, synthetic genetic networks, and globallycoupled networks of inhibitory (non-oscillatory) reticular thalamic nucleus neurons and other inhibitory model neurons

# Scale-Free Network


- Synaptic connectivity in neural networks: Complex topology which is neither regular nor completely random
- Scale-Free Neural Network: Power-law degree distributions in the rat hippocampal networks and the human cortical functional network

### • Purpose of Our Study

Investigation of Occurrence of Cluster Burst Synchronization in Inhibitory Scale-Free Network of Bursting Neurons

## Inhibitory Scale-Free Network of Hindmarsh-Rose Bursting Neurons

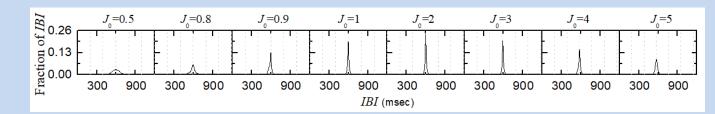
- Scale-Free Network of Suprathreshold Hindmarsh-Rose Neurons
  - Barabási-Albert scale-free network with symmetric attachment degree  $l^* = 15$ (Growth and preferential directed attachment with  $l_{in}$  incoming edges and  $l_{out}$  outgoing edges;  $l_{in} = l_{out} = l^*$ )
  - Suprathreshold Hindmarsh-Rose Neurons for the DC current  $I_{DC,i} \in [1.3, 1.4]$
  - GABA<sub>A</sub>-mediated inhibitory synaptic currents with  $\tau_l = 1$ ,  $\tau_r = 0.5$ ,  $\tau_d = 5$ , &  $X_{syn} = -2$
  - Deterministic bursting for  $I_{DC} = 1.35$

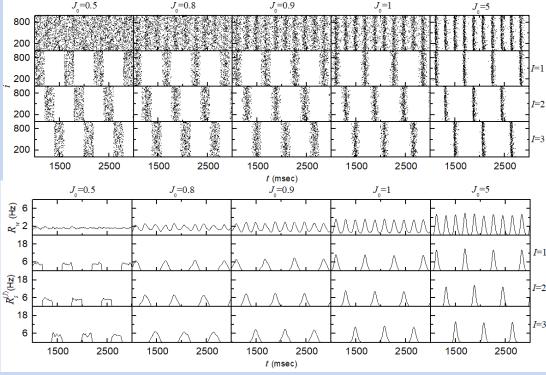


Horizontal dotted line  $(x_b^* = -1)$ : Bursting threshold Solid circles: Bursting onset times

• Emergence of Burst Synchronization

Occurrence of Burst Synchronization in the range of  $J_l^*$  ( $\simeq 0.78$ )  $< J < J_2^*$  ( $\simeq 537$ )

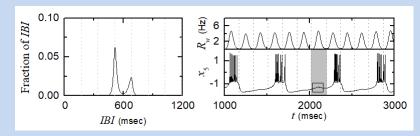

# **Emergence of 3-Cluster Burst Synchronization**


### Cluster Burst Synchronization

- Appearance of bursting stripes in the raster plot of burst onset times in the whole population and small amplitude regular oscillations in instantaneous whole population burst rate  $R_w(t)$
- Appearance of bursting stripes at every 3rd global cycle of  $R_w(t)$ and regular oscillation in instantaneous sub-population burst rate  $R_s^{(l)}(t)$
- With increasing  $J_0$ , cluster burst synchronization gets better.

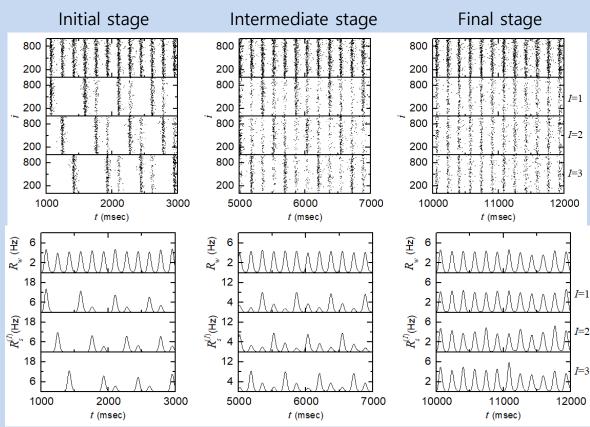
### Localized Interburst Interval

Single peak at  $3T_C(T_C)$ : cluster period & same with global period  $T_G$  of  $R_w$ ) in histogram Interburst interval: Localized in  $2T_C < IBI < 4T_C$ Maximum height for  $J_0 = 2$ . Decrease and broader with increasing  $J_0$ 



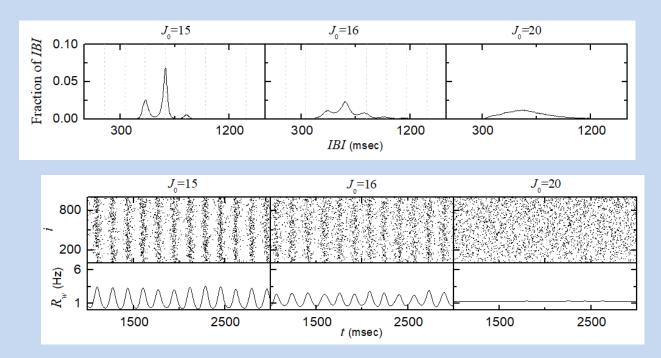



# Break-up of 3 Clusters via Intercluster Hopping for $J_0 = 10$


### • Break-up of Cluster Burst Synchronization

- Delocalized interburst interval:
  - Two peaks at  $3T_G \& 4T_G$
  - $\rightarrow$  Occurrence of burst skipping
  - $\rightarrow$  Break-up of cluster bursting synchronization




### • Intercluster Hopping

- Occurrence of intermittent intercluster hoppings from *I*th cluster to the nearest neighboring (*I* + 1)th cluster in cyclic way due to burst skippings
- Break-up of clusters Persistent of burst synchronization in the whole population
  - → Non-cluster burst synchronization



# Transition to Burst Synchronization to Desynchronization

### • Intensified Burst Skipping



Distribution of interburst interval: Broaden with increasing  $J_0$ Bursting stripes in the raster plot: more smeared Amplitude of instantaneous whole population burst rate: Decreased  $\rightarrow$  With increasing  $J_0$ , burst synchronization becomes more and more worse.

Desynchronization: Broad single peak in the interburst interval histogram Completely scattered raster plot without forming any bursting stripes & nearly stationary instantaneous whole population burst rate

# Summary

### • Cluster Burst Synchronization in Scale-Free Network of Burst Neurons

- Occurrence of dynamical clustering in the scale-free network with no internal symmetry
- Localization of interburst intervals in the region of  $2T_C < IBI < 4T_C$  ( $T_C$ : cluster period)  $\rightarrow$  Occurrence of 3 cluster burst synchronization

### • Break-up of Cluster Burst Synchronization

- Occurrence of burst skipping and delocalization of interburst intervals
- Intercluster hoppings from the *I*th cluster to the (I + 1)th cluster due to burst skipping  $\rightarrow$  Break-up of clusters