Effect of Network Architecture on Burst and Spike Synchronization in A Scale-Free Network of Bursting Neurons

Woochang Lim and Sang-Yoon Kim Institute for Computational Neuroscience and Department of Science Education Daegu National University of Education, Daegu, South Korea

Introduction

• Burstings with the Slow and Fast Time Scales

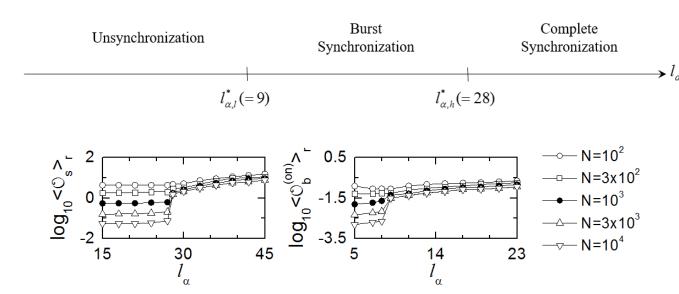
Bursting: Neuronal activity alternates, on a slow timescale, between a silent phase and an active (bursting) phase of fast repetitive spikings

• Synchronization of Bursting Neurons

Two Different Synchronization Patterns Due to the Slow (**Burst Synchronization**: Synchronization between the bursting onset or offset times) and Fast (**Spike Synchronization**: Synchronization between intraburst spikes) Time Scales of Bursting Activity

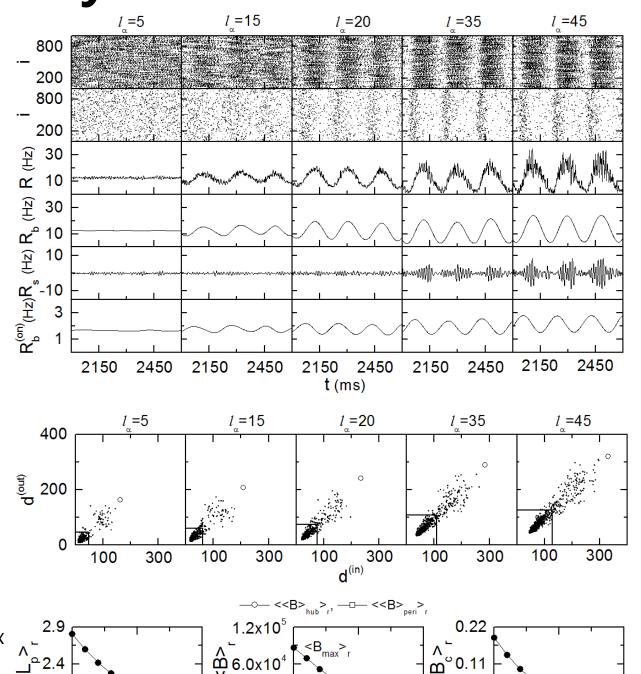
• Complex Topology of Real Brain

- Connection architecture of the real brain reveals complex topology such as small-worldness and scale-freeness which are neither regular nor random.
- Our neuronal model: Scale-Free Network (SFN)


• Purpose of Our Study

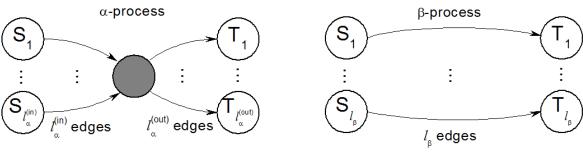
Investigation of Effect of Network Architecture on Burst and Spike Synchronization in A Directed SFN

Effect of I_{α} on Burst and Spike Synchronization


 $(I_{DC} = 1.4, J = 4, D = 0.06, \& l_{\alpha}^{(in)} = l_{\alpha}^{(out)} \equiv l_{\alpha})$

• Burst and Complete Synchronization

• Effect of I_{α} on the Network Topology


- Average path length L_p: Typical separation between two nodes in the network
- Betweenness centrality B_i: Potentiality in controlling communication between other nodes
- Betweenness centralization B_c : Degree to with B_{max} ^{2.9} of the head hub exceeds the B_i of all other nodes $\frac{\Lambda_i^2}{2.4}$

Directed SFN of Inhibitory Bursting Neurons

• Directed SFN

Directed Variant of the Barabasi-Albert SFN model α-process: Directed version of BA model Growth and preferential directed attachment β-process: Symmetric preferential attachment without addition of new nodes (No growth)

Svnchronizatio

chronizatio

2150 2450 2150 2450 2150 2450 2150 2450 2150 2450 2150 2450

□ 0.06

Insynchronizatio

• Directed SFN of Inhibitory Suprathreshold Bursting Hindmarsh-Rose Neuron

Burst and Complete Synchronization in Directed SFN for I_{DC}=1.4

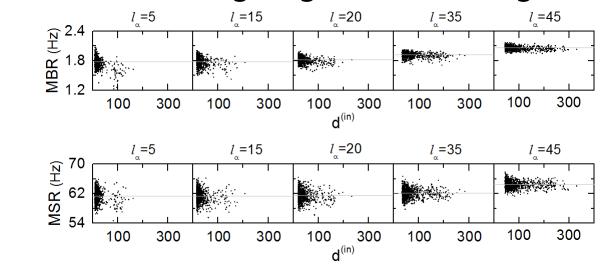
• State Diagram in the J-D Plane

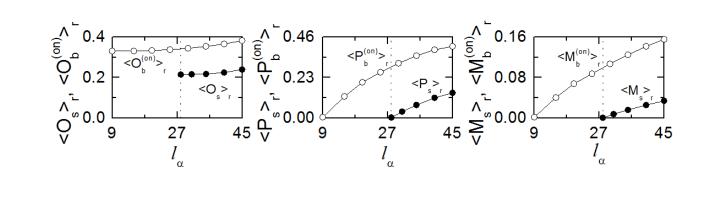
- Burst Synchronization
- Complete Synchronization (compose of both burst and spike synchronization)

Burst and Complete Synchronization for J=4

 Characterization of Burst and Spike Synchronization via Separation of Slow (Bursting) and Fast (Spiking) Timescales
Raster Plot of Neural Spikes: Population synchronization may be well visiualized.
Instantaneous Population Firing Rate (IPFR) R:

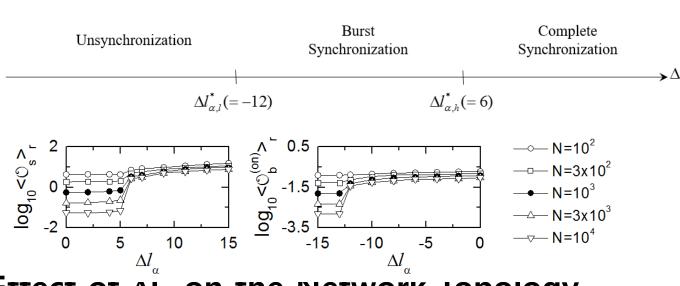
- As I_{α} is increased, L_{p} decreases.
- B_{max} of head hub is much more reduced than the

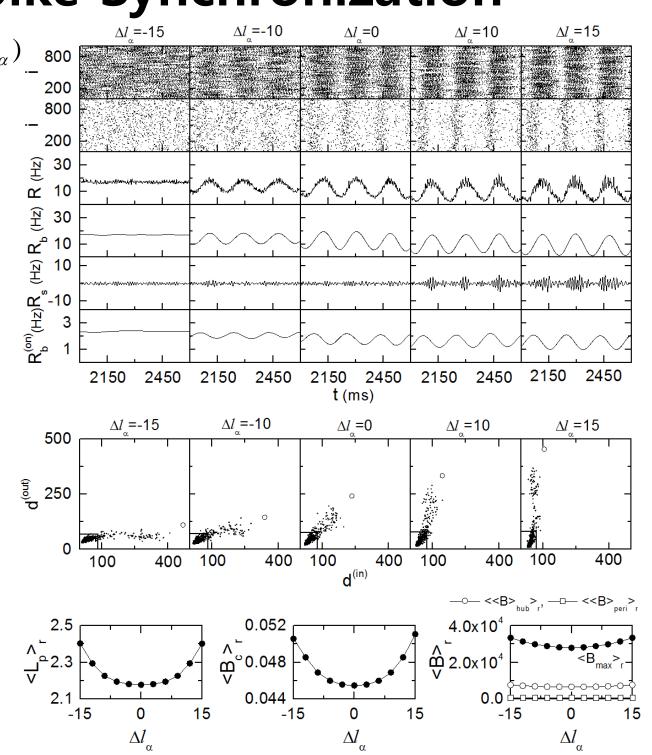

average centralities of the secondary hubs and the peripheral nodes. $\rightarrow B_c$ decreases.

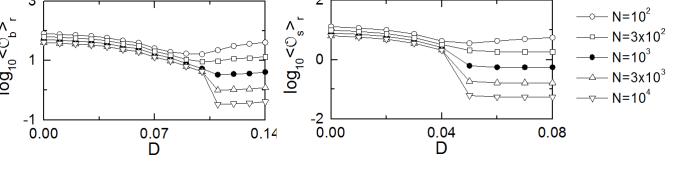

⇒ Efficiency of communication between nodes becomes better, which may lead to increase in the degree of burst and spike synchronization.

• Effect of I_{α} on the Individual and Population Dynamics

As I_{α} is increased, ensemble-averaged mean bursting rate (MBR) and mean spiking rate (MSR) increase. \Rightarrow Occupation degree of bursting and intraburst spiking increase. As I_{α} is increased, distributions of MBR and MSR are reduced.

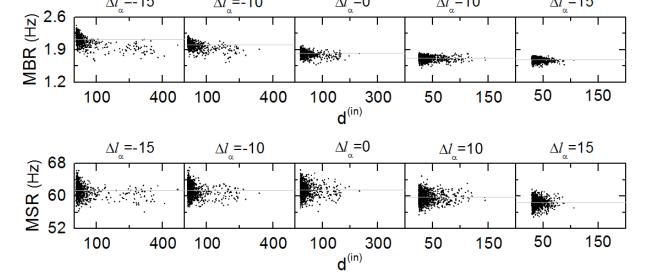

 \Rightarrow Pacing degree of bursting and intraburst spiking increase.

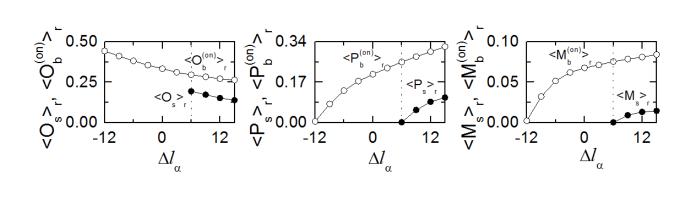



Effect of ΔI_{α} on Burst and Spike Synchronization

 $(I_{DC} = 1.4, J = 4, D = 0.06, \tilde{l}_{\alpha} = 20, l_{\alpha}^{(in)} = \tilde{l}_{\alpha} + \Delta l_{\alpha}, \& l_{\alpha}^{(out)} = \tilde{l}_{\alpha} - \Delta l_{\alpha})_{A_{\alpha}^{(out)}} = \tilde{l}_{\alpha} - \Delta l_{\alpha}$

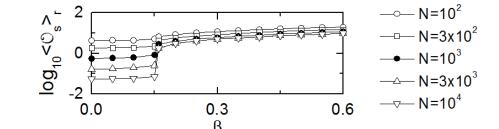
- Describing the population behaviors
- Separation of the Slow and Fast Timescales of Bursting Activity via Frequency Filtering Instantaneous Population Bursting Rate (IPBR) R_b: Describing the slow bursting behavior Instantaneous Population Spiking Rate (IPBS) R_s: Describing the fast spiking behavior
- Determination for Bursting and Spiking Threshold via Thermodynamics Bursting and Spiking Order Parameters
- Thermodynamic Bursting (O_b) and Spiking (O_s) Order Parameters: Mean square deviation of R_b and R_s
- For Burst (Intraburst Spike) Synchronization: $N \rightarrow \infty$, \mathcal{O}_b (\mathcal{O}_s) \rightarrow non-zero values. For Burst (Intraburst Spike) Unsynchronization: $N \rightarrow \infty$, \mathcal{O}_b (\mathcal{O}_s) $\rightarrow 0$.

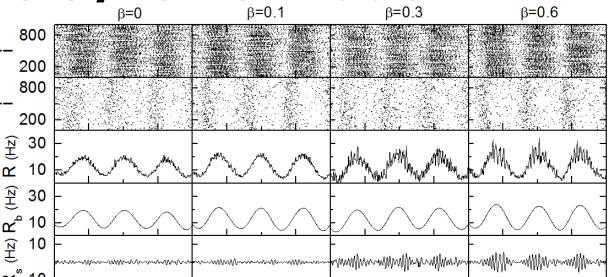

Characterization of Burst Synchronization Based on Bursting Onset and Offset Times

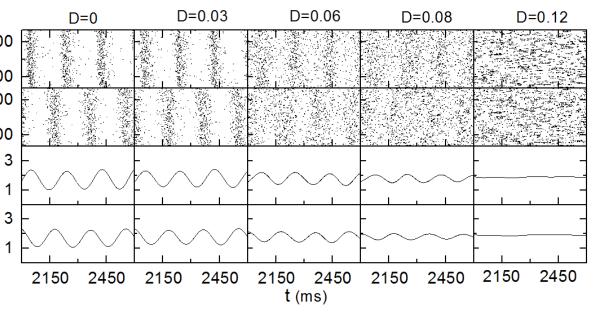

- IPBRs for Active Phase (Bursting) Onset and Offset Times
- Raster plots of active phase onset and offset times -More direct visualization of bursting behavior.
- \rightarrow IPBRs for active phase onset and offset times

Measurement of Degree of Bursting and Intraburst Spike Synchronization

Statistical-Mechanical Bursting and Spiking Measures

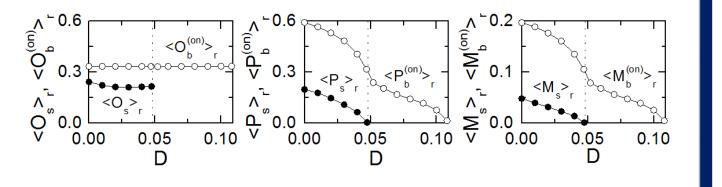

- Effect of ΔI_{α} on the Network Topology As $|\Delta I_{\alpha}|$ is increased, L_{p} increases.
- B_{max} of head hub is much more increased than the average centralities of the secondary hubs and the peripheral nodes. $\rightarrow B_c$ increases. \Rightarrow Efficiency of communication between nodes becomes better, which may lead to increase in the degree of burst and spike synchronization.
- Effect of I_{α} on the Individual and Population Dynamics
- As ΔI_{α} is increased, ensemble-averaged MBR and MBR decrease. \Rightarrow Occupation degree of bursting and intraburst spiking decrease. As I_{α} is increased, distributions of MBR and MSR are reduced. \Rightarrow Pacing degree of bursting and intraburst spiking increase. $26 \xrightarrow{\Delta I_{\alpha}^{=-15}} Pacing degree of bursting and intraburst spiking increase.$





Effect of β on Burst and Spike Synchronization

 $(I_{DC} = 1.4, J = 4, D = 0.06, l_{\alpha}^{(in)} = l_{\alpha}^{(out)} = \tilde{l}_{\alpha} = 20, \& l_{\beta} = 5)$ • **Burst and Complete Synchronization** Transition to complete synchronization: $\beta^*(\simeq 0.16)$

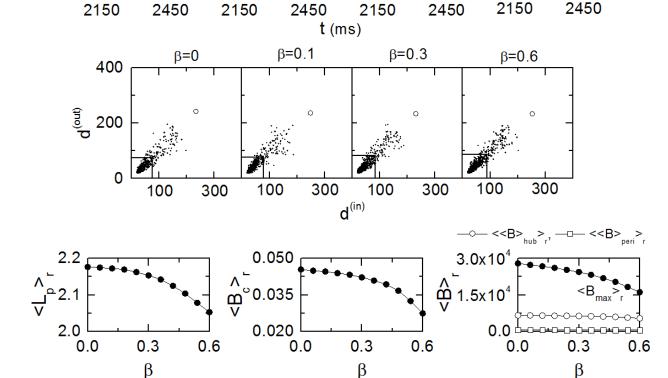


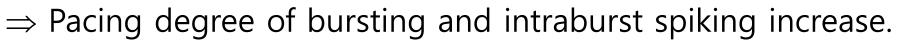
 Occupation Degree: representing the density of stripe in the raster plot
Pacing Degree: representing the smearing of stripe in the raster plot (average contribution of all microscopic bursting and spiking in the stripe)
Statistical-Mechanical Bursting and Spiking Measure: Joint Effect of Occupation and Pacing Degrees

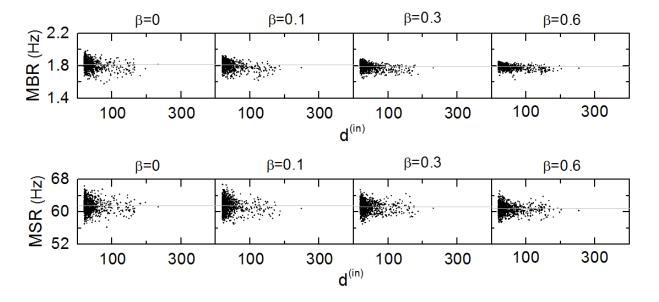
As D is increased, the pacing degree for bursting and spiking decreases.

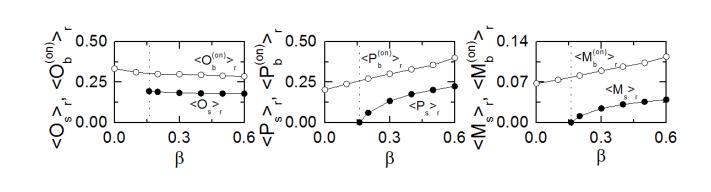
Summary

• Investigation of Burst and Spike Synchronization in Directed SFN of Bursting Neurons


- Emergence of Burst and Complete Synchronization
- Characterization of Burst and Spike Synchronization in terms of Realistic Bursting and Spiking Order Parameters and Statistical-Mechanical Measures


• Effect of Network Architecture on the Burst and Spike Synchronization With increasing $I_{\alpha'} \Delta I_{\alpha'}$ and β , pacing degree of burst and spike synchronization increase.


• Effect of β on the Network Topology As β is increased, L_p decreases.


 B_{max} of head hub is much more decreased than the average centralities of the secondary hubs and the peripheral nodes. $\rightarrow B_c$ decreases. \Rightarrow Efficiency of communication between nodes becomes better, which may lead to increase in the degree of burst and spike synchronization.

• Effect of $\boldsymbol{\beta}$ on the Individual and Population Dynamics

