

C2.07 [10:24 - 10:36]

Homophily and minority-group size explain perception biases in social networks / <u>OIE</u>¹, KARIMI Fariba², WAGNER Claudia^{2, 3}, JO Hang-Hyun^{4, 5}, STROHMAIER Markus^{2, 6}, GALESIC Mirta^{7, 8, 9} (¹Department of Mathematics, University of North Carolina at Chapel Hill, ²Department of Computational Social Science, GESIS, ³Institute for Web Science and Technologies, University of Koblenz-Landau, ⁴Asia Pacific Center for Theoretical Physics, ⁵Department of Physics, Pohang University of Science and Technology, ⁶Department for Society, Technology and Human Factors & Department of Computer Science, RWTH Aachen University, ⁷Santa Fe Institute, ⁸Complexity Science Hub Vienna, ⁹Harding Center for Risk Literacy, Max Planck Institute for Human Development)

C2.08 [10:36 - 10:48]

Cluster burst synchronizaton in a scale-free network of inhibitory bursting neurons / KIM Sang-Yoon¹, <u>LIM Woochang</u>^{*1} (¹Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education)

[C3] See [T2-co]

[C4-co] Other condensed materials/Instruments

2019. 10. 24 Thursday 09:00~10:24

좌장: 이현휘 포항공대 포항가속기연구소

Room: 208

Chair : LEE Hyun Hwi (Pohang Accelerator Laboratory)

C4.01* [09:00 - 09:12]

Femtosecond observation on electron-hole equilibration in superheated copper using an x-ray free electron laser / 조병익^{*1, 2}, <u>이종원^{*1, 2}</u>, 김민주¹, 강경보^{1, 2}, 조민상^{1,} ², 박상한³, 김민석³, 권순남³ ('광주과학기술원 물리광과학과, ²IBS 초강력 레이저과학 연구단, ³포항가속기연구소)

C4.02* [09:12 - 09:24]

In situ X-ray microdiffraction studies of Metal-Insulator Phase Behaviour of Individual VO₂ Microcrystals / 노도영^{*1}, <u>MOHD Faiyaz¹</u>, HA Sungsoo², OH Ho Jun¹, LEE Su Young³ (광주과학기술원 물리광과학과, ²School of Material Science Engineering, GIST, ³Pohang Accelerator Laboratory)

C4.03* [09:24 - 09:36]

Time Resolved Pump-Probe XRD Study of NiO Thin Film Employing High flux and Energy dispersive Characteristic of XFEL Pink Beam Source. / <u>권오영</u>¹, 하성수², 황병준¹, 오호준¹, 최석준¹, MOHD Faiyaz¹, 한승현¹, 윤영민¹, ANWAR Ijaz¹, 김준형¹, 노도영¹ ('광주과학기술원 물리광과학과, ²광주과학기술원 신소재공학부)

2019 가을학술논문발표회 및 임시총회(2019 KPS Fall Meeting) 2019-10-23 - 2019-10-25

00017

Cluster burst synchronizaton in a scale-free network of inhibitory bursting neurons

KIM Sang-Yoon ¹, <u>LIM Woochang</u>* ¹

¹Institute for Computational Neuroscience and Department of Science Education, Daegu National University of Education wclim@icn.re.kr

Abstract:

We consider a scale-free network of inhibitory Hindmarsh-Rose (HR) bursting neurons, and make a computational study on coupling-induced cluster burst synchronization by varying the average coupling strength J_0 . For sufficiently small J_0 , non-cluster desynchronized states exist. However, wh en passing a critical point J_c^* ($\simeq 0.16$), the whole population is segregated into 3 clusters via a co nstructive role of synaptic inhibition to stimulate dynamical clustering between individual burstings, and thus 3-cluster desynchronized states appear. As J_0 is further increased and passes a lower th reshold J_l^* ($\simeq 0.78$), a transition to 3-cluster burst synchronization occurs due to another constructive role of synaptic inhibition to favor population synchronization. In this case, HR neurons in eac h cluster make burstings every 3rd cycle of the instantaneous burst rate $R_w(t)$ of the whole popul ation, and exhibit burst synchronization. However, as J_0 passes an intermediate threshold $J_m^*~(\simeq 5.2)_{
m,~HR}$ neurons fire burstings intermittently at a 4th cycle of $R_w(t)$ via burst skipping rat her than at its 3rd cycle, and hence they begin to make intermittent hoppings between the 3 cluster s. Due to such intermittent intercluster hoppings via burst skippings, the 3 clusters become broken up (i.e., the 3 clusters are integrated into a single one). However, in spite of such break-up (i.e., di sappearance) of the 3-cluster states, (non-cluster) burst synchronization persists in the whole pop ulation, which is well visualized in the raster plot of burst onset times where bursting stripes (comp osed of burst onset times and indicating burst synchronization) appear successively. With further in crease in J_0 , intercluster hoppings are intensified, and bursting stripes also become dispersed mor e and more due to a destructive role of synaptic inhibition to spoil the burst synchronization. Event ually, when passing a higher threshold J_h^* ($\simeq 17.8$) a transition to desynchronization occurs via c omplete overlap between the bursting stripes. Finally, we also investigate the effects of stochastic noise on both 3-cluster burst synchronization and intercluster hoppings.

Keywords:

Cluster burst synchronization, Localization of inter-burst-intervals, Intercluster hoppings, Inhibitor y bursting neurons

■ 위 내용에 이상이 없습니다. / There is no abnormality in the above contents