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Abstract

We study the coupling effect on the occurrence of partial synchronization in four coupled one-dimensional maps by varying a parameter w

(0 � w � 1) which tunes the “weight” in the next-nearest-neighbor coupling from the local nearest-neighbor coupling (w = 0) to the global cou-
pling (w = 1). As the coupling parameter ε decreases and passes a threshold value ε∗, the fully synchronized attractor on the diagonal becomes
transversely unstable via a blowout bifurcation, and then a partially synchronized or completely desynchronized attractor appears depending on
the value of w. For the case of local coupling (w = 0), partial synchronization occurs on an invariant plane. However, as w increases and passes
a threshold value w∗, a transition from partial synchronization to complete desynchronization takes place. Thus, for w∗ < w � 1, a fully desyn-
chronized attractor, occupying a finite four-dimensional volume, appears. The dynamical mechanism for the occurrence of partial synchronization
is investigated through competition between the laminar and bursting components of the intermittent two-cluster state born via the blowout bifur-
cation. Another type of partial synchronization, which occurs through a dynamical stabilization of an unstable orbit, is also discussed for both the
local and global couplings. These results for the partial synchronization are also confirmed in a system of four coupled pendula.
 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, synchronization in coupled chaotic systems has
become a field of intensive study due to its potential applica-
tions [1]. When the coupling is sufficiently strong, complete
synchronization occurs (i.e., a fully synchronized attractor ex-
ists on an invariant synchronization subspace) [2]. However, as
the coupling strength decreases and passes a threshold value,
the fully synchronized attractor loses its stability against a
perturbation transverse to the synchronization subspace, and
then an asynchronous attractor may appear via a supercritical
blowout bifurcation [3,4]. For this case, partial synchronization,
where some of the subsystems synchronize while others do not,
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or complete desynchronization may occur for three or more
coupled systems [5–10]. Particularly, the partial synchroniza-
tion (or clustering) has been extensively investigated in globally
coupled systems where each subsystem is coupled to all the
other ones with equal strength [11].

Here, we are interested in whether the asynchronous attrac-
tor born via a blowout bifurcation of the fully synchronized at-
tractor is partially synchronized or completely desynchronized.
Particularly, we are concerned about the dependence of the
type of the asynchronous attractor on the coupling. An exam-
ple of partial synchronization was reported in the case of local
coupling [9], while another example of complete desynchro-
nization was given for the case of global coupling [11]. These
previous results show that occurrence of partial synchroniza-
tion depends on the type of coupling. However, the dynamical
origin for such coupling effect on the occurrence of partial syn-
chronization remains unclear.
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This Letter is organized as follows. As a simple model to in-
terpolate between the local and global couplings, we consider
four coupled one-dimensional (1D) maps with a parameter w

(0 � w � 1) tuning the weight of the next-nearest-neighbor
coupling from the local nearest-neighbor coupling (w = 0) to
the global coupling (w = 1). In Section 2, by increasing the
parameter w from 0 to 1, the dynamical mechanism for the
occurrence of partial synchronization is investigated through
a method developed in [12] where the effect of the asymme-
try in the coupling on the occurrence of partial synchronization
has been studied in three coupled chaotic systems. An asyn-
chronous two-cluster state appears on an invariant plane via a
supercritical blowout bifurcation of the fully synchronized at-
tractor. A typical trajectory in the newly-born two-cluster state
exhibits on–off intermittency [13–16], where long episodes of
laminar (i.e., nearly synchronous) evolution near the diagonal
are occasionally interrupted by short-term bursts. When the pa-
rameter w is less than a threshold value w∗ (i.e., 0 � w < w∗),
the two-cluster state on the invariant plane is transversely sta-
ble, and hence partial synchronization occurs. However, for
w > w∗ a completely desynchronized attractor, occupying a
four-dimensional (4D) finite volume, appears, because the two-
cluster state is transversely unstable. Such transverse stability of
the intermittent two-cluster state may be understood via compe-
tition between its laminar and bursting components. When the
laminar (bursting) component is dominant, partial synchroniza-
tion (complete desynchronization) occurs through the super-
critical blowout bifurcation. With further decrease in the cou-
pling strength, the subsequent dynamics following the above
partial synchronization or complete desynchronization is also
discussed. To confirm the above results, we also investigate the
partial synchronization in four coupled pendula by varying the
weighting factor w for the next-nearest-neighbor coupling, and
find similar results. Finally, we give a summary in Section 3.

2. Coupling effect on the occurrence of partial
synchronization

We investigate the coupling effect on the occurrence of par-
tial synchronization in four coupled 1D maps T with a periodic
boundary condition:

T : xm(t + 1) = f
(
xm(t)

)
+ ε

3 + w

[
f

(
xm−1(t)

) + f
(
xm+1(t)

)
+ wf

(
xm+2(t)

) − (2 + w)f
(
xm(t)

)]
,

(1)m = 1, . . . ,4,

where xm(t) is a state variable of the mth element at a dis-
crete time t , ε is a coupling parameter, and the uncoupled dy-
namics (ε = 0) is governed by the 1D map f (x) = 1 − ax2

with a control parameter a. Here, the periodic condition im-
poses xm(t) = xm+4(t) for all m, and the parameter w tunes
the weight in the next-nearest-neighbor coupling from the lo-
cal nearest-neighbor coupling (w = 0) to the global coupling
(w = 1) where each 1D map is coupled to all the other ones
with equal strength. Thus, the interpolation between the lo-
cal and global couplings is made through variation of w. For
the case of global coupling with w = 1, the coupled map T

has a permutation symmetry because it is invariant under ex-
change of any two elements (xk ↔ xm), while for the case of
non-global coupling with 0 � w < 1, T has a cyclic permuta-
tion symmetry because it is invariant under the cyclic permuta-
tion, π(x1, . . . , x4) = (x2, . . . , x1). In addition to the invariant
diagonal where complete synchronization occurs, the follow-
ing invariant planes exist, depending on w. For 0 � w < 1,
there are three invariant planes, Π1 (≡{(x1, x2, x3, x4) | x1 =
x2, x3 = x4}), Π2 (≡{(x1, x2, x3, x4) | x2 = x3, x4 = x1}), and
Π3 (≡{(x1, x2, x3, x4) | x1 = x3, x2 = x4}). Here, Π1 and Π2
are conjugate planes with respect to the cyclic permutation,
and hence dynamical states on the Π1 and Π2 planes have
the same stability. For the case of global coupling (w = 1),
all of the Π1, Π2, and Π3 planes are conjugate ones with re-
spect to the permutation. In addition to them, there exist another
conjugate invariant planes for w = 1, Π4 (≡{(x1, x2, x3, x4) |
x1, x2 = x3 = x4}), Π5 (≡{(x1, x2, x3, x4) | x2, x3 = x4 =
x1}), Π6 (≡{(x1, x2, x3, x4) | x3, x4 = x1 = x2}), and Π7 (≡
{(x1, x2, x3, x4) | x4, x1 = x2 = x3}). Symmetric two-cluster
states (where the numbers of elements in the first and second
clusters are equal) exist on the Π1, Π2, and Π3 planes. On the
other hand, asymmetric two-cluster states exist on the Π4, Π5,
Π6, and Π7 planes.

When the coupling parameter ε is sufficiently large, com-
plete synchronization in which all elements become synchro-
nized (i.e., x1(t) = · · · = x4(t)) occurs. However, as ε decreases
and passes a threshold value, the fully synchronized attrac-
tor becomes transversely unstable, and then, depending on the
value of w, partial synchronization or complete desynchroniza-
tion may occur via a supercritical blowout bifurcation. Here, we
fix the value of a at a = 1.83, at which a single-band chaotic at-
tractor exists in f , and investigate the dynamical mechanism
for the occurrence of partial synchronization by varying the
weighting parameter w from 0 to 1.

We first consider complete synchronization occurring in the
case of strong coupling. For this case, a fully synchronized
attractor exists on the invariant diagonal. The longitudinal sta-
bility of a synchronized trajectory {x∗(t) [= x1(t) = x2(t) =
x3(t) = x4(t)]} on the attractor against the perturbation along
the diagonal is determined by its longitudinal Lyapunov expo-
nent

(2)σ‖ = lim
L→∞

1

L

L−1∑
t=0

ln
∣∣f ′(x∗(t)

)∣∣,
where the prime represents the differentiation of f with respect
to x. This longitudinal Lyapunov exponent is just the Lyapunov
exponent of the 1D map f , and hence it is independent of w.
For a = 1.83, we have σ‖ = 0.4765. On the other hand, the
transverse stability of the fully synchronized attractor against
perturbation across the diagonal is determined by its first and
second transverse Lyapunov exponents σ⊥,1 (� σ⊥,2) and σ⊥,2,

(3)σ⊥,1 = σ‖ + ln

∣∣∣∣1 − 2(1 + w)ε

3 + w

∣∣∣∣,
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(4)σ⊥,2 = σ‖ + ln

∣∣∣∣1 − 4ε

3 + w

∣∣∣∣.
These transverse Lyapunov exponents, σ⊥,1 with a two-fold
multiplicity and σ⊥,2 with no multiplicity, vary depending
on w. However, for the case of global coupling (w = 1), the
two transverse Lyapunov exponents become the same, i.e.,

(5)σ⊥,1 = σ⊥,2 ≡ σ⊥ = σ‖ + ln |1 − ε|,
where σ⊥ has a three-fold multiplicity. Plots of the transverse
Lyapunov exponents versus ε for the local and global couplings
are shown in Fig. 1(a) and (b), respectively. As the coupling pa-
rameter ε decreases and passes a threshold value ε∗

1 (ε∗
2), σ⊥,1

(σ⊥,2) becomes positive. The threshold values ε∗
1 and ε∗

2 are
denoted by the solid and dashed curves in the ε–w plane, re-
spectively (see Fig. 1(c)), and they coincide for w = 1.

If ε is sufficiently large, then the first transverse Lyapunov
exponent σ⊥,1 is negative, and hence the fully synchronized at-
tractor becomes transversely stable. However, as ε decreases
and passes a threshold value ε∗

1 , the fully synchronized attrac-
tor becomes transversely unstable because σ⊥,1 becomes posi-

Fig. 1. Transverse stability of the fully synchronized attractor for a = 1.83. (a)
Plots of the first and second transverse Lyapunov exponents σ⊥,1 and σ⊥,2
versus ε for the case of local coupling (w = 0). The values of σ⊥,1 and σ⊥,2
become positive when ε decreases and passes ε∗

1 (=0.5686) and ε∗
2 (=0.2843),

respectively. (b) Plot of the transverse Lyapunov exponent σ⊥ versus ε for the
case of global coupling (w = 1). The value of σ⊥ becomes positive when ε

decreases and passes ε∗
1 = ε∗

2 (=0.3790). (c) The threshold values of ε∗
1 and ε∗

2
are represented by the solid and dashed curves in the ε–w plane, respectively.
tive. Then, an asynchronous attractor, containing the diagonal,
is born via a supercritical blowout bifurcation, but its type de-
pends on the value of w. For the case of local coupling (w = 0),
a partially synchronized attractor appears on the Π1 plane via
a supercritical blowout bifurcation, as shown in Fig. 2(a)–(f)
for �ε (= ε − ε∗

1) = −0.003. However, for the case of global
coupling (w = 1), a completely desynchronized attractor, oc-
cupying a finite 4D volume, appears (e.g., see Fig. 2(g)–(l) for
�ε = −0.003). This complete desynchronization is in contrast
to the partial synchronization for w = 0. Such complete de-
synchronization occurs because the two-cluster state on the Π1
plane, born via the supercritical blowout bifurcation, becomes
transversely unstable, as will be shown below.

When the fully synchronized attractor on the diagonal be-
comes transversely unstable, a (symmetric) two-cluster state
appears on the invariant Π1 plane through a supercritical
blowout bifurcation. This two-cluster state satisfies x1(t) =
x2(t) ≡ Xt and x3(t) = x4(t) ≡ Yt , and its dynamics is gov-
erned by a reduced two-dimensional (2D) map,

Xt+1 = f (Xt ) + (1 + w)ε

3 + w

[
f (Yt ) − f (Xt )

]
,

(6)Yt+1 = f (Yt ) + (1 + w)ε

3 + w

[
f (Xt ) − f (Yt )

]
.

For the accuracy of numerical calculations,1 we introduce new
coordinates U and V ,

(7)Ut = Xt + Yt

2
, Vt = Xt − Yt

2
.

Then, the invariant diagonal is transformed into a new invariant
line V = 0. In these new coordinates, the 2D reduced map of
Eq. (6) becomes

Ut+1 = 1 − a
(
U2

t + V 2
t

)
,

(8)Vt+1 = 2

[
2(1 + w)ε

3 + w
− 1

]
aUtVt .

Fig. 3(a) and (b) shows the two-cluster states, born via super-
critical blowout bifurcations, in the U–V plane for the local
(w = 0) and global (w = 1) couplings, respectively. These two-
cluster states are chaotic attractors in the reduced 2D map (i.e.,
they are chaotic attractors in the restricted Π1 plane). Although
the two-cluster states seem to be similar, their transverse sta-
bility against perturbation across the Π1 plane depends on the
value of w. Only when the two-cluster state is transversely

1 When the magnitude of a transverse variable d of a typical trajectory in the
two-cluster state, representing the deviation from the invariant synchronization
line, is less than a threshold value d̃ , the computed trajectory falls into an ex-
actly synchronous state due to a finite precision. In the system of coordinates
X and Y , the order of magnitude of the threshold value d̃ for d (=|X − Y |) is
about 10−15 except the region near the origin, because the double-precision val-
ues of X and Y have about 15 decimal places of precision. On the other hand,
in the system of U and V , the order of magnitude of the threshold value d̃

for d (=|V |) is about 10−308, which is a threshold value for the numeri-
cal underflow in the IEEE (Institute of Electrical and Electronics Engineers)
double-precision calculation. Hence, in the system of U and V , we can fol-
low a trajectory until its length becomes sufficiently long for the calculation of
Lyapunov exponents of the two-cluster state.



W. Lim, S.-Y. Kim / Physics Letters A 353 (2006) 398–406 401
Fig. 2. (a)–(f) Projections of the partially synchronized attractor on the invariant Π1 plane which is born via a blowout bifurcation of the fully synchronized attractor
for a = 1.83 and �ε (= ε − ε∗

1) = −0.003 (ε∗
1 = 0.5686) in the case of local coupling (w = 0). (g)–(l) Projections of the completely desynchronized attractor born

via a blowout bifurcation of the fully synchronized attractor for a = 1.83 and �ε = −0.003 (ε∗
1 = 0.3790) for the case of global coupling (w = 1).
stable, it becomes an attractor in the whole 4D space. To deter-
mine the transverse stability of a two-cluster state, we numeri-
cally follow a typical trajectory in the two-cluster state until its
length L becomes 108, and then, we obtain the Lyapunov ex-
ponents σ1, σ2, σ3, and σ4 (σi � σi+1 for i = 1,2,3) through
the Gram–Schmidt reorthonormalization procedure [17]. In the
region of ε we study, the first and second Lyapunov expo-
nents correspond to the longitudinal Lyapunov exponents, σ‖,1
and σ‖,2, of the two-cluster state, respectively, which determine
the longitudinal stability of the two-cluster state against the per-
turbation along the Π1 plane. On the other hand, the third and
fourth Lyapunov exponents correspond to the transverse Lya-
punov exponents, σ⊥,1 and σ⊥,2, respectively, which determine
the transverse stability of the two-cluster state against the per-
turbation across the Π1 plane.

A plot of σ⊥,1 versus �ε (= ε − ε∗
1) is given in Fig. 3(c)

(w = 0 (up triangles), 0.66 (crosses), and 1 (down triangles)),
where ε∗

1 is the blowout bifurcation point of the fully synchro-
nized attractor. For the case of local coupling (w = 0), the two-
cluster state is transversely stable, because its first transverse
Lyapunov exponent σ⊥,1 is negative, and hence partial syn-
chronization occurs on the Π1 plane via a supercritical blowout
bifurcation (i.e., a partially synchronized attractor appears on
the Π1 plane.). On the other hand, as w is increased from 0, the
value of σ⊥,1 increases, eventually it becomes zero for a thresh-
old value w∗ (	0.66), and then it becomes positive. Hence, for
w∗ < w � 1, complete desynchronization takes place through a
supercritical blowout bifurcation (i.e., a completely desynchro-
nized 4D attractor appears), because the two-cluster state on
the Π1 plane becomes transversely unstable. Fig. 3(a) and (b)
for �ε = −0.003 shows examples of the transversely stable
(σ⊥,1 = −0.0016) and unstable (σ⊥,1 = 0.0022) two-cluster
states for w = 0 and 1, respectively.

We now discuss the mechanism for the transition from par-
tial synchronization to complete desynchronization by varying
the weighting parameter w. A typical trajectory in the two-
cluster state, exhibiting on–off intermittency, may be decom-
posed into the laminar (i.e., nearly synchronous) and bursting
components. We use a small quantity d∗ for the threshold value
of the magnitude of the transverse variable d (=|V |) such that
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Fig. 3. (a) Transversely stable (σ⊥,1 = −0.0016) two-cluster state for w = 0 and (b) transversely unstable (σ⊥,1 = 0.0022) two-cluster state for w = 1 in the U–V

plane when a = 1.83 and �ε (= ε − ε∗
1) = −0.003. Here, the values of ε∗

1 for w = 0,0.66, and 1 are 0.5686, 0.4179, and 0.3790, respectively. (c) Plot of σ⊥,1
(first transverse Lyapunov exponent of the two-cluster state) versus �ε for a = 1.83 (w = 0 (up triangles), 0.66 (crosses), 1 (down triangles)). The weighted first
transverse Lyapunov exponents for the laminar and bursting components, Σl⊥,1 and Σb⊥,1, are shown in (d) and (e) for the local (w = 0) and global (w = 1)
couplings, respectively.
for d < d∗ the trajectory is considered to be in the laminar (off)
state, while for d > d∗ it is considered to be in the bursting (on)
state. Then, transverse stability of the intermittent two-cluster
state may be determined through competition of the laminar
and bursting components [12]. Its first transverse Lyapunov
exponent σ⊥,1 can be given by the sum of the two weighted
first transverse Lyapunov exponents of the laminar and bursting
components, Σl

⊥,1 and Σb
⊥,1:

(9)σ⊥,1 = Σl
⊥,1 + Σb

⊥,1 = Σb
⊥,1 − ∣∣Σl

⊥,1

∣∣,
where the laminar component always has a negative weighted
first transverse Lyapunov exponent (Σl

⊥,1 < 0). For each com-
ponent (i = l, b), the weighted first transverse Lyapunov expo-
nent Σi

⊥,1 is given by the product of the fraction, µi , of time
spent in the i state and the first transverse Lyapunov exponent
of the ith component σ i

⊥,1, i.e.,

(10)Σi
⊥,1 = µiσ

i
⊥,1, µi = Li

L
,

where Li is the time spent in the i state for a trajectory segment
of length L (=108). Then, the sign of σ⊥,1 may be determined
through competition between the laminar and bursting compo-
nents (see Eq. (9)). When the “transverse strength” of the lam-
inar component (i.e., the magnitude of the weighted first trans-
verse Lyapunov exponent |Σl

⊥,1|) is larger (smaller) than that

of the bursting component (i.e., Σb
⊥,1), partial synchronization

(complete desynchronization) occurs because the two-cluster
state becomes transversely stable (unstable). Fig. 3(d) and (e)
shows the weighted first transverse Lyapunov exponents of the
laminar and bursting components for w = 0 and 1, respectively,
when the threshold value for the laminar state is d∗ = 10−4.2

For the case of local coupling (w = 0), partial synchronization
occurs on the conjugate Π1 and Π2 planes because the lami-

2 The weighted first transverse Lyapunov exponents Σl⊥,1 and Σb⊥,1 of the

laminar and bursting components depend on the threshold value d∗ for the lam-
inar state, while the first transverse Lyapunov exponent σ⊥,1 of the two-cluster

state is independent of d∗ . As d∗ is decreased, Σl⊥,1 decreases to zero because

the fraction µl of the time spent in the laminar state goes to zero; thus Σb⊥,1

(= σ⊥,1 + |Σl⊥,1|) converges to σ⊥,1. However, we note that σ⊥,1 depends

only on the difference between Σb⊥,1 and |Σl⊥,1|, which is independent of d∗

(see Eq. (9)). Hence, although Σ
l(b)
⊥,1 depends on d∗ , the conclusion as to the

transverse stability of the two-cluster state is independent of d∗ .
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Fig. 4. Bifurcation diagrams (plots of x1–x2 (x1–x3) versus ε) when a = 1.83 for the cases of local coupling ((a) and (b)) and global coupling ((c) and (d)). We note
that a periodic partial synchronization occurs on the Π1 plane through a dynamic stabilization of an unstable periodic orbit in the regions IIIA and III for both the
local and global couplings. This partial synchronization is in contrast to the partial synchronization which occurs via a blowout bifurcation of the fully synchronized
attractor. For more details on dynamical evolutions, refer to the text.
nar component is dominant (i.e., |Σl
⊥,1| > Σb

⊥,1 as shown in
Fig. 3(d)). On the other hand, complete desynchronization takes
place for the case of global coupling (w = 1) because the burst-
ing component is dominant (i.e., Σb

⊥,1 > |Σl
⊥,1| as shown in

Fig. 3(e)).
So far, we consider the blowout bifurcation of the fully syn-

chronized attractor which occurs when passing a first threshold
value ε∗

1 . For this case, symmetric two-cluster states appear on
the conjugate Π1 and Π2 planes, and their transverse stabil-
ity is discussed above. As ε is further decreased and passes
a second threshold value ε∗

2 (see Fig. 1(c)), the second trans-
verse Lyapunov exponent of the fully synchronized attractor
becomes positive, and then another symmetric two-cluster state
appears on the Π3 plane. However, this two-cluster state on the
Π3 plane is transversely unstable for all w, and hence no par-
tial synchronization occurs on the Π3 plane. Furthermore, in
the case of global coupling (w = 1), asymmetric two-cluster
states appear on the conjugate Π4, Π5, Π6, and Π7 planes when
passing ε∗

1 (i.e., through the blowout bifurcation of the fully
synchronized attractor). However, they are also transversely un-
stable, and hence no partial synchronization takes place on the
Π4, Π5, Π6, and Π7 planes. Consequently, partial synchroniza-
tion may occur only on the conjugate Π1 and Π2 planes via the
blowout bifurcation, depending on w.

By decreasing ε furthermore, we briefly discuss the dynam-
ics following the above partial synchronization or complete de-
synchronization. Fig. 4(a)–(d) shows the bifurcation diagrams
for both cases of w = 0 and 1. In the region I of ε, com-
plete synchronization occurs on the diagonal. In the region II,
through the blowout bifurcation of the fully synchronized at-
tractor, a partially synchronized attractor appears on the Π1
plane for the case of w = 0, while complete desynchronization
occurs for the case of w = 1. However, an unstable period-2 or-
bit embedded in the two-cluster state on the Π1 plane becomes
stabilized through a subcritical pitchfork bifurcation for both
cases of w = 0 and 1 (i.e., dynamic stabilization of an unstable
orbit occurs). Thus, periodic partial synchronization begins on
the Π1 plane. We note that the dynamical origin of this partial
synchronization is in contrast with that of the partial synchro-
nization via the blowout bifurcation of the fully synchronized
attractor. For the case of w = 0, such a partially synchronized
periodic attractor is evolved into the quasiperiodic and chaotic
attractors in the region IIIA. Eventually, this partially synchro-
nized attractor on the Π1 plane becomes transversely unstable,
and then a jump to another partially synchronized periodic at-
tractor on the Π3 plane occurs in the region IIIB. Similar dy-
namical evolutions are made on the Π1 plane in the region III
for w = 1. Such partially synchronized attractors in the re-
gions IIIB and III also lose their transverse stability, and then
complete desynchronization occurs in the region IV for both
cases of w = 0 and 1.

To confirm the above results, we also study a system of four
coupled pendula:

ẋm = ym,

ẏm = f (xm,ym, t)

(11)+ ε

3 + w

[
ym−1 + ym+1 + wym+2 − (2 + w)ym

]
,

where zm = (xm, ym) (m = 1,2,3,4) is a state vector of the mth
subsystem (zm = zm+4 due to the periodic boundary condition),

f (x, y, t) = −2πβΩy − 2π
(
Ω2 − A cos 2πt

)
sin 2πx,

x is a normalized angle with range x ∈ [0,1), y is a normalized
angular velocity, the overdot denotes a derivative with respect to
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time t , β is a normalized damping parameter, Ω is a normalized
natural frequency of the unforced pendulum, A is a normalized
driving amplitude of the vertical oscillation of the suspension
point, and ε is a coupling parameter. As in the coupled 1D maps
of Eq. (1), w represents a weighting factor for the next-nearest-
neighbor coupling (the case of w = 0 (1) corresponds to the
local nearest-neighbor (global) coupling).

By stroboscopically sampling the orbit points at the dis-
crete time n (i.e., t = n, n: integers), we obtain the eight-
dimensional (8D) Poincaré map P . As an example, we consider
the 8D Poincaré map for the case of β = 0.5, Ω = 0.5, and
A = 0.5. For a sufficiently large ε, a complete synchroniza-
tion (i.e., z1 = z2 = z3 = z4) occurs on the invariant diagonal.
However, as ε decreases and passes a threshold value, the fully
synchronized attractor loses its transverse stability, and then,
through a supercritical blowout bifurcation, a two-cluster state
appears on the Π1 plane where z1 = z2 ≡ Z1 (=(X1, Y1)) and
z3 = z4 ≡ Z2 (=(X2, Y2)). The dynamics of this two-cluster
state is governed by a system of equations

Ẋ1 = Y1, Ẏ1 = f (X1, Y1, t) + (1 + w)ε

3 + w
(Y2 − Y1),

(12)Ẋ2 = Y2, Ẏ2 = f (X2, Y2, t) + (1 + w)ε

3 + w
(Y1 − Y2).
Fig. 5. Consequence of blowout bifurcations in four coupled pendula for β = 0.5, Ω = 0.5, and A = 0.5. (a) Plot of σ⊥,1 (first transverse Lyapunov exponent of the
two-cluster state) versus �ε (ε − ε∗

1 ) (w = 0 (up triangles), 0.72 (crosses), 1 (down triangles)). Here, the values of ε∗
1 for w = 0,0.72, and 1 are 2.202, 1.617, and

1.467, respectively. The weighted first transverse Lyapunov exponents for the laminar and bursting components, Σl⊥,1 and Σb⊥,1, are shown in (b) and (c) for the
local (w = 0) and global (w = 1) cases, respectively. Bifurcation diagrams (plots of x1–x2 (x1–x3) versus ε) for the cases of local coupling ((d) and (e)) and global
coupling ((f) and (g)). A periodic partial synchronization occurs on the Π1 plane through dynamic stabilization of an unstable periodic orbit in the regions IIIA and
III for both the local and global couplings. This partial synchronization is in contrast with the partial synchronization which occurs via a blowout bifurcation of the
fully synchronized attractor. For more details on dynamical evolutions, refer to the text.
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As in the case of coupled 1D maps, for the numerical accuracy
we follow a typical trajectory in the two-cluster state until its
length L becomes 107, using the new coordinates,

U1 = X1 + X2

2
, U2 = Y1 + Y2

2
,

(13)V1 = X1 − X2

2
, V2 = Y1 − Y2

2
.

Thus, we get the eight Lyapunov exponents (σ1 � · · · � σ8) of
the two-cluster state to determine its transverse stability in the
whole 8D space through the Gram–Schmidt reorthonormaliza-
tion procedure. For the values of ε we study, σ1, σ2, σ7, and σ8
correspond to the longitudinal Lyapunov exponents, σ‖,1, σ‖,2,
σ‖,3, and σ‖,4, of the two-cluster state, while σ3, σ4, σ5, and σ6
correspond to the transverse Lyapunov exponents, σ⊥,1, σ⊥,2,
σ⊥,3, and σ⊥,4, respectively.

Fig. 5(a) shows a plot of σ⊥,1 versus �ε (= ε − ε∗
1 ) (w = 0

(up triangles), 0.72 (crosses), and 1 (down triangles)), where
ε∗

1 is the blowout bifurcation point of the fully synchronized
attractor which exists in the region I of Fig. 5(d)–(g). For the
case of local coupling (w = 0), partial synchronization occurs
on the Π1 plane in the region II of Fig. 5(d)–(e) because the
two-cluster state is transversely stable (i.e., σ⊥,1 < 0). On the
other hand, as w is increased from 0 and passes a threshold
value w∗ (	0.72), σ⊥,1 becomes positive. Consequently, for
w∗ < w � 1, complete desynchronization occurs through the
blowout bifurcation (e.g., see the region II of Fig. 5(f)–(g) for
w = 1) because the two-cluster state on the Π1 plane is trans-
versely unstable (i.e., σ⊥,1 > 0). As in the case of coupled 1D
maps, the transverse stability of a two-cluster state may be
determined through the competition between its laminar and
bursting components (see Eq. (9)). Fig. 5(b) and (c) shows
the strength of the laminar and bursting components, |Σl

⊥,1|
and Σb

⊥,1 for w = 0 and 1, respectively, when the threshold

value for the laminar state is d∗ = 10−4. For the locally cou-
pled case (w = 0), the laminar component is dominant (i.e.,
|Σl

⊥,1| > Σb
⊥,1), and hence a partially synchronized attractor

appears on the Π1 plane. On the other hand, for the globally
coupled case, a completely desynchronized attractor, occupy-
ing a finite 8D volume, appears because the bursting component
is dominant (i.e., Σb

⊥,1 > Σl
⊥,1). Like the case of coupled 1D

maps, with further decrease in ε, another type of partial syn-
chronization occurs through dynamic stabilization of an unsta-
ble periodic orbit (embedded in the chaotic two-cluster states).
For the case of w = 0, this kind of partial synchronization oc-
curs on the Π1 plane in the region IIIA of Fig. 5(d) and (e).
After this partially synchronized attractor becomes transversely
unstable, a jump to another partially synchronized periodic at-
tractor on the Π3 plane, where z1 = z3 and z2 = z4, occurs
in the region IIIB. For the case of w = 1, similar partial syn-
chronization also occurs on the Π1 plane in the region III of
Fig. 5(f)–(g). After these partially synchronized attractors in the
regions IIIB and III lose their transverse stability, complete de-
synchronization occurs in the region IV for both cases of w = 0
and 1.
3. Summary

We have investigated the coupling effect on the occurrence
of partial synchronization via a blowout bifurcation of the fully
synchronized attractor in the four coupled 1D maps with a pa-
rameter w tuning the weight of the next-nearest-neighbor cou-
pling. The variation of w (0 � w � 1) interpolates between the
local (w = 0) and global (w = 1) couplings. For the case of
local coupling (w = 0), a partially synchronized attractor ap-
pears on an invariant plane. However, as w is increased and
passes a threshold value w∗ (	0.66), a transition from partial
synchronization to complete desynchronization occurs. Thus,
for w∗ < w � 1 a completely desynchronized attractor appears.
Such a transition can be understood via competition between
the laminar and bursting components of the intermittent two-
cluster state born via a blowout bifurcation. If the laminar
(bursting) component is dominant, then partial synchroniza-
tion (complete desynchronization) occurs through the blowout
bifurcation. With further decrease in the coupling strength, an-
other type of partial synchronization, which occurs via dynam-
ical stabilization of an unstable periodic orbit, has been found
to occur for both the local and global couplings. To confirm the
results for the partial synchronization, we have also studied a
system of four coupled pendula, and found similar results.
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