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Mechanism for the riddling transition in coupled chaotic systems
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We investigate the loss of chaos synchronization in coupled chaotic systems without symmetry from the
point of view of bifurcations of unstable periodic orbits embedded in the synchronous chaotic at&Apr
A mechanism for direct transition to global riddling through a transcritical contact bifurcation between a
periodic saddle embedded in the SCA and a repeller on the boundary of its basin of attraction is thus found.
Note that this bifurcation mechanism is different from that in coupled chaotic systems with symmetry. After
such a riddling transition, the basin becomes globally riddled with a dense set of repelling tongues leading to
divergent orbits. This riddled basin is also characterized by divergence and uncertainty exponents, and thus
typical power-law scaling is found.
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[. INTRODUCTION attractor (or infinity). Thus the basin becomes globally
riddled with a dense set of repelling tongues, belonging to

Recently, the phenomenon of synchronization in coupledhe basin of another attractéor infinity) [12]. With further
chaotic systems has become a field of intensive study. Forariation of the coupling parameter, eventually the weakly
this case of chaos synchronization, a synchronous chaotitable SCA(with locally or globally riddled basinloses its
motion of the coupled system occurs on an invariant subtransverse stability through a blowout bifurcatid8] where
space of the total phase spégde-3]. This chaotic synchro- the transverse Lyapunov exponent becomes positive, and
nization has a variety of applications, particularly in connec-then it transforms to a chaotic saddle.
tion with secure communicatio]. In this paper, we investigate the mechanism for the loss of

A fundamental and important problem in this field con- ransverse stability of the SCA in terms of unstable periodic
cerns stability of chaos synchronization with respect to gy pits embedded in the SCA in a unidirectionally coupled
perturbation transverse to the invariant subspd&de If its system without symmetry, consisting of one-dimensional
transverse Lyapunov exponent is negative, the synchronoy§p) maps. In Sec. II, it is found that a direct transition to

phaﬁtlc .;talte ohn the |nvar|a_r|1_thsu|bspacfe becomes an ?f.racgfabal riddling takes place via a transcritical contact bifurca-
In the whole phase space. The loss of transverse stabllity Qfo, pepyeen a periodic sadd{eith one attracting direction

such a syn'chronous chao'qc attrz_ato(tSCA) IS !nt|rnately 45" and the other repelling directipembedded in the SCA and
sociated with transverse bifurcations of periodic saddles em-

bedded in the SCA6-8]. When all periodic saddles are a repeller(with tW9 repelling direction)so_n the_ bagin bound-
transversely stable, the SCA is asymptotically strongly ary. Note that this b|fgrcat|on mechanlsm is different from
stable(i.e., Lyapunov stable and attracting in the usual topo-hat in coupled chaotic systems with symmetry, where the
logical sensg As the coupling parameter passes through epasm becomgs globall_y rld(_jled through a subcr|t_|cal_ pitch-
threshold value, a riddling bifurcation, in which the first pe- fork [6] or period-doubling bifurcatiofi8]. After the riddling
riodic saddle embedded in the SCA loses its transverse stiansition, the basin becomes globally riddled with a dense
bility, occurs, and then the SCA becomes weakly stgibde, ~ Set of tongues leading to divergent trajectories. This riddled
Lyapunov unstablein the Milnor sensg9]. After the rid-  basin is a fat fractal with a positive meas(it&]. In Sec. Ill,
dling bifurcation, an infinite number of locally repelling the measure of the basin riddling and the fine scaled riddling
“tongues” emanate from the transversely unstable repelleof the fat fractal are also characterized by divergence and
and its preimages. Hence, trajectories starting from thesencertainty exponent§l5], respectively, and thus typical
tongues will be repelled from the invariant subspace. power-law scaling is found. Finally, a summary is given in
However, the fate of the locally repelled trajectories de-Sec. IV.
pends on the existence of an absorbing area, controlling the
global dynamics, inside the basin of attract{@&10]. In the
case of a supercritical riddling bifurcation, such an absorbing || p|RECT TRANSITION TO GLOBAL RIDDLING
area, acting as a bounded trapping vessel, exists, and hence
the locally repelled trajectories exhibit transient intermittent  In this section, we investigate the loss of transverse sta-
bursting from the invariant subspafEl]. For this case, the bility of the SCA from the point of view of bifurcations of
basin is said to be locally riddled. However, when the rid-unstable periodic orbits embedded in the SCA, and thus find
dling bifurcation is subcritical, there is no absorbing area,a mechanism for a direct transition to global riddling through
and hence the locally repelled trajectories will go to anothem transcritical contact bifurcation between a periodic saddle
embedded in the SCA and a repeller on its basin boundary.
Let us consider the unidirectionally coupled systdm
*Electronic address: sykim@cc.kangwon.ac.kr without symmetry, consisting of two identical 1D maps,
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XH_l:l—ath, 2.00

: (1)
Yer1=1-ayf+cO¢—y0),

wherex, andy, are state variables of the first and second 1D
maps at a discrete timie a is the control parameter of the
uncoupled 1D map, anclis a coupling parameter. Note that :
the unidirectionally coupled maphas an invariant synchro- S \ .
nization liney=x, although it has no symmetry. This is in IO A NERIEEE
contrast to the previously studied case with symmEgarys). B :
Furthermore, this coupled mapis noninvertible, because its 0 D, \ D,
Jacobian determinant d&{) (DT is the Jacobian matrix of 2 o \\( 'Z.: :
T) becomes zero along the critical curvés={(X,y) @ T Mg
eR%x=0 or y=0}. The critical curves of rank, L, (k L b g 1
=1,2,...), arethen given by the images of rarkof L, : ! ff ! :
[i.e., L,=TK(L,)]. Segments of these critical curves can be -3.3 -2.6 -0.8 0.0

used to define a bounded trapping region in the phase plane, C

called an absorbing ared, with the properties thati) tra-

jectories that enterd cannot leave it again, andi) there FIG. 1. Stability diagram for the SCA on the diagorya#x in
exists a neighborhoodl DA, whose points ented in a fi- the a-c plane. The SCA appears when crossing the critical line,
nite number of iterationkl6]. Furthermore, boundaries of an denoted by a heavy solid horizontal line on the=a.
absorbing area can also be obtained by the union of segmerfts 140115 .. .) line. Asa is increased froma.., a sequence of

of critical curves and portions of unstable manifolds of un-band-merging bifurcations occur; some of the band-merging points

stable periodic orbits. For this casg, is called a mixed &€ @ (=154368...), a; (=143035...), and a,
absorbing area. (=1.4074® . ..). Thesolid circles denote the points where the
With increase in the control parameterthe coupled map transverse Lyapunov exponents of the SCA become Zgy@and

T exhibits an infinite sequence of period-doubling bifurca—Egriiﬁégig;ﬁﬁ;'Eﬂuﬁg;&ﬂogfﬁgirtirc')r(;)ilégshag:jetsrawn;ﬁr'tﬁa}l gnd
tions of synchronous attractors with period” 2(n pedp

. ) . respectively. Note that the SCA is strongly stable in the hatched
=012...), endl'ng at the. accumulation pomtax region with vertical lines. In the small gray region near the top of
(=1.4011%5...), in some region ofc. When crossing a T the pasin is also globally riddled due to a boundary crisis be-
critical line in thea-c plane, a transition from periodic t0 tween the minimal invariant absorbing of the SCA and its basin
chaotic synchronization occurs. Figure 1 shows the stabilityyoundary. For other details, see the text.

diagram for the SCA on the main diagonal=x), which

appears when crossing the critical line, denoted by a heawydic saddle loses its transverse stability. The solid and
solid horizontal line joining two points=0 andc=—2a.,  dashed boundary lines denote the transverse period-doubling
on thea=a, line. With further increase ol from a.., a  and transcritical bifurcations, which occur when the trans-
sequence of band-merging bifurcations of the SCA takeserse Floquetstability) multiplier of the first periodic saddle
place. Fora=a,, the 2'"! bands of the SCA merge intd'2  with periodq (q=1,2, ...)
bands;a=a, (=1.5436®...),a=a, (=1.4303%...),

anda=a, (=1.4074® . ..) lines are shown in the figure. i
The set ofa values yielding synchronous chaotic attractors in Ny Zﬂl
the range &..,2] forms a fat fractal with a positive measure, N

riddled with a dense set of windows of synchronous periodicpasses through-1 and +1, respectively. These period-

attractors 14]. _ doubling and transcritical bifurcation curves of the periodic
For chaotic values of, the SCA is at least weakly stable ¢5q4le with periody are also labeled b, andT,, respec-

inside the region bounded by solid circles in Fig. 1, becausgyely. Some of the riddling bifurcation curves are explicitly
Its transverse Lyapunov exponent shown fora=a,. For a=a,, the saddle fixed point witly
N =1, embedded in the SCA with a single band, exhibits a
o, = lim i S in ) riddling bifurcation. However, aa is decreased frora,, the
N— oo t=1

(—2axy), ()

C
1+
a

1+ c (—2ax) .
a SCA becomes a two-band attractor, and then the saddle fixed

point lies outside the SCA. Thus, in the range af>a

is negative. In periodic windows @, the solid circles goto =ay, riddling bifurcations occur when the periodic saddle

the outsidge.g., see the region of the period-3 window nearwith g=2 becomes transversely unstable. In such a way,

a=1.75). We note that the SCA becomes asymptotic@ly with further decrease o, periodic saddles with highey

strongly stable in the hatched region with vertical lines, be-exhibit riddling bifurcations.

cause there all periodic saddles embedded in the SCA are From now on, we discuss the effect of such riddling bi-

transversely stable. However, when crossing a boundary dfircations on the SCA. We first note that all but one riddling

the hatched region, this strongly stable SCA becomes weaklygifurcation (T,) are supercritical period-doubling bifurca-

stable through a riddling bifurcation, in which the first peri- tions (D). As shown in coupled chaotic systems with sym-
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L@ 082 ' ' T developed gradually from the synchronization lipe x, as

B shown in Fig. Zb) for c= —0.66. Near the blowout bifurca-
tion point, such an asynchronous chaotic attractor exhibits a
typical intermittent bursting, called the on-off intermittency
[17], i.e., the long period of nearly synchronous stéiéf
statg is occasionally interrupted by short-time burgtn

statg. As is well known, the average bursting amplitude
from the synchronization line is found to increase linearly

from zero with respect tdc (=c—cy 1), i.e.,d~Ac.

However, when crossing the curifg, the basin becomes
globally riddled with a dense set of tongues, leading to di-
vergent trajectories, through a transcritical contact bifurca-
tion between the saddle fixed point embedded in the SCA
and the repeller at the basin boundary. Note that this bifur-
cation mechanism is different from that in coupled chaotic
systems with symmetry6,8]. For several values o, we
have investigated this riddling transition with variation of the
coupling parametet, and found the same bifurcation mecha-
nism. As an example, consider the casasfl1.82. Figure 3
shows the change in the structure of the basin with respect to
c. For c=—-2.67, the SCA is strongly stable, because all
periodic saddles embedded in the SCA are stable. The basin
for this case is denoted by the gray region in Figr)3The
segments of the unstable manifol@shose directions are
denoted by the arrow®f the repeller, denoted by the down-
triangle (V), at the cusp of the basin boundary connect to
1 0 1 segments of the critical curvds, andL, (the dots indicate
where these segments conneend hence define a mixed
absorbing area, surrounding the SCA, in which the saddle,

FIG. 2. Global effects of the supercritical riddling and blowout denoted by the up-triangle/(), is embedded. As is de-
bifurcations fora=1.82. (a) After the supercritical riddling bifur- ~ creased, the repeller approaches the saddle, and also the ab-
cation, an absorbing area, whose boundary is formed by the segorbing area shrinks, as shown in Figb@for c=—2.72.
ments of the critical curvek,, L,, andL; surrounds the SCA on Eventually, at the riddling bifurcation pointc=c,
the diagonay=x for c=—0.82.(b) After the supercritical blowout (=-—2.78932...), therepeller and saddle collide, and
bifurcation, an asynchronous chaotic attractor, bounded to the atirence the absorbing area disappéses Fig. &)]. Since the
sorbing area, exhibits intermittent bursting for —0.66. SCA is touching its basin boundary at the saddle point, such

a riddling bifurcation induces a contact bifurcation between
metry [7,8,10, absorbing areas surround the SCA on thethe SCA and its basin boundary. Note also that an infinitely
diagonaly=x after such supercritical riddling bifurcations. narrow “tongue,” belonging to the basin of an attractor at
Consequently, the SCA becomes a weakly stable attractonfinity, opens at the saddle point, as shown in the inset of
with a locally riddled basin. As an example consider the caséig. 3(c). In fact, the whole basin becomes globally riddled
of a=1.82. A riddling bifurcation occurs when crossing the with a dense set of repelling tongues, emanating from the
curveD, atc=c,; (=—0.850635...). Forthis case, the saddle point and its preimages. When passing the it
saddle fixed point embedded in the SCA loses its transverdsie repeller moves down off the basin boundary, and ex-
stability through a supercritical period-doubling bifurcation. changes stability with the saddlee., the repeller(saddle
After that, the SCA is surrounded by an absorbing area, actransforms to a saddigepelley]. However, the SCA contin-
ing as a bounded trapping vessel, as shown in Fig. fdr  ues to contact its basin boundary at a new repelling fixed
c=—0.82. Hence the locally repelled trajectories exhibitpoint (A). This is just the transcritical contact bifurcation
transient intermittent bursting from the synchronization lineoccurring in asymmetric dynamical systems with invariant
y=X, i.e., the basin becomes only locally riddled. Ads  subspaces when a Floquet multiplier pass¢$8L
further increased, periodic saddles embedded in the SCA be- Near the riddling transition point=c, ,, the repelling
come transversely unstable through successive transverse bingues are too narrow to be observable. For this case, small
furcations. Eventually, the weakly stable SCA becomeshanges in the dynamical system, destroying its invariant
transversely unstable when its transverse Lyapunov exponesynchronization liney=x, lead to superpersistent chaotic
becomes positive foc=c,,; (=—0.677), and then it trans- transient behaviof19], as in the case of coupled chaotic
forms to a chaotic saddle. Since an absorbing area exists, thsystems with symmetr{6]. To show this, we introduce a
blowout bifurcation becomes supercritical. Hence, an asynsmall parameter mismatch by taking the control parameter
chronous chaotic attractor, bounded to the absorbing area, & the second 1D map ds=a— ¢, wherea is the control
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FIG. 4. (a) Plot of log;y7 (7 is the average lifetime of a chaotic
s, 0.0 |- — transient versuse Y2 (e is the mismatch paramejefor a=1.82
andc=—2.8. (b) Plot of log,,P(d) [P(d) is the divergence prob-
| i ability] versusd 2 (d is the distance from the diagongd=x) for
a=1.82 andc=—2.8.
|
2.5 I ' : ' : initial points at random with uniform probability in the range
-1 0 1 of xe (1—a,1) on the diagonay=x. A trajectory may be
X regarded as having escaped once the magnitude pidkie

becomes larger than 10, because an orbit point Wjth
FIG. 3. Change in the structure of the bagynay region of the ~ >10 lies sufficiently outside the basin of the SCA. It is thus

SCA on the diagonay=x for a=1.82.(a) Union of segments of found that the average lifetime of the chaotic transient
the unstable manifolds of the repellev] at the basin boundary scales withe as
and segments of the critical curvés and L, defines a mixed
absorbing area of the SCA far= —2.67.(b) As c decreases, the r~he 7 (4)
repeller approaches the saddle poirt)(embedded in the SCA, '
and hence the absorbing area shrinks, as shown=or 2.72.(c)
Through a transcritical contact bifurcation between the repeller (
and the saddle pointX) for c=c, ,, the absorbing area disappears, .
and then the basin becomes globally riddled with a dense set of 2/3[6]. Figure 4a) shows the_plot Of_IOQ)T Ve.I’SUSE )
tongues, leading to divergent trajectories. For other details, see tHOF 0-1=€=0.015. Note that this plot is well fitted with a
text. straight line, which implies that E@4) is well obeyed. As

decreases toward zero, the average transient time increases
parameter of the first 1D map andis a small invariance- faster than any power of 1. Hence the chaotic transient
breaking parameter. When~0, y=x is no longer an invari- nearc=c, , is very long lived.
ant line, and the SCA on the diagonakx converts to an Alternatively, instead of computing the average lifetime
extremely long chaotic transient, eventually attracted to in-of the chaotic transient, we also estimate the variation of the
finity. Forc= —2.8, we decreasefrom 0.1 and compute the *“divergence” probability P(d) of being attracted to infinity
average transient time. For each valuespfve choose 1000 with the distanced from the synchronization ling=x for

whereu is a positive constant to be fitted, and the exponent

v is 1/2 in contrast to the symmetric-coupling case wjth
—-1/2
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e=0. Whenc=—2.8, decreasingl from 0.1 to 0.05, we
compute the divergence probabiliB(d). For each value of
d, we choose an initial condition at random with uniform
probability in the range oke (1—a,1) on the liney=x
+d, and determine whether it is attracted to the SCAy at
=X or to infinity. We repeat this process until 3000 divergent
initial conditions are obtained, and thus estimBiel). Fig-
ure 4b) shows the plot of logP(d) versusd~ %2 It is thus
found that the divergence probabiliB(d) scales withd as
7Vdfl/2

P(d)~e , ©)

where v is a positive constant to be fitted. Note that s
decreases toward zeR{d) decreases more rapidly than any
power ofd. Hence the measure of the set of repelling tongues
is extremely small near the riddling bifurcation point

=Cr 2.

Ill. CHARACTERIZATION OF THE RIDDLED BASIN

In the parameter region away from the riddling transition
point ¢, , for a=1.82, we characterize the measure of the
basin riddling and the arbitrarily fine scaled riddling of the
basin of the SCA by divergence and uncertainty exponents,
respectively. Ax decreases toward the blowout bifurcation
point ¢, , (=—2.963), the repelling tongues, leading to di-
vergent trajectories, continuously expand, as shown in Figs.
5(a), 5(b), and Hc), and hence the measure of the riddled
basin of the SCA decreases to zero. Finally, on passing the
blowout bifurcation pointc, ,, a subcritical blowout bifur-
cation, leading to the abrupt collapse of the synchronized
state, occurs. For this subcritical case, there is no absorbing
area, and hence typical trajectories starting near the synchro-
nization liney=x diverge to infinity, in contrast to the su-
percritical case where an asynchronous chaotic attractor is
gradually developed from the synchronization line.

We first characterize the measure of the basin riddling
(i.e., the measure of the set of repelling tongues, leading to
divergent trajectorigsby the variation of the divergence
probability P(d) of being attracted to the infinity15] with

2.5

s 0.0

2.5

> 0.0

2.5

> 0.0
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c=-2.88

o
—

c=-2.91

o
—

C=-2.94

0
X

—

the distancal from the synchronization ling=x. Near the o~ oy iddled basinggray region of the SCA on the
riddling bifurcation point ¢=c, ,), P(d) exhibits the expo- di V—x f — _ 288 (b) c=—2091 — 2094
tial scaling of Eq(5), because the measure of the set of, 2o o) % 1" (&) c=-2.88, (b) c=~2.91, and(c) c=-2.94.
nen . - ! . 'As c decreases toward the blowout bifurcation poing,
repelling tongues is extremely small. However, a transitio ~—2.963), the measure of the set of repelling tong(swn

from exponen_tial to algebraic scaling occurs when passing @/hite) increases, and hence the measure of the riddled basin de-
crossover region+{ 2.84sc<—2.81). Thus, fot<=—-2.84, (eases to zero.

the divergence probabilit?(d) scales withd as

plot of » versusc for —2.96<c=< —2.85. With decrease io
toward the blowout bifurcation point, ,, the value ofz
where 7 is referred to as the divergence exponent. As thébecomes smaller, and hence the measure of the basin rid-
value of » becomes smaller, it becomes easier for trajectodling increases.

ries starting near the synchronization line to go to infinity. The results of Eq(6) give just the measure of the basin
For a given value o€, we take many randomly chosen initial riddling, but the equation says nothing about the arbitrarily
conditions on the lingg/=x+d and determine which basin fine scaled riddling of the basin of the SCA. The riddled
they lie in. Then,P(d) is estimated as the fraction of the basin of the SCA is a fat fractal. The fine scaled riddling of
points that are attracted to infinity. When plotting {g@(d) the fat fractal is also characterized by an uncertainty expo-
versus loggd, the slope of the fitted straight line gives the nent @ [15] on decreasing from —2.85 to —2.96. For a
value of the divergence exponent Figure Ga) shows the givenc, consider a square with sides of length 0.3, centered

P(d)~d?, (6)
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4 . T . . point z is said to be uncertain. We repeat this process for a
@) . large number of randomly chosen initial conditions until
4000 uncertain initial conditions are obtained, and estimate
- . 1 the probabilityP(e€) that the two initial conditiong and z’
yield different final states. With decreasiag P(€) exhibits

a power-law scaling,
= 2+ . -

. P(e)~€“, (7)

- . . wherea is referred to as the uncertainty exponent. Note that,
if <1, then a substantial improvement in the accuracy of
. the initial conditions yields only a small decrease in the un-
oL . L . ' certainty of the final state. Figurgl§ shows the plot ofx
-2.97 -2.91 -2.85 versusc for —2.96<c<—2.85. Asc decreases toward the

C blowout bifurcation pointc,,, the value ofa becomes
smaller, and hence the uncertainty in determining the final
state increases.

0.16 . , . ,

IV. SUMMARY

We have investigated the loss of chaos synchronization in
terms of unstable periodic orbits embedded in the SCA in
unidirectionally and nonlinearly coupled 1D maps, and

. found a mechanism for the transition to global riddling
. through a transcritical contact bifurcation between a periodic
. saddle embedded in the SCA and a repeller on its basin
boundary. This bifurcation mechanism was also confirmed in

0.00 . | . | the linearly coupled casg20]. We thus believe that it is a
T 97 291 285 generic bifurcation mechanism leading to a direct transition
to global riddling in unidirectionally coupled systems with-
¢ out symmetry. Note that this bifurcation mechanism is dif-

FIG. 6. (a) Plot of the divergence exponent versusc for a ferent from that in coup_led_chaotic systems with symmetry
=1.82. (b) Plot of the uncertainty exponent versusc for a [6,8]. As qresult 0]‘ the riddling transition, the basm.become_s
-182. globally riddled with a dense set of tongues, leading to di-
vergent trajectories. This riddled basin has also been charac-

. i _ terized by divergence and uncertainty exponents, and thus
at a point (0.35,0.35). We first choose a pairdt random typical power-law scaling has been found.

with uniform probability inside the square. We also choose a

second point’ at random W|t_h|n a §ma|| square with gldes ACKNOWLEDGMENT

of length 2e, centered at the first poiat Then we determine

the final states of the trajectories starting with the two initial  This work was supported by the Korean Research Foun-
conditionsz andz’. If the final states are different, the initial dation under Grant No. 2000-041-D00067.
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