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Mechanism for the riddling transition in coupled chaotic systems
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~Received 4 October 2000; published 25 January 2001!

We investigate the loss of chaos synchronization in coupled chaotic systems without symmetry from the
point of view of bifurcations of unstable periodic orbits embedded in the synchronous chaotic attractor~SCA!.
A mechanism for direct transition to global riddling through a transcritical contact bifurcation between a
periodic saddle embedded in the SCA and a repeller on the boundary of its basin of attraction is thus found.
Note that this bifurcation mechanism is different from that in coupled chaotic systems with symmetry. After
such a riddling transition, the basin becomes globally riddled with a dense set of repelling tongues leading to
divergent orbits. This riddled basin is also characterized by divergence and uncertainty exponents, and thus
typical power-law scaling is found.
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I. INTRODUCTION

Recently, the phenomenon of synchronization in coup
chaotic systems has become a field of intensive study.
this case of chaos synchronization, a synchronous cha
motion of the coupled system occurs on an invariant s
space of the total phase space@1–3#. This chaotic synchro-
nization has a variety of applications, particularly in conne
tion with secure communication@4#.

A fundamental and important problem in this field co
cerns stability of chaos synchronization with respect to
perturbation transverse to the invariant subspace@5#. If its
transverse Lyapunov exponent is negative, the synchron
chaotic state on the invariant subspace becomes an attr
in the whole phase space. The loss of transverse stabilit
such a synchronous chaotic attractor~SCA! is intimately as-
sociated with transverse bifurcations of periodic saddles
bedded in the SCA@6–8#. When all periodic saddles ar
transversely stable, the SCA is asymptotically~or strongly!
stable~i.e., Lyapunov stable and attracting in the usual top
logical sense!. As the coupling parameter passes throug
threshold value, a riddling bifurcation, in which the first p
riodic saddle embedded in the SCA loses its transverse
bility, occurs, and then the SCA becomes weakly stable~i.e.,
Lyapunov unstable! in the Milnor sense@9#. After the rid-
dling bifurcation, an infinite number of locally repellin
‘‘tongues’’ emanate from the transversely unstable repe
and its preimages. Hence, trajectories starting from th
tongues will be repelled from the invariant subspace.

However, the fate of the locally repelled trajectories d
pends on the existence of an absorbing area, controlling
global dynamics, inside the basin of attraction@8,10#. In the
case of a supercritical riddling bifurcation, such an absorb
area, acting as a bounded trapping vessel, exists, and h
the locally repelled trajectories exhibit transient intermitte
bursting from the invariant subspace@11#. For this case, the
basin is said to be locally riddled. However, when the r
dling bifurcation is subcritical, there is no absorbing ar
and hence the locally repelled trajectories will go to anot
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attractor ~or infinity!. Thus the basin becomes global
riddled with a dense set of repelling tongues, belonging
the basin of another attractor~or infinity! @12#. With further
variation of the coupling parameter, eventually the wea
stable SCA~with locally or globally riddled basin! loses its
transverse stability through a blowout bifurcation@13# where
the transverse Lyapunov exponent becomes positive,
then it transforms to a chaotic saddle.

In this paper, we investigate the mechanism for the los
transverse stability of the SCA in terms of unstable perio
orbits embedded in the SCA in a unidirectionally coupl
system without symmetry, consisting of one-dimensio
~1D! maps. In Sec. II, it is found that a direct transition
global riddling takes place via a transcritical contact bifurc
tion between a periodic saddle~with one attracting direction
and the other repelling direction! embedded in the SCA an
a repeller~with two repelling directions! on the basin bound-
ary. Note that this bifurcation mechanism is different fro
that in coupled chaotic systems with symmetry, where
basin becomes globally riddled through a subcritical pitc
fork @6# or period-doubling bifurcation@8#. After the riddling
transition, the basin becomes globally riddled with a den
set of tongues leading to divergent trajectories. This ridd
basin is a fat fractal with a positive measure@14#. In Sec. III,
the measure of the basin riddling and the fine scaled ridd
of the fat fractal are also characterized by divergence
uncertainty exponents@15#, respectively, and thus typica
power-law scaling is found. Finally, a summary is given
Sec. IV.

II. DIRECT TRANSITION TO GLOBAL RIDDLING

In this section, we investigate the loss of transverse
bility of the SCA from the point of view of bifurcations o
unstable periodic orbits embedded in the SCA, and thus
a mechanism for a direct transition to global riddling throu
a transcritical contact bifurcation between a periodic sad
embedded in the SCA and a repeller on its basin bounda

Let us consider the unidirectionally coupled systemT
without symmetry, consisting of two identical 1D maps,
©2001 The American Physical Society17-1
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T:H xt11512axt
2 ,

yt11512ayt
21c~xt

22yt
2!,

~1!

wherext andyt are state variables of the first and second
maps at a discrete timet, a is the control parameter of th
uncoupled 1D map, andc is a coupling parameter. Note tha
the unidirectionally coupled mapT has an invariant synchro
nization liney5x, although it has no symmetry. This is i
contrast to the previously studied case with symmetry@6–8#.
Furthermore, this coupled mapT is noninvertible, because it
Jacobian determinant det(DT) (DT is the Jacobian matrix o
T) becomes zero along the critical curvesL05$(x,y)
PR2:x50 or y50%. The critical curves of rankk, Lk (k
51,2, . . . ), arethen given by the images of rankk of L0
@i.e., Lk5Tk(L0)#. Segments of these critical curves can
used to define a bounded trapping region in the phase pl
called an absorbing areaA, with the properties that~i! tra-
jectories that enterA cannot leave it again, and~ii ! there
exists a neighborhoodU.A, whose points enterA in a fi-
nite number of iterations@16#. Furthermore, boundaries of a
absorbing area can also be obtained by the union of segm
of critical curves and portions of unstable manifolds of u
stable periodic orbits. For this case,A is called a mixed
absorbing area.

With increase in the control parametera, the coupled map
T exhibits an infinite sequence of period-doubling bifurc
tions of synchronous attractors with period 2n (n
50,1,2, . . . ), ending at the accumulation pointa`

(51.401 155 . . . ), in some region ofc. When crossing a
critical line in thea-c plane, a transition from periodic to
chaotic synchronization occurs. Figure 1 shows the stab
diagram for the SCA on the main diagonal (y5x), which
appears when crossing the critical line, denoted by a he
solid horizontal line joining two pointsc50 andc522a`

on the a5a` line. With further increase ofa from a` , a
sequence of band-merging bifurcations of the SCA ta
place. Fora5an , the 2n11 bands of the SCA merge into 2n

bands;a5a0 (51.543 689 . . . ), a5a1 (51.430 357 . . . ),
and a5a2 (51.407 405 . . . ) lines are shown in the figure
The set ofa values yielding synchronous chaotic attractors
the range (a` ,2# forms a fat fractal with a positive measur
riddled with a dense set of windows of synchronous perio
attractors@14#.

For chaotic values ofa, the SCA is at least weakly stabl
inside the region bounded by solid circles in Fig. 1, beca
its transverse Lyapunov exponent

s'5 lim
N→`

1

N (
t51

N

lnUS 11
c

aD ~22axt!U ~2!

is negative. In periodic windows ofa, the solid circles go to
the outside~e.g., see the region of the period-3 window ne
a.1.75). We note that the SCA becomes asymptotically~or
strongly! stable in the hatched region with vertical lines, b
cause there all periodic saddles embedded in the SCA
transversely stable. However, when crossing a boundar
the hatched region, this strongly stable SCA becomes we
stable through a riddling bifurcation, in which the first pe
02621
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odic saddle loses its transverse stability. The solid a
dashed boundary lines denote the transverse period-dou
and transcritical bifurcations, which occur when the tran
verse Floquet~stability! multiplier of the first periodic saddle
with periodq (q51,2, . . . ),

l'5)
t51

q S 11
c

aD ~22axt!, ~3!

passes through21 and 11, respectively. These period
doubling and transcritical bifurcation curves of the period
saddle with periodq are also labeled byDq andTq , respec-
tively. Some of the riddling bifurcation curves are explicit
shown fora>a2. For a>a0, the saddle fixed point withq
51, embedded in the SCA with a single band, exhibits
riddling bifurcation. However, asa is decreased froma0, the
SCA becomes a two-band attractor, and then the saddle fi
point lies outside the SCA. Thus, in the range ofa0.a
>a1, riddling bifurcations occur when the periodic sadd
with q52 becomes transversely unstable. In such a w
with further decrease ofa, periodic saddles with higherq
exhibit riddling bifurcations.

From now on, we discuss the effect of such riddling b
furcations on the SCA. We first note that all but one riddli
bifurcation (T1) are supercritical period-doubling bifurca
tions (Dq). As shown in coupled chaotic systems with sym

FIG. 1. Stability diagram for the SCA on the diagonaly5x in
the a-c plane. The SCA appears when crossing the critical li
denoted by a heavy solid horizontal line on thea5a`

(51.401 155 . . . ) line. As a is increased froma` , a sequence of
band-merging bifurcations occur; some of the band-merging po
are a0 (51.543 689 . . . ), a1 (51.430 357 . . . ), and a2

(51.407 405 . . . ). Thesolid circles denote the points where th
transverse Lyapunov exponents of the SCA become zero.Tq and
Dq are the riddling bifurcation curves through the transcritical a
period-doubling bifurcations of the periodic saddles with periodq,
respectively. Note that the SCA is strongly stable in the hatc
region with vertical lines. In the small gray region near the top
T1, the basin is also globally riddled due to a boundary crisis
tween the minimal invariant absorbing of the SCA and its ba
boundary. For other details, see the text.
7-2
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MECHANISM FOR THE RIDDLING TRANSITION IN . . . PHYSICAL REVIEW E63 026217
metry @7,8,10#, absorbing areas surround the SCA on t
diagonaly5x after such supercritical riddling bifurcations
Consequently, the SCA becomes a weakly stable attra
with a locally riddled basin. As an example consider the c
of a51.82. A riddling bifurcation occurs when crossing th
curve D1 at c5cr ,1 (520.850 625 . . . ). Forthis case, the
saddle fixed point embedded in the SCA loses its transv
stability through a supercritical period-doubling bifurcatio
After that, the SCA is surrounded by an absorbing area,
ing as a bounded trapping vessel, as shown in Fig. 2~a! for
c520.82. Hence the locally repelled trajectories exhi
transient intermittent bursting from the synchronization li
y5x, i.e., the basin becomes only locally riddled. Asc is
further increased, periodic saddles embedded in the SCA
come transversely unstable through successive transvers
furcations. Eventually, the weakly stable SCA becom
transversely unstable when its transverse Lyapunov expo
becomes positive forc5cb,1 (.20.677), and then it trans
forms to a chaotic saddle. Since an absorbing area exists
blowout bifurcation becomes supercritical. Hence, an as
chronous chaotic attractor, bounded to the absorbing are

FIG. 2. Global effects of the supercritical riddling and blowo
bifurcations fora51.82. ~a! After the supercritical riddling bifur-
cation, an absorbing area, whose boundary is formed by the
ments of the critical curvesL1 , L2, andL3 surrounds the SCA on
the diagonaly5x for c520.82.~b! After the supercritical blowout
bifurcation, an asynchronous chaotic attractor, bounded to the
sorbing area, exhibits intermittent bursting forc520.66.
02621
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developed gradually from the synchronization liney5x, as
shown in Fig. 2~b! for c520.66. Near the blowout bifurca
tion point, such an asynchronous chaotic attractor exhibi
typical intermittent bursting, called the on-off intermittenc
@17#, i.e., the long period of nearly synchronous state~off
state! is occasionally interrupted by short-time bursts~on

state!. As is well known, the average bursting amplituded̄
from the synchronization line is found to increase linea

from zero with respect toDc (5c2cb,1), i.e., d̄;Dc.
However, when crossing the curveT1, the basin becomes

globally riddled with a dense set of tongues, leading to
vergent trajectories, through a transcritical contact bifur
tion between the saddle fixed point embedded in the S
and the repeller at the basin boundary. Note that this bi
cation mechanism is different from that in coupled chao
systems with symmetry@6,8#. For several values ofa, we
have investigated this riddling transition with variation of th
coupling parameterc, and found the same bifurcation mech
nism. As an example, consider the case ofa51.82. Figure 3
shows the change in the structure of the basin with respe
c. For c522.67, the SCA is strongly stable, because
periodic saddles embedded in the SCA are stable. The b
for this case is denoted by the gray region in Fig. 3~a!. The
segments of the unstable manifolds~whose directions are
denoted by the arrows! of the repeller, denoted by the down
triangle (,), at the cusp of the basin boundary connect
segments of the critical curvesL1 andL2 ~the dots indicate
where these segments connect!, and hence define a mixe
absorbing area, surrounding the SCA, in which the sad
denoted by the up-triangle (n), is embedded. Asc is de-
creased, the repeller approaches the saddle, and also th
sorbing area shrinks, as shown in Fig. 3~b! for c522.72.
Eventually, at the riddling bifurcation pointc5cr ,2
(522.789 372 . . . ), the repeller and saddle collide, an
hence the absorbing area disappears@see Fig. 3~c!#. Since the
SCA is touching its basin boundary at the saddle point, s
a riddling bifurcation induces a contact bifurcation betwe
the SCA and its basin boundary. Note also that an infinit
narrow ‘‘tongue,’’ belonging to the basin of an attractor
infinity, opens at the saddle point, as shown in the inse
Fig. 3~c!. In fact, the whole basin becomes globally riddle
with a dense set of repelling tongues, emanating from
saddle point and its preimages. When passing the pointcr ,2 ,
the repeller moves down off the basin boundary, and
changes stability with the saddle@i.e., the repeller~saddle!
transforms to a saddle~repeller!#. However, the SCA contin-
ues to contact its basin boundary at a new repelling fix
point (n). This is just the transcritical contact bifurcatio
occurring in asymmetric dynamical systems with invaria
subspaces when a Floquet multiplier passes 1@18#.

Near the riddling transition pointc5cr ,2 , the repelling
tongues are too narrow to be observable. For this case, s
changes in the dynamical system, destroying its invari
synchronization liney5x, lead to superpersistent chaot
transient behavior@19#, as in the case of coupled chaot
systems with symmetry@6#. To show this, we introduce a
small parameter mismatch by taking the control parameteb
of the second 1D map asb5a2e, wherea is the control

g-

b-
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parameter of the first 1D map ande is a small invariance-
breaking parameter. Whene.0, y5x is no longer an invari-
ant line, and the SCA on the diagonaly5x converts to an
extremely long chaotic transient, eventually attracted to
finity. For c522.8, we decreasee from 0.1 and compute the
average transient time. For each value ofe, we choose 1000

FIG. 3. Change in the structure of the basin~gray region! of the
SCA on the diagonaly5x for a51.82. ~a! Union of segments of
the unstable manifolds of the repeller (,) at the basin boundary
and segments of the critical curvesL1 and L2 defines a mixed
absorbing area of the SCA forc522.67. ~b! As c decreases, the
repeller approaches the saddle point (n) embedded in the SCA
and hence the absorbing area shrinks, as shown forc522.72. ~c!
Through a transcritical contact bifurcation between the repeller (,)
and the saddle point (n) for c5cr ,2 , the absorbing area disappea
and then the basin becomes globally riddled with a dense se
tongues, leading to divergent trajectories. For other details, see
text.
02621
-

initial points at random with uniform probability in the rang
of xP(12a,1) on the diagonaly5x. A trajectory may be
regarded as having escaped once the magnitude of itsy value
becomes larger than 10, because an orbit point withuyu
.10 lies sufficiently outside the basin of the SCA. It is th
found that the average lifetimet of the chaotic transien
scales withe as

t;eme2g
, ~4!

wherem is a positive constant to be fitted, and the expon
g is 1/2 in contrast to the symmetric-coupling case withg
52/3 @6#. Figure 4~a! shows the plot of log10t versuse21/2

for 0.1>e>0.015. Note that this plot is well fitted with a
straight line, which implies that Eq.~4! is well obeyed. Ase
decreases toward zero, the average transient time incre
faster than any power ofe21. Hence the chaotic transien
nearc5cr ,2 is very long lived.

Alternatively, instead of computing the average lifetim
of the chaotic transient, we also estimate the variation of
‘‘divergence’’ probabilityP(d) of being attracted to infinity
with the distanced from the synchronization liney5x for

of
he

FIG. 4. ~a! Plot of log10t (t is the average lifetime of a chaoti
transient! versuse21/2 (e is the mismatch parameter! for a51.82
andc522.8. ~b! Plot of log10P(d) @P(d) is the divergence prob-
ability# versusd21/2 (d is the distance from the diagonaly5x) for
a51.82 andc522.8.
7-4
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MECHANISM FOR THE RIDDLING TRANSITION IN . . . PHYSICAL REVIEW E63 026217
e50. When c522.8, decreasingd from 0.1 to 0.05, we
compute the divergence probabilityP(d). For each value of
d, we choose an initial condition at random with unifor
probability in the range ofxP(12a,1) on the liney5x
1d, and determine whether it is attracted to the SCA ay
5x or to infinity. We repeat this process until 3000 diverge
initial conditions are obtained, and thus estimateP(d). Fig-
ure 4~b! shows the plot of log10P(d) versusd21/2. It is thus
found that the divergence probabilityP(d) scales withd as

P~d!;e2nd21/2
, ~5!

where n is a positive constant to be fitted. Note that asd
decreases toward zeroP(d) decreases more rapidly than an
power ofd. Hence the measure of the set of repelling tong
is extremely small near the riddling bifurcation pointc
5cr ,2 .

III. CHARACTERIZATION OF THE RIDDLED BASIN

In the parameter region away from the riddling transiti
point cr ,2 for a51.82, we characterize the measure of t
basin riddling and the arbitrarily fine scaled riddling of th
basin of the SCA by divergence and uncertainty expone
respectively. Asc decreases toward the blowout bifurcatio
point cb,2 (.22.963), the repelling tongues, leading to d
vergent trajectories, continuously expand, as shown in F
5~a!, 5~b!, and 5~c!, and hence the measure of the riddl
basin of the SCA decreases to zero. Finally, on passing
blowout bifurcation pointcb,2 , a subcritical blowout bifur-
cation, leading to the abrupt collapse of the synchroni
state, occurs. For this subcritical case, there is no absor
area, and hence typical trajectories starting near the sync
nization liney5x diverge to infinity, in contrast to the su
percritical case where an asynchronous chaotic attracto
gradually developed from the synchronization line.

We first characterize the measure of the basin riddl
~i.e., the measure of the set of repelling tongues, leadin
divergent trajectories! by the variation of the divergenc
probability P(d) of being attracted to the infinity@15# with
the distanced from the synchronization liney5x. Near the
riddling bifurcation point (c.cr ,2), P(d) exhibits the expo-
nential scaling of Eq.~5!, because the measure of the set
repelling tongues is extremely small. However, a transit
from exponential to algebraic scaling occurs when passin
crossover region (22.84&c&22.81). Thus, forc&22.84,
the divergence probabilityP(d) scales withd as

P~d!;dh, ~6!

whereh is referred to as the divergence exponent. As
value of h becomes smaller, it becomes easier for trajec
ries starting near the synchronization line to go to infini
For a given value ofc, we take many randomly chosen initia
conditions on the liney5x1d and determine which basi
they lie in. Then,P(d) is estimated as the fraction of th
points that are attracted to infinity. When plotting log10P(d)
versus log10d, the slope of the fitted straight line gives th
value of the divergence exponenth. Figure 6~a! shows the
02621
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plot of h versusc for 22.96<c<22.85. With decrease inc
toward the blowout bifurcation pointcb,2 , the value ofh
becomes smaller, and hence the measure of the basin
dling increases.

The results of Eq.~6! give just the measure of the bas
riddling, but the equation says nothing about the arbitra
fine scaled riddling of the basin of the SCA. The riddle
basin of the SCA is a fat fractal. The fine scaled riddling
the fat fractal is also characterized by an uncertainty ex
nent a @15# on decreasingc from 22.85 to 22.96. For a
given c, consider a square with sides of length 0.3, cente

FIG. 5. Globally-riddled basins~gray region! of the SCA on the
diagonaly5x for ~a! c522.88,~b! c522.91, and~c! c522.94.
As c decreases toward the blowout bifurcation pointcb,2

(.22.963), the measure of the set of repelling tongues~shown
white! increases, and hence the measure of the riddled basin
creases to zero.
7-5
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at a point (0.35,0.35). We first choose a pointz at random
with uniform probability inside the square. We also choos
second pointz8 at random within a small square with side
of length 2e, centered at the first pointz. Then we determine
the final states of the trajectories starting with the two init
conditionsz andz8. If the final states are different, the initia

FIG. 6. ~a! Plot of the divergence exponenth versusc for a
51.82. ~b! Plot of the uncertainty exponenta versus c for a
51.82.
.

ni

-

02621
a

l

point z is said to be uncertain. We repeat this process fo
large number of randomly chosen initial conditions un
4000 uncertain initial conditions are obtained, and estim
the probabilityP(e) that the two initial conditionsz andz8
yield different final states. With decreasinge, P(e) exhibits
a power-law scaling,

P~e!;ea, ~7!

wherea is referred to as the uncertainty exponent. Note th
if a,1, then a substantial improvement in the accuracy
the initial conditions yields only a small decrease in the u
certainty of the final state. Figure 6~b! shows the plot ofa
versusc for 22.96<c<22.85. Asc decreases toward th
blowout bifurcation pointcb,2 , the value of a becomes
smaller, and hence the uncertainty in determining the fi
state increases.

IV. SUMMARY

We have investigated the loss of chaos synchronizatio
terms of unstable periodic orbits embedded in the SCA
unidirectionally and nonlinearly coupled 1D maps, a
found a mechanism for the transition to global riddlin
through a transcritical contact bifurcation between a perio
saddle embedded in the SCA and a repeller on its ba
boundary. This bifurcation mechanism was also confirmed
the linearly coupled case@20#. We thus believe that it is a
generic bifurcation mechanism leading to a direct transit
to global riddling in unidirectionally coupled systems with
out symmetry. Note that this bifurcation mechanism is d
ferent from that in coupled chaotic systems with symme
@6,8#. As a result of the riddling transition, the basin becom
globally riddled with a dense set of tongues, leading to
vergent trajectories. This riddled basin has also been cha
terized by divergence and uncertainty exponents, and
typical power-law scaling has been found.
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