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Intermittency in coupled maps
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Using a “reduced” renormalization method, we study the critical behavior for intermittency in two-coupled
one-dimensionallD) maps. Two fixed points of the reduced renormalization operator are found. They all have
common relevant eigenvalues associated with scaling of the control parameter of the uncoupled 1D map.
However, the relevant “coupling eigenvalues” associated with coupling perturbations vary depending on the
fixed points. We also study the intermittency for a dissipatively coupled case and confirm the renormalization
results. Finally, the results of the two coupled 1D maps are extended to many globally coupled 1D maps, in
which each 1D map is coupled to all the other ones with equal stref®t063-651X%99)11203-7

PACS numbd(s): 05.45—a, 05.45.Ra, 05.45.Jn

I. INTRODUCTION However, the relevant “coupling eigenvalue$CE'’s) asso-
ciated with coupling perturbations vary depending on the
An intermittent transition to chaos in the 1D map occursfixed points. In order to confirm these renormalization re-
in the vicinity of a saddle-node bifurcatidga]. Intermittency ~ Sults, we also study the intermittency for the dissipative-
just preceding a saddle-node bifurcation to a periodic attraccoupling case. It is found that the two fixed points are asso-
tor is characterized by the occurrence of intermittent alternaciated with the critical behaviors near a critical line segment.
tions between laminar and turbulent behaviors. Scaling relaOne fixed point with no relevant CE’s governs the critical
tions for the average duration of laminar behavior in thebehavior inside the critical line, associated with a “1D-like”
presence of noise have been first establigi®dy consid-  intermittent transition to chaos occurring on the synchroni-
ering a Langevin equation describing the map near the interzation line. On the other hand, the other fixed point with
mittency threshold and using Fokker-Plank techniques. Théelevant CE’s governs the critical behavior at both end points
same scaling results have been later fo{@by using the of the critical line, where the 1D-like intermittent transition
same renormalization-group equatiet for period doubling to chaos ends owing to the system desynchronization. Note
with a mere change of boundary conditions appropriate to &at this kind of critical behaviors near a critical line are also
saddle-node bifurcation. found for a linear-coupling cagé5]. In Sec. IV we study the
Recently, efforts have been made to generalize the scalingitical behavior for intermittency in many globally coupled
results of period doubling for the 1D map to coupled 1D 1D maps. Globally coupled systems, in which each element
maps[5-11], which are used to simulate spatially extendedis coupled to all the other ones with equal strength, appear
systems with effectively many degrees of freedpta]. It ~ naturally in broad branches of scier{d#]. The results of the
has been found that the critical scaling behaviors of periodwo coupled maps are extended to this kind of many globally
doubling for the coupled 1D maps are much richer than thos€oupled maps. Finally, we give a summary in Sec. V.
for the uncoupled 1D mafB8—11]. These results for the ab-

stract system of the coupled 1D maps are also confirmed in Il. TWO-COUPLED 1D MAPS
the real system of the coupled oscillat¢is3]. In a similar . o . _ _
way, the scaling results of the higher peripduplings (o After briefly reviewing the intermittency in case of the 1D

=34 ...) in the 1D map arealso generalized to the map, we introduce two-coupled 1D maps and discuss their
coupled 1D map$14]. Here we are interested in another Symmetry. Bifurcations associated with stability of periodic
route to chaos via intermittency in coupled 1D maps. Using #®rbits are also discussed.
reduced renormalization method, we extend the scaling re- We first recapitulate the intermittent transition to chaos
sults of intermittency for the 1D map to coupled 1D maps. [1-3] in @ 1D map with one control parametéy,X;, 1
This paper is organized as follows. In Sec. Il we introduce=U(X;)(t denotes a discrete timeA pair of orbits with
two-coupled 1D maps and discuss their symmetry. Bifurcaperiod p appears via saddle-node bifurcation, as the control
tions associated with stability of periodic orbits are also disfparameteA exceeds a threshold valég . One periodic or-
cussed there. In Sec. IIl we employ the “reduced” renormal-bit is a stable attractor, while the other one is an unstable
ization method[10] developed for period doubling in repeller. However, ag decreases below., the two peri-
coupled 1D maps and study the critical behavior for inter-odic orbits disappear, and an intermittent chaotic attractor,
mittency in two-coupled 1D maps. We thus find two fixed characterized by the occurrence of intermittent alternations
points of the reduced renormalization operator. They havéetween laminar and turbulent behaviors, appears.
the relevant eigenvalues associated with scaling of the con- One can easily explain the intermittency geometrically as
trol parameter of the uncoupled 1D map as common onegollows. The curve of the equatiol=uP(X)[u® is the
pth iterate ofu] has new 2 intersection points with th&
=X line for A>A_, which collapse int@ points tangent to
*Electronic address: sykim@cc.kangwon.ac.kr the Y=X line for A=A, [i.e., we havep fixed points, X}
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=u(p>(x;*), t=1,... p for A=A_]. However, asA decreases Stability of a synchronous orbit of periqais determined
below A, the curve no longer touches the=X line so that  from the Jacobian matrid of M(P) (pth iterate of M),
a “channel” appears in the immediate vicinity of each point Which is given by thep product of the linearized mapM of
tangent to the¥=X line at A=A,. If one orbit point falls theé map(2.2) along the orbit

close to the entrance to one of the channels under repeated
iterations ofuP, it would take many iterations to go through 3=
the channel, which corresponds to the “laminar phase.” Af- i
ter slow passage through the channel, the iteratea®df o ow . .

move wildly until they return to one of the channels. This 1 u’'(X{) = V(XY) V(Xt)
corresponds to the “turbulent phase.” Thus the laminar and ) V(XF) u’'(XE)—V(X¥) )’
turbulent phases appear intermittently.

~ The nearerA is to A¢, the longer the averaged laminar \yhere u’(x)=du(X)/dX and V(X)=dv(X,Y)/dY|y_x:
time. To obtain the average duration of the laminar phasenereafterv(X) will be referred to as the “reduced coupling

consider thepth iterateu®(X) in the immediate vicinity of  function” of v(X,Y). The eigenvalues o, called the sta-
one of the channels. Shifting the origin of coordinXt¢o a  pjlity multipliers of the orbit, are given by

fixed pointX* of u(P(X) for A=A, we have

o

DM(XF . X{)
1

(2.6
t

p p
Xer 1= F(X)=UP (X, +X*) = X* ~x, +a|x|*+e, z>1, =T woxE), =11 [uxF)—2vixn].
(2.1 t t @7

Note that) ; is just the stability multiplier for the case of the
uncoupled 1D map and the coupling affects onby.

wherex=X—X*, ais a constant, and is a control param-
eter proportional ttA— A . Using a mag of the form(2.1),

it has been found i3] that the mean duration of the laminar -~ -F i
hasel (€) varies ase~ (1~ Hence the tangency order A synchronous periodic orbit is stable when both multi-
P ' gency pliers lie inside the unit circle, i.e|\j|<1 for j=1 and 2.

determines the universality classes, becdusepends onthe Thys its stable region in the parameter plane is bounded by
orderz. In this paper, we consider only the analytic case offoyr pifurcation lines, i.e., those curves determined by the

even ordezz (z=2,4.6...). o o equationsh ;= =1(j=1,2). When a multiplienr; increases
We now consider a malgl consisting of two identical 1D through 1, the stable synchronous periodic orbit loses its sta-
maps coupled symmetrically, bility via saddle-node or pitchfork bifurcation. On the other

hand, when a multipliex; decreases through 1, it becomes

[ Xerr=WIX, Y =u(X) +o (X, Yy), unstable via period-doubling bifurcatiofFor more details

N Y =WY XD =u(Y) +o(Ye, X, 2.2 on bifurcations, refer to Refl17].)
wherev is a coupling function obeying a condition, IIl. RENORMALIZATION ANALYSIS
OF TWO-COUPLED MAPS
v(X,X)=0 forany X. (2.3

Here we are interested in intermittency just preceding a
The map(2.2) is called a symmetric map because it has ansaddle-node bifurcation. Using the “reduced” renormaliza-

exchange symmetry such that tion.method[lo,lﬂ developed for period doubling, we gen-
eralize the 1D results for intermittency to the case of two-
o Mo(Z)=M(Z) forall Z, (2.4 coupled 1D maps. We thus find two fixed points of the

reduced renormalization operator in Sec. Ill A and obtain
whereZ=(X,Y), o is an exchange operator acting @ their relevant eigenvalues in Sec. Ill B. We also study the
such thatr(Z) = (Y, X), ando L is its inverse. The set of all intermittency for a dissipative-coupling case and confirm the
fixed points ofo forms a synchronization lin¥=X in the ~ renormalization results in Sec. Ill C.
state space. It follows from E@2.4) that the exchange op-
erator o commutes with the symmetric ma, i.e., oM A. Reduced renormalization operator and its fixed points
=M. Thus the synchronization line becomes invariant un-
derM, i.e., if a pointZ lies on the synchronization line, then
its imageM(Z) also lies on it. An orbit is called(a) (in-
phasé¢ synchronous orbit if it lies on the synchronization
line, i.e., it satisfies MP:X L =WP(X, Yy, Yier=WP(Y,,X,), .

3.1

To study the intermittent transition to chaos near a saddle-
node bifurcation to a pair of synchronous orbits of pennd
consider thepth iterateM(P) of M of Eq. (2.2),

Xi=Y=X{, forall t. (2.5
whereW) satisfies a recurrence relation
Otherwise, it is called afout-of-phasgasynchronous orbit.
Here we study the intermittency associated with a saddle- WP(X,Y)=WWP-D(X,Y), WP DY X)). (3.2
node bifurcation to a pair of synchronous periodic orbits,
which can be easily found from the uncoupled 1D map,The functionW( can be decomposed into the uncoupled
r. 1= U(X{), because of the coupling conditi¢®.3). partu® and the remaining coupling part, i.e.,
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WP(X,Y)=uP(X)+[WP(X,Y)—uP(X)]. (3.3
When the control parametéy of the uncoupled 1D map is
equal to the threshold valuk, for the synchronous saddle-
node bifurcation, we have synchronous fixed points of
M®) such thatyy =X; =uP(X}) for t=1,...p. Shifting
the origin of coordinatesX,Y) to one of thep synchronous
fixed points K*,Y*) [Y*=X*=uP(X*) for A=A.], we
have

| X1 = F(Xt,Yo) = (%) +9(Xt,Ye)s

Tye=Foox=foorayix, ¥

where
f(x)=uP(x+X*)—X*, (3.5
g(x,y) =WP(x+X* y+Y*)—uP(x+X*). (3.6

Since a synchronous saddle-node bifurcation occurs at the

origin (0,0) for A=A, in case of the maf, the uncoupled
partf for the critical caseA= A, satisfies

f(0)=0 and f’'(0)=1. (3.7
Note also that the coupling functia(x,y) satisfies the cou-
pling condition(2.3), i.e.,
(3.9

g(x,x)=0 forany x.

INTERMITTENCY IN COUPLED MAPS

=)
< dof2)-af23)

(3.13

X
gn+1(Xay):afn(fn(Z) +0n

X
+ago\f,

o

il

Then Eqgs.(3.12 and(3.13 define a renormalization opera-
tor R of transforming a pair of functionsf(g);

(fn+1 (fn)
=R )
On+1 On

A critical map T, with the nonlinearity and coupling pa-
rameters set to their critical values is attracted to a fixed map
T* under iterations of the renormalization transformatidn

+0On

(3.19

(3.19

.. [ Xer1=F* (Xt,Y) = (X)) + 9% (Xt Y0,
Yir1=F* (Y, X0 =" (y) +9* (Vi %).
Here (f*,g*) is a fixed point of the renormalization operator
'R, which satisfies {*,g*)=R(f*,g*). Note that the equa-
tion for f* is just the fixed-point equation for the intermit-

tency with boundary condition§3.7) in the uncoupled 1D
map. It has been found i8] that

f*(X)ZX[l—(Z— 1)axz—1]—l/(z—1)

z
=x+ax*+ §a2x22*1+ e

We employ the same renormalization transformation

[10,11 as in the period-doubling case with changed bound-

ary conditions(3.7). The renormalization transformatiok’
for a coupled mag consists of squaringT?) and rescaling
(B) operators:

MT)=BT?B™ L. (3.9

(a:arbitrary constant (3.16
is a fixed point of the transformatio3.12 with
a=2Mz"1), (3.17

[As mentioned in Sec. Il, we consider only the analytic case
of even order(z=2,4,6...).] Consequently, only the equa-

Since we consider only synchronous orbits, the rescaling opion for the coupling fixed functiom* is left to be solved.

erator is of the form

a 0 3
B= , A
0 « (3.10
where« is a rescaling factor.
Applying the renormalization operatdy to the coupled
map (3.4) n times, we obtain the-times renormalized map
T, of the form

n-

[Xt+1: Fn(Xt,Yt) = fn(X0) + 9n(Xi,Y0),
(3.11

Yir1=Fna(Yi.: X0 = fa(Y) + In(Ye %)

Heref, andg, are the uncoupled and coupling parts of the

n-times renormalized functioR,,, respectively. They satisfy
the following recurrence equation%0,11]:

e

frri(X)=af,

However, it is not easy to directly solve the equation for
the coupling fixed function. We therefore introduce a trac-
table recurrence equation for a reduced coupling function of
the coupling functiorg(x,y), defined by

ag(x,y)

G(x)= oy

(3.18

y=X

Differentiating the recurrence equati¢d.13 for g with re-
spect toy and settingy=x, we have

]zl

x\|.,[x
fy . fr pk
Then Eqs(3.12 and(3.19 define a “reduced renormaliza-

tion operator” R of transforming a pair of functionsf(G)
[10,11]:

Gn+1(X) =

+G, (3.19
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( fn+1):7~é( fn ) (3.20 hn+1(X)=[L1h,](x)
Gn+1 Gn X X X
=at*’| f*| ~ | Ihy| = | +ah, f*(;) :
We now look for a fixed point {*,G*) of R, which
satisfies {*,G*)=R(f*,G*). Note thatG* is just the re- (3.26
duced coupling fixed function ofg* [i.e.,, G*(x)
=3g* (X,y)/dyly—]. Using a series-expansion method, we en+1(%,Y) =[La@n](XY) +[L3ha](x),  (3.27)
find two solutions forG*: y v x Xy
_ * B x| 2 _
Gr(X):%[1+Za)€71+2(2_%)a2X2(271)+ . .], [£2<Pn](XaY)—aF1(F (a: C!)’F (a'a )()Dn(aaa
(3.2)
el {2322
. 1 71 3z-b 1) , ., 1 2 a'al” \a'al//™ a'a
II(x)=§baxZ +b 5 T5)a% 4+,
X X
(3.22 +ap, F*(—,X),F*(X,—”, (3.28
a o o o

wherea and b are arbitrary constants. Here we are able to

sum the series in Eq3.21) and obtain a closed-form solu- .
tion, [L3h,](X)=aF7

X X
F*<_,X),F*(X'_)
a o a o

X X
F*(_,X)’F*(X’_>
a o a o

Gf (x)=3f*"(x). (3.23

+aF}
However, unfortunately we cannot sum the series in Eq.

(3.22, except for the caseb=0 and z where we obtain Xy
closed-form solutions, +ahy F* aa ~[£iha](¥). (3.29
0, for b=0 Here F*(x,y)=f*(x)+g*(x,y), and the subscripi (i
Gi(x)=4 1 . (3.29 =1,2) of F* denotes the partial derivative with respect to
S (0)=1], for b=z. the ith argument. Note that, althoudh, couples to both

h,+1 @anden 1, @, couples only tap,,. 1. From this reduc-

We have also studied the intermittency using anothefoility of £ into a semiblock form, it follows that to obtain
renormalization method including a truncatighs]. Two  the eigenvalues of it is sufficient to solve the eigenvalue
fixed points of the approximate renormalization operatorProblems for, andZ, separately. The eigenvalues of both
corresponding to the two fixed points of the reduced renor£1 and £; give the whole spectrum of. .
maltion operatofR, have been found. The relevant eigenval- A pair of p_erturbanons_ I¢*.¢™) is called an eigenpertur-
ues of the truncated fixed points are also the same as those ¥tion with eigenvalua., if

the two fixed points ofR, which will be obtained below. h* h*
Iy *) =L , 1| (3.30
B. Reduced linearized operator and its relevant eigenvalues ¢ ¢
Once a fixed pointf(* ,g*) of the renormalization opera- that is,
tor R is determined, its eigenvalues are obtained by linear-
izing R at the fixed point and solving the resultant eigen- ANh*(X)=[L;h* ](x), (3.3)
value problem. In general, it is required to know the coupling
fixed functiong* (x,y) to linearize’R around a fixed point No* (X, Y)=[Lop* 1(X,y) +[L3h* ](X). (3.32

(f*,g*). However, it is shown that the eigenvalues are pos-

sibly obtained using the reduced coupling fixed functionWe first solve Eq(3.32) to find eigenvalues of ;. Note that

G*(x) rather thamg* (x,y). We thus obtain the relevant ei- this is just the eigenvalue equation in the 1D map case. The

genvalues of the two fixed points as follows. complete spectrum of eigenvalues and the corresponding
Let us examine the evolution of a pair of functions, eigenfunctions have been found in R3] The form of the

[f*(x)+h(x),g* (x,y)+ ¢(x,y)], close to a fixed point eigenvalues is\,=2*" /("1 (n=0,1,2...). Hence the

(f*,g*) underR. Linearizing the renormalization operator first z eigenvalues witim<z are relevant ones. The marginal

R at the fixed point {*,g*), we obtain the recurrence equa- one\, is associated with the arbitrary constanin f* (x),

tion for the evolution of a pair of infinitesimal perturbations and all the other ones with>z are irrelevant. Although the

(h,¢): eigenvalues\,’s of £, are also eigenvalues & as men-
tioned in the preceding paragraph;*(0) itself cannot be an
( hn+1) —L( hn) _ ( Ly 0 )( hn) (3.25 eigenperturbation of unless.; is a null operator.
Oni1 ©n Ls L)\ en)’ ' Next, we consider a perturbation of the form¢p having

only the coupling part. In this case (,) is an eigenpertur-
where bation of £ with eigenvaluex, only if ¢* satisfies
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Ne* (X,Y)=Lo* (X,Y). (3.33 spect toy and settingy= X, we obtain a recurrence equation
for ®:

The eigenvalues associated with the coupling perturbations D1 1(X)=[L2Pn](X) +[L3hn](X), (3.39

will be called the coupling eigenvalué€E’s). X X X
However, it is not easy to directly solve the eigenvalue  [Z,d ](x)= f*’(f*<_))_2G*(f*(_)) ‘Dn<—)
equation fore*. We therefore introduce a tractable recur- a a «
rence equation for a reduced coupling perturbation of the X X X
coupling perturbation ¢(x,y), defined by ®&(x) + f*’(—) —2G*(—”<bn f* —) ,
=d¢(X,y)/dy|l,—x. In the case of general perturbations @ @ @
(h, ), differentiating the recurrence equati27) with re- (3.395

el 2
ror el G- el

[Z3hn](x)=

h,

A

X
—) +G*
a

Then the recurrence equatiof®26 and(3.34) for h and® depending orG* (x), as follows. We first consider the case
define a reduced linearized operafbof transforming a pair ~ of the first solutionG (x)=3f*'(x). In this case the re-
of perturbations, it,®): duced linearized operataf, of Eg. (3.38 becomes a null
operator, because the right-hand side of the equation be-
Pn+1 o~ hn _ Ly 0)(h, comes zero. Hence there exist no relevant CE’s associated
Diq =L o, Zs 7, @) 337 with coupling perturbations, and consequently the fixed point
(f*,Gf) of R has only relevant eigenvalues 6f, associ-
Note that this equation can also be obtained by directly lin-ated with the scaling of the control parameter of the un-
earizing the reduced renormalization operafdr of Eq.  coupled 1D map, like the 1D case.
(3.20 at its fixed point §*,G*). Hence, Eq(3.37 is just Second, consider the case of the second solu@§nof
the eigenvalue equation for the fixed poirit (G*) of R. Eqg. (3.22. Using a series-expansion method, we find the
. ~ . : . complete spectrum of CE’s and the corresponding eigenfunc-
The reducibility of £ into a semiblock form again lets us . : . .
) ) ; tions. An eigenfunctiorlb™ (x) can be expanded as follows:
search for the reduced coupling eigenperturbations of the
form (0®*), whered®* (x) satisfies

~ q)* — |. ]
ND* (x) =[Z,D]* () (x) Z,O CiX (3.39
=[f*’(f*(i))—ZG*(f*(i))}b*(i) Substituting the power series df*(x), f*'(x), G}\(x),
“« @ @ and ®*(x) into the reduced eigenvalue equatith38), it
X X X has the structure
Joee )22 o (2]
o o o
(3.39 Ack=2| Mycy, kI=012.... (3.40

Here the prime denotes a derivative with respect.tblote ) ) L
that this equation folb* is just a reduced equation of the NOte that eactt)(1=0,1,2...) in theright-hand side is in-
original eigenvalue equatiof8.33 for ¢*, obtained by dif- volvekd iny in the determination of coefficients of monomi-
ferentiating Eq.(3.33 with respect toy and settingy=x. &S X" with k=I+m(z—1) (m=0,1,2...). Hence M be-
Clearly all eigenvalus. of this reduced eigenvalue equation COMeS & lower triangular matrix. Its eigenvalues are therefore
are also eigenvalues of the original eigenvalue equatioft'St diagonal elements:
(3.33. That is, each eigenfunctiob* (x) with a CE\ cor- )
responds to the reduced coupling eigenfunction of the origi- _ _ % o(z-1-Kl(z-1 _
nal coupling eigenfunctior* (x,y) with the same CB. Ak_Mkk_E‘Z_Z( M k=012

To solve the reduced eigenvalue equati8r38), it is suf- (3.4)
ficient to know only the reduced coupling fixed function
G*(x) of g*(x,y). Using the two solutions fo6* in Eqs. The first —1) eigenvalues\,’'s for O0<k=z—2 are rel-
(3.2 and (3.22), we obtain the relevant CE’s, which vary evant ones. The marginal eigenvablug ; is associated with
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the arbitrary constartt in Gjj(x), and all the other eigenval-
ues fork>z—1 are irrelevant.

Each eigenfunctionby (x) with CE \(k=0,1,2...) is
of the form

O (x)=x1+ axt 4.,

(3.42

bk
Z—+§

In case of the largest Cky= 2, we are able to sum the series
in Eq. (3.42 for b=0 andz and find®{ (x) in closed form:

(),
11

for b=0,
for b=z.

¢3<x>=f (3.43

We can also sum the series in E§.42) for all the irrelevant
cases(i.e., the case&=z) and find the closed-form eigen-
functions,

1
K(x)= a[f*'(X)—ZGﬁ(X)][f*'(X)—X'],

lI=k—z+1=12,..., (3.44)

which are associated with coordinate chandes.

C. Critical behaviors near a critical line

SANG-YOON KIM
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Herec is a coupling parameter. As an example, we consider
the saddle-node bifurcation to a pair of synchronous orbits
with period p=3 occurring forA=A.=1.75. To study the
intermittency associated with this bifurcation, we first con-
sider the third iterat® ) of M [see Eq(3.1)], and then shift
the origin of coordinatesX,Y) to one of the three synchro-
nous fixed points X*,Y*) for A=AJ[Y*=X*
=u®)(X*)]. Thus we obtain a mad of the form (3.4),
where the uncoupled and coupling pdrendg are given by

(3.47

g(x,y) =W (x+X* y+Y*)—u®(x+X*). (3.49

f(x)=u® (x+X*)—X*,

Near the region of the synchronous saddle-node bifurcation,
f(x) can be expanded aboxt0 andA=A.,

f(X)~x+ax’+e,

(3.49

Where a= %azf/aX2|X:0‘A:AC a.nd €= &f/&A|X:0‘A:AC(A
—A.). Hence this corresponds to the most common case
with the tangency ordez=2 [see Eq.2.1)]. Note also that
the reduced coupling functio®(x) of g(x,y) [defined in

Eq. (3.18] is also given by

e
G(x)=35f"(x), e=c3-3c?+3c. (3.50

In order to confirm the above renormalization results, we  ~qnsider a pair of initial functionsf(,G) on the syn-
study the intermittency in the dissipatively coupled 1D maps nronous saddle-node bifurcation lide= A, wheref (x) is

It is found that there exists a critical line segment associate

with intermittency in the parameter plane. We explicitly
show that any pair of critical functiond {,G.) at any inte-
rior point of the critical line is attracted to the first fixed point

(f*,Gf) under iteratons of the reduced renormalization op-

eratorR, while the pair of critical functionsf(,G.) at each
end point converges to the second fixed poftit,G) of k.

ﬂjst the 1D critical map an(x) = (e/2)f.(x). By succes-
sive actions of the reduced renormalization transformaion
of Eq. (3.20 on (f;,G), we obtain

X e
fn(x):afn—l(fn—l(;))y Gn(X)ZEfé(X),
(3.52

Consequently, the critical behaviors inside the critical line

are governed by the first fixed poinf*,Gy) with no rel-

(n=0,1,2...), (3.52

— 2
en=2€,_1- € 1,

evant CE’s. On the other hand, the second fixed point with _ _
relevant CE’s governs the critical behaviors at both ends ofvhere the rescaling factor foz=2 is a=2, fo(x)

the critical line. The first fixed point with no CE'’s has the

=f.(X), Go(X)=G(x), and ey=e. Here f, converges to

same relevant eigenvalues as the 1D fixed point. Thereforéhe 1D fixed functionf*(x) of Eq. (3.16 with z=2 asn
the critical behaviors inside the critical line become the same— .

as those for the 1D case. However, such a 1D-like intermit-

We now investigate the evolution @(x) under itera-

tent transition to chaos, occurring on the synchronizatiortions of R. Figure 1 shows a plot of the curve determined by
line, ends at both ends of the critical line because of theEq. (3.52. Two intersection points between this curve and
system desynchronization. The scaling behaviors of the couhe straight linee,=e,_, are just the fixed points* of the
pling parameter near both ends are governed by the relevarécurrence relatiofi3.52 for e

CE of the second fixed point. Note also that this kind of
critical behaviors near a critical line are also found for a

linear-coupling casg15].

e*=0,1. (3.53

We now choose the uncoupled 1D map in two-coupledStability of each fixed poine* is determined by its stability

1D mapsM of Eq. (2.2) as

u(X)=1-AX?, (3.45

multiplier u[ =de,/de,_4|.+]. The fixed point ag* =1 is
superstableg=0), while the other one a&* =0 is unstable
(u=2). The basin of attraction to the superstable fixed point
e* =1 is the open interval (0,2). That is, any initeinside

and consider a dissipative coupling case in which the couthe interval 6<e<2 converges t@* =1 under successive

pling function is given by

v(X,Y)= ;[U(Y)—U(X)]. (3.46

iterations of the transformatio(8.52. The left end of the
interval is just the unstable fixed poiat =0, which is also

the image of the right end point under the recurrence equa-
tion (3.52. All the other points outside the interval diverge
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FIG. 2. Phase diagram for a dissipative-coupling cé&e@).
Here solid circles denote the data points on ¢he=0 curve. The
region enclosed by the;, =0 curve is divided into two parts de-

) o . ) ~noted byP andC. A synchronous period-8&haotig attractor with
to the minus infinity under iterations of the transformation <0 (0>0) exists in the parP (C). The boundary curve de-

(3.52. Thus there exists a critical line segment joining two noted by a solid line between ttieand C parts is just the critical
end pointsc;=0 (corresponding t@=0) andc,=2 (corre- line segment.
sponding toe=2) on the synchronous saddle-node bifurca-

tion ImgA.:Ac n theq—A plant_a: o Here o(o,) denotes the mean exponential rate of diver-
Any initial G(x) inside the critical line is attracted to the gence of nearby orbits aloncross the synchronization
first reduced coupling fixed functio{ (x)=3 f*'(x) un- line Y=X. Hereafter,oc(o,) will be referred to as tangen-
der iterations ofR, which corresponds to the fixed point tial and transversal Lyapunov exponents, respectively. Note
e* = 1. Consequently, the critical behaviors inside the criticalalso thatoy is just the Lyapunov exponent for the 1D case,

line are governed by the first fixed poirft(G}) of R. This  &nd the coupling affects only, . _
first fixed point has no relevant CE’s, because the fixed point, "€ data points on the, =0 curve are denoted by solid
e* =1 of the transformatiori3.52 is superstable. Hence it qrcles in Fig. 2. A synchronous orbit on t_he syr_lch.romzatlon
has only the relevant eienvalues £f (i.e., those of the 1D INe becomes a synchronous attractor with<0 inside the
fixed poiny. Since the tangency order for the dissipatively =0 curve. The type of this synchronous attractor is de-
coupled case ig=2, there exist two relevant eigenvalues of termined according to the sign ofy. A synchronous
Ly, 8,=4, and8,=2. On the other hand3(x)’s at both period-3 orbit Wlth0'H_<.0 b(_acomes a synch_ronous periodic
ends of the critical line converge to the second reduced colfttractor above the critical line segment, while a synchronous
pling fixed function G*(x)=0 with b=0, which corre- chaotic attractor witho>0 exists below the critical line
sponds to the fixed pltl)ine* ~0 Accordin,gly the second segment. The periodic and chaotic parts in the phase diagram
* ' ’ are denoted by and C, respectively. There exists also a

. . N - .
f'xzd [I)Omgéf.t.' 't') tgr;]overns the crlmcal tbe_hawors at deth synchronous period-3 attractor with=0 on the critical line
ends. In addition to the common relevant eigenvalfiean segment between the two parts.

61, this second fixgd*pi)int has one relevant 6£=2, be- We first consider a transition to chaos near an interior
cause the fixed point* =0 of the transformation3.52 is  oint with c,<c<c, of the critical line segment, governed

un unstable one with stability multiplige =2. by the first fixed point {*,G*) with no relevant CE’s. Here

From now on, we present the detailed results on the Critiy e fix the value ofc at some interior point and vary the

cal beha\iiors near the critical line, governed by the two ﬁxedcontrol parametek,(=A,—A) of the uncoupled 1D map.
points of R. Figure 2 shows a phase diagram near the criticafor ¢, <0 there exists a synchronous period-3 attractor on
line denoted by a solid line. The diagram is obtained fromne synchronization lin = X. However, as, is increased
calculation of Lyapunov exponents. For the case of a synfrom zero, the periodic attractor disappears and a new cha-
chronous orbit, its two Lyapunov exponents are given by  otic attractor appears on the synchronization line. As an ex-
ample, see Fig. (8), which shows a synchronous chaotic

m-1 attractor for the case,=10 *. The motion on this synchro-
lim = Inju’(X)|, (3.54  nous chaotic attractor is characterized by the occurrence of
m— ME=0 intermittent alternations between laminar and turbulent be-
haviors on the synchronization line, as shown in Fif).3
This is just the intermittency occurring in the uncoupled 1D
map, because the motion on the synchronization line is the
same as that for the uncoupled 1D case. Thus, a “1D-like”
intermittent transition to chaos occurs inside the critical line
—cl. (3.55  segment.

FIG. 1. Plots of the curven=2en,l—eﬁ,1 and the straight line
en:en_l.

o)(A)=

m—-1

1
o, (A,c)= lim EZO In|(1—c)u’ (X)|=o(A) +In|1

m—oo
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04t B c
% 00 o T ] FIG. 4. Plot ofc, (=In|1—c]) versus c forA=A.. The values
L oL i of o, at both ends of the critical line segment are zero, which are
o4k T i denoted by solid circles.
08 F * | * T T ﬁ,)‘— the two end points, governed by the second fixed point
0 200 400 600 800 1000 (f*,G}}), by varying the coupling parameter Inside the
t critical line segment ¢, <c<c,), a synchronous period-3

L attractor witho | <0 exists on the synchronization line, and
_FIG. 3. lterates of the dissipatively coupled mdpof Eq. (2.2 hence the coupling tends to synchronize the interacting sys-
with the uncoupled 1D mag4.1) and the coupling4.2) for € tomg However, as the coupling parametgrasses through
(=A.-A)=10"" and ¢=05; (@ an orbit with initial point "o o transversal Lyapunov exponent of the syn-
(0.1,0.3) is attracted to a synchronous chaotic attractor on the syn-h iodi bit | f h in Fi
chronization lineY=X after exhibiting a short transient behavior, chronous periodic orbit INCréases from zero, as shown in Fig.

and(b) the plot of thex-componenX(® of the third iterateM @ of 4, and hence the coupling leads to desynchronization of the

M versus a discrete timeshows intermittent alternations between mteractlngbsystems. Thus th_g S)r/]nchr_qnolulls period-3 Orb'td
laminar and turbulent behaviors. ceases to be an attractor outside the critical line segment, an

a new(out-of-phasgasynchronous attractor appears. This is
The scaling relations of the mean duration of the laminadlustrated in Fig. 5. As a result of this transition from a

— . synchronous to an asynchronous state AetA., the 1D-
phasel and the tangential Lyapunov exponentfor a syn- =7 ™ . o2 ]
. ; g like intermittent transition to chaos, occurring on the syn-
chronous chaotic attractor are obtained from the leading rel- T X "
. N e e chronization line, ends when crossing both ends of the criti-
evant eigenvalué,; (=4) of the first fixed point {*,G}), cal line
I|k¢ E[hef ﬂ? Ca$t§3]i ﬁ map with ?c')niercr fnear 3”. Tterlor The critical behaviors near both endsandc, are the
point of the critical ine segment IS trans orme/ INt0 a NeWsame. Since the transversal Lyapunov expoments equal
map of the same form, but with a new parameteunder a

o 1 to In|1—c| for A=A [see Eq(3.59], it varies linearly with
;ir;(laé?:gzatmn transformation. Here the control parameteFespect toc near both endgi.e., o, ~ €, ,e,=C,—C OF C

—¢,). The scaling behavior of-, is obtained from the rel-
(3.56 evant CES, (=2) of the second fixed pointft,G}) as
follows. Consider a map with nonzere., (but with €4
=0) near both ends. It is then transformed into a new one of
the same form, but with a renormalized paramefeunder a
renormalization transformation. Here the parametesbeys

|(6;-\):% (€a), O'H(E;_\)ZZO'H(eA), (3.57 a scaling law,

[ —22
EpT— 51€A—2 Ep -

Then the mean duratioh and the tangential Lyapunov ex-
ponento satisfy the homogeneity relations,

which lead to the scaling relations, €.= 626.=2€. (3.60

T(EA)~6;;»' oj(ep)~ €k, (3.59 Then thg transvgrsal Lyapunov exponentsatisfies the ho-
mogeneity relation,

with exponent
o 6(,:) =20¢(€c). (3.6
pn=In2/In§,=0.5. (3.59
This leads to the scaling relation,

The above 1D-like intermittent transition to chaos ends at
both endsc, andc, of the critical line segment. We fix the ocle)~€l, (3.62
control parameteA at the synchronous saddle-node bifurca-
tion valueA,(=1.75) and study the critical behaviors near with exponent
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T T [19], Josepson junction array20], andp-n junction arrays
1o 4 v il [21]. This kind of dynamical systems with a global coupling
can be also regarded as mean-field versions of dynamical
05 - 7 systems with local short-range couplings. Here we first intro-
> duce many globally coupled 1D maps in Sec. IV A, and then
0o v 4 show that the critical behaviors of globally coupled maps
for N>2 are the same as those of the two dissipatively
05 1 coupled maps in Sec. IV B. In the final section IV C, the
i . I‘ . T(a)' renormalization results of the two coupled maps are straight-
1 T s o0 o5 10 forwardly extended to the many globally coupled maps.
X
A. Many globally coupled 1D maps
b x ' ;( s " Consider anN-coupled map with a periodic boundary
| ] condition:
05 - ] M: X4 1(M)=W(a™ 1X,)
> o0k x x =W(X(m),X,(m+1), ... X(m—1)),
05k . m=1,...N, (41)
= x * g
qolkl o oo O where the number of constituent elemeiMsis a positive
-0 -05 00 05 10 integer larger than or equal to ,(m) is the state of the
X mth element at a lattice poimh and at a discrete timg X

=(X(1),X(2),...X(N)), o is the cyclic permutation of
the elements ofX, i.e., oX=(X(2),...X(N),X(1)),

FIG. 5. Transition from a synchronous to an asynchronous statg™ ' means (n— 1) applications ofr. The periodic condi-
for A=A.. A synchronous period-3 orbit denoted by circles is notion imposesX;(m)=X(m+N) for all m. Like the two-
longer an attractor outside the critical line segment, and new asyrtoupled caseN=2), the functionW consists of two parts:
chronous attractors exist f¢@) c= —0.0001 andb) c=2.0001. We

Fig. 5 (Kim,PR-E)

denote a pair of asynchronous period-3 attractors by uptriangles and W(X)=u(X(1))+v(X), 4.2
downtriangles in case @#), while the asynchronous attrractor with _ ) _
period 6 is denoted by “stars” in case ). whereu is an uncoupled 1D map andis a coupling func-

tion obeying the condition

v=In2ins;=1. (363 v(X,... X)=0, forany X. 4.3

Like the case of interior points of the critical line seg- 11,5 theN-coupled map4.1) becomes
ment, the scaling behavior ef|(e,) for c=c, or c, is also '

obtained from the common relevant eigenvatije (=4) of M : X+ 1(m) = u(X,(m))

the fixed point €*,G}}), and hence it also satisfies the scal-

ing relation (3.54). The scaling behaviors of the Lyapunov +o(X(m), Xy (m+1),....X(m=1)),
exponentso; and o, near both ends are thus determined

from two relevant eigenvalues, and 8, of the fixed point m=1,...N. (4.9
(*.Gh).

Finally, we also consider a linear-coupling case with the _Here we study many-coupled 1D maps with a global cou-
coupling function v(X,Y)=c(Y—X). For this linearly plmg._ln the extreme long-range case of global coupling, the
coupled case, there exist three critical line segments on thgPuPling functionv is of the form
synchronous saddle-node bifurcation like=A. (=1.75)

[15]. The critical behaviors near each critical line segment v(X(1),. .. X(N))

are also found to be the same as those for the above dissipa- c N

tively coupled case. = N21 [r(X(m))—r(X(1))] for N=2,
=

IV. EXTENSION TO MANY GLOBALLY COUPLED MAPS (4.5

Recently, much attention has been paid to dynamical syswherer (X) is a function of one variable. Note that each 1D
tems with many nonlinear elements and a global coupling, iTap is coupled to all the other ones with equal coupling
which each element is coupled to all the other elements witlstrengthc/N inversely proportional to the number of degrees
equal strength. Globally coupled systems as the extremef freedomN. Hereaftergc will be called the coupling param-
limit of long-range couplings are seen in broad branches oéter.
sciencd16]. For example, coupled nonlinear oscillators with  The N-coupled magM is called a symmetric map, because
a global coupling frequently occur in charge density wavest has a cyclic permutation symmetry such that
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o Ma(X)=M(X), forall X, (4.6 du Ju (o M=Dx
( u'(X)= gy V“)(X)E;X—)
wheres ! is the inverse ofr. The set of all fixed points of ML Ix@ == XN =X
o forms a synchronization line in thi-dimensional state v (X)
space, on which =X (4.11
I Ixy=-.-=X(N)=X

X(D)=---=X(N). 4.7 Hereafter, the function¥")’s will be called “reduced cou-

pling functions” of v (X).

It follows from Eq.(4.6) that the cyclic permutation- com- Let 54,(j) be the Fourier transform akX,(m), i.e..

mutes with the symmetric mag, i.e.,cM =M ¢. Hence the

synchronization line becomes invariant unéiérAn orbit is 1 N

called dn) (in-phase synchronous orbit if it lies on the syn- S&(j)=F[AX(m)]= _2 e 2mMINAX (m),

chronization line, i.e., it satisfies Nm=1
X(1)=---=X(N)=X¥, forall t. (4.9 j=0,1,...N—1. (4.12

Here 6¢,(0) is the synchronous-mode perturbation along the
synchronization line, while all the other onég,(j)’s with
ponzero indicieg are the asynchronous-mode perturbations
across the synchronization line. Then the Fourier transform
of Eq. (4.10 becomes

Otherwise, it is called afout-of-phasgasynchronous orbit.
Here we study the intermittency associated with a synchro
nous saddle-node bifurcation. Note also that synchronous o
bits can be easily found from the uncoupled 1D m4p,,

=u(X}), because of the coupling conditi¢d.3).
N

B. Critical behaviors for the globally coupled case 0&i+1())= U'(X?)‘*'I;l V(l)(x?)ezm(lil)w 0&(]),
Here we first discuss Lyapunov exponents of the synchro-
nous orbits inN globally coupled maps, and show that there j=0,1,...N—1. (4.13

exists only one independent transversal Lyapunov exponent,
independently olN, which is also the same as that for the Note that all the modesg(j)’s become decoupled for the
case of two dissipatively coupled maps. It follows from this Synchronous orbit.
fact that the critical behaviors df globally coupled maps  The Lyapunov exponerx; of a synchronous orbit, char-
for N>2 becomes the same as those of the two dissipativel§cterizing the average exponential rate of divergence of the
coupled maps. jth-mode perturbation, is given by

Consider an orbi{X;}={X;(m),m=1,... N} in many o1 N
coupled mapg4.4). Stability analysis of the orbit can be . . Dok s o 2mi(l—1)i/N
easily carried out by Fourier transforming with respect to the ‘TJ'_HI]'TW m ZO Inj u”(X{ H,Zl VI(XE)ezm i
discrete spacém}. The discrete spatial Fourier transform of (4.14
the orbit is
If the Lyapunov exponent; is negative or zero, then the
synchronous orbit is stable against thth-mode perturba-
tion; otherwise it is unstable.

In case of a synchronous periodic orbit with permdhe
i=0,1,...N—1. (4.9 Lyapunov exponentr; in Eq. (4.14 becomes

1 -
AX(m]=5 2 e N (M) =&(),

The Fourier transformé(j) satisfies&l (j)=&(N—j) (* 0,-=£|n|7\,-|, (4.15
denotes complex conjugateand the wavelength of a mode p

with index j is N/j for j<N/2 andN/(N—j) for j>N/2.

Here &,(0) corresponds to the synchrono{gurien mode
of the orbit, while all the otheé;(j)’s with nonzero indices

where\;, called the stability multiplier of the synchronous
orbit, is given by

j correspond to the asynchrono{iourie) modes. p—1 N
To determine the stability of a synchronous ofbit(1) = H u’ (X*)+ E VD (x*)e2m(I=DilN |
. C e . J t t
=...=X{(N)=X{ for all t], we consider an infinitesimal t=0 =1
perturbation{AX,(m)} to the synchronous orbit, i.eX,(m) (4.19

=X{ +AX(m) for m=1,...N. Linearizing theN-coupled

map (4.4) at the synchronous orbit, we obtain The synchronous periodic orbit is stable againstjthemode

perturbation when\; lies inside the unit circle, i.e.|\||
N <1. When the stability multipliex; increases through 1, the
ek (1) ye* _ synchronous periodic orbit loses its stability via saddle-node
A a(m)=u (X )AXt(m)+|Zl VI AX(+m=1), or pitchfork bifurcation. On the other hand, when de-
(4.10  creases through 1, it becomes unstable via period-doubling
bifurcation.
where It follows from the coupling conditior{4.3) that
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N
> vi(x)=o. (4.17)
I=1
Hence the Lyapunov exponeat, becomes
m—1
oo= lim = > InJu’(X¥)]. (4.18
m {=o

m—ow
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As in Sec. Il C, we also consider the intermittency asso-
ciated with a saddle-node bifurcation to a pair of synchro-
nous periodic orbits with period 3. Then the phase diagram
in Fig. 2 holds for allN (N=2) globally coupled maps,
because the two independent Lyapunov exponepdo
are the same, irrespectively Nf Consequently, there exists
a critical line segment joining two ends=0 andc,=2 on
the synchronous saddle-node-bifurcation lihesA.=1.75
in thec— A plane for anyN globally coupled case. Thus, the

It is just the Lyapunov exponent of the uncoupled 1D mapcritical behaviors near the critical line in arly globally

While there is no coupling effect omg, coupling generally

affects the other Lyapunov exponemtss (j #0).
In case of the global coupling of the for(d.5), the re-
duced coupling functions become

Do (1-N)V(X), for I=1,
VI = V(X), for 1#1, .19
where
c
V(X)=Nr’(X). (4.20

Substitutingv()’s into Eq. (4.14), we obtain
1m71
lim =, Inju’(X¥)| for j=0,
m~>ocmt=0
o= m—1
1 .
lim =, Inju’(X*)—cr’(X¥)| for j#0.
m~>ocmt=0
(4.22

Here o is just the tangential Lyapunov exponent of Eq.

coupled maps become the same as those in the two dissipa-
tively coupled maps.

C. Renormalization analysis of many globally coupled maps

Following the same procedure of Sec. Il for two coupled
maps, we extend the renormalization results of two coupled
maps to arbitraryN globally coupled maps. We thus find two
fixed points of the reduced renormalization operator and ob-
tain their relevant eigenvalues. These renormalization results
are also confirmed for the case of a global coupling of the
form (4.23, like the case of the two dissipatively coupled
maps.

To study the intermittency in the vicinity of a saddle-node
bifurcation to a pair of synchronous orbits with peripdn
an( l;l-coupled mapM of Eq. (4.1), consider itspth iterate
M P

M(p):XHl(m):W(p)(Um_lXt)
=WP(X(m),X;(m+1), ... X(m—1)),

(3.54), characterizing the mean exponential rate of diver-

gence of nearby orbits along the synchronization (#e).

On the other hand, all the other ones (j+0) (character-
izing the mean exponential rate of divergence of nearby or-

bits across the synchronization lingre the same:

(4.22

0—1:. . .:O-N—j.EUL .

Consequently, there exists only one independent transversal

Lyapunov exponendr, , independently of.

As for the case of two-coupled maps in Sec. Il C, we
chooseu(X)=1—AX? as the uncoupled 1D map, and con-

sider a global-coupling case witl{X) =u(X), i.e., a global
coupling of the form

v(X(1), ... X(N))
c N
= N2, LuOX(m)—uX(1)] for N=2

(4.23

[Here the case foN=2 is just the dissipative coupling of

m=1,...N, (4.25
whereW(P) satisfies a recurrence relation
WP(X)=W(WPD(X) WP~ D(gX), ...,
XWP=D(gN=1X)), (4.26

and it can be also decomposed into two parts, the uncoupled
partu® and the remaining coupling part, i.e.,

WP(X) = uP(X(1) + [WEP(X) = uP(X(1)].
(4.27

For the threshold valué. of a synchronous saddle-node
bifurcation, p synchronous fixed points oM appear.
Shifting the origin of coordinate€X(1), ... ,X(N)) to one
of the p fixed points (X*(1),... . X*(N)) (X*(1)=---
=X*(N)=X*=uP(X*) for A=A,), we have

TiXer 1 (M) =F (™ x,)
:f(xt(m))+g(xt(m)1 v vxt(m_l))a

m=1,...N, (4.29

Eq. (3.46).] For this kind of global coupling, the independent where

transversal Lyapunov exponest is given by

(4.29

which is the same as that of E(.55 for the caseN=2.

O'J_ZO'||+|H|1—C|,

f(x(1))=uP(x(1)+X*)—X*, (4.29
g(x)=WP (x(1)+X*, ... x(N)+X*)—uP(x(1)+X*).
(4.30
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Here x=(X4, ... Xy), the uncoupled part for the critical
caseA=A, satisfies the conditiori3.7), and the coupling
function also obeys the conditigd.3).

We employ the same renormalization transformatiéof
Eqg. (3.9 with the rescaling operataxl, wherea is a res-
caling factor, and is theN X N identity matrix. Applying the
renormalization operatal to the N-coupled map(4.28 n
times, we obtain then-times renormalizaed map, of the
form

Th Xer 1 (M) =F (™ )
=fr(X(M))+gu(x (M), ... X (Mm—1)),
m=1,...

N. (4.3)

Here the uncoupled and coupling paftand g satisfy the
following recurrence relations:

B ( (x(l)))
fra&()=af|f| =] @32
X X
gn+1(x):afn(|:n<; )+a’gn(Fn(z)y Ceey
N—-1
_ n(" X )—afn(fn(%l) ) (4.33

Then Eqs(4.32 and(4.33 define a renormalzation operator
R of transforming a pair of functionsf(g):

fn-%—l) ( fn)
=R .
On+1 On
A critical map T, is attracted to a fixed map* under
iterations of the renormalization transformatigf)

(4.39

T* Xy (M) =F* (™ %)

=f*(x((m))
+g* (%(m),x,(m+1), ... x(m—=1)),
m=1,... N. (4.35

SANG-YOON KIM
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The reduced coupling functior()’s satisfy the sum rule
(4.17, i.e., =N ,GO(x)=0, and they also satisf((x)
=G(*N)(x) due to the periodic boundary condition.

As shown in Eq(4.19, there exists only one independent
reduced coupling functiorG(x) for the globally coupled
case, such that

GA(x)=---=6MN(x)=G(x),

GV (x)=(1-N)G(x). (4.38

Then it is easy to see that the successive imGé3(x)} of
{GM(x)} under the transformatiof4.37 also satisfy Eq.
(439 [ie, GPW=...=6Mx)=G,(x), GPx)=(1
—N)G,(x)]. Consequently, there remains only one recur-
rence equation for the independent reduced coupling func-

[P P
ozl

Then, together with Eq4.32, Eq. (4.39 defines a reduced
renormalization operatof% of transforming a pair of func-

tions (f,G)Z
(fn+1> ~( fn)
Gn+1 Gn '

Since the reduced renormalization transformati@n40
holds for any globally coupled cases N2, it can be re-
garded as a generalized version of Ej20 for the case of
two coupled maps.

A pair of critical functions €.,G.) with the parameters

Gni1(X)=

(4.39

(4.40

Here (f*,g*) is a fixed point of the renormalization operator set to their critical values is attracted to a fixed point

R, ie., (f*,g*)=R(f*,g*). Sincef* is just the 1D fixed
map(3.16), only the equation for the coupling fixed function
g* is left to be solved.

As in case of two coupled maps, we construct a tractable_ G*(x), G*D(x)=(1—-N)G*(X)]. As

recurrence equation for a reduced coupling functioig(©f)
defined by

99(x)

(?X(|) X(1)="---=x(N)=x

GH(x)= (4.3

(f*,G*) under iterations ofR. Heref* is the 1D fixed map
(3.16, andG* (x) is the independent reduced coupling fixed
functon of g*(x) [ie., G*@x)=-..=6*N(x)

in the two-
coupled caseN=2) of Egs.(3.21) and(3.22), we find two
series solutions foG*:

1
Gl (x)= N[1+zaxz‘1+ z2(z—Ha*>x® = V...,
(4.41)

because it is not easy to directly solve the equation for the

coupling fixed function. Differentiating the recurrence equa-

tion (4.33 for g with respect tx(1) (1=1,..., N) and set-
ting x(1)=-- - =x(n)=x, we obtain

3z—b 1
_ - 2,2(z—-1) .
5 Z)a X +

bax 1+b .
(4.42

1
G|*|(X)=N
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Herea andb are arbitrary constants. The solutions f&F ~ X X
have a common factor 4/ and hence the functioN G* (x) [£L3h,](x)= f*"(f*(;) )G*(Z)
becomes the same, independentlyNpthis can be also eas-

ily understood by looking at the structure of E4.39. In wrlen[ X o X
case ofG[ (x), we can sum the series and obtain a closed- —NG*'|f (_) G (;

form solution,

el

i

1
G,*(x)zﬁf’*(x). (4.43 X X X X
+G*| —=|h/\f*| = |+ G*|f*| =] |h.| =].
o o o o
However, unfortunately we cannot sum the serieSi(x) (4.49
except for the casds=0 andz where we obtain closed-form N ~ . .
solutions, It follows from the reducibility of£~ into a semiblock form
that to determine the eigenvalues®ft is sufficient to solve
0. for b=0 the eigenvalue problems fat, andZ, independently. Then

the eigenvalues of bothi; andZ, give the whole spectrum

*(x)= 449 7

1
—[f*"(x)—1], for b=z ' . . o
N[ (x)=1] The eigenvalue equation fdl, is given by Eq(3.31). As

mentioned there, that is just the eigenvalue equation for the
1D map, in which case the complete spectrum of eigenvalues

Once a fixed point{*,g*) of the renormalization opera- 5 the corresponding eigenfunctions have been found in
tor R is determined, its eigenvalues are obtained by IlnearRefS_[3]_

izing R at the fixed point and solving the resultant eigen-  \ye next consider an infinitesimal coupling perturbation
value problem. As shown in Sec. IlI B, the eigenvalues argy the form (0d) to a fixed point €*,G*). If an indepen-

possibly obtained using the independent reduced couplingant reduced coupling perturbatidn* satisfies
fixed functionG* rather tharg*, because all eigenvalues of

the reduced eigenvalue equation are also eigenvalues of the ND* (x) =[ Z,D* (x)
original eigenvalue equation. Note also that the reduced ei-

genvalue equation can be obtained by directly linearizing the B f*,(f* x )—NG* (f* x ) o x
reduced renormalization operat® at its fixed point. We B a a
X X X
RERCIEIR A
o o 64
(4.50

thus linearizeR at its fixed point §*,G*) and obtain a
( hn+1> ~< hn) (El 0 ) ( hn) then it is called the independent reduced coupling eigenfunc-
=L = , (4.45

reduced linearized operatd transforming a pair of infini- +
tesimal perturbationsh(®):
P P 7. 7o tion with CE\. Note that the eigenvalue equatiGh50 for
n+1 n 3 2 n any N becomes the same as that for the two-coupled case
(N=2), because the functidiG* (x) is the same, irrespec-
tively of N. Hence we follow the same procedure in Sec.

where
Il B for two coupled maps, and find the same relevant CE'’s
for any N globally coupled maps as followfor more details,
hp1(X)=[L1hp](X) refer to Sec. Ill B:
X X X 1)G* (x)=GJ (x),
=af*’(f* —))hn _)-f-ahn(f*(—)). (DE* X F(x)
o o o .
there exist no relevant CE's;
(4.46
(2)G*(x)=Gj(x), (4.5
D, 1 (X)=[ LoD, ](X)+[ L3, ](%), (447 there exist g—1) relevant CE's such thathy
=2(2=1=K/(z=1) with eigenfunctiond®} (x) of Eq. (3.42
[Lo®](x)=|f*"|f*| =| |- NG*|f*| =] ||®,| —
« @ « Finally, we confirm the above renormalization results for
X X X the case of a global coupling of EG.23. As an example,
+|f* ’(—) —NG* (—) D, | F* (—) , we study the intermittency associated with a saddle-node bi-
o o

furcation to a pair of synchronous orbits with peripe- 3.
(4.48  Considering the third iteratis!® of M [see Eq.(4.25] and
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then shifting the origin of coordinates to one of the threeboth ends are attracted to the second independent reduced
synchronous fixed points fok=A., we obtain a ma@ of  coupling fixed functiorG}; (x) =0 with b=0 (corresponding

the form (4.28. The uncoupled part has the form(3.49, to e*=0). Consequently, the critical behaviors inside the
and hence that corresponds to the most common case witlitical line are governed by the first fixed point*(Gy)

the tangency ordez=2. The independent reduced coupling with no relevant CE’s, while the second fixed poifit (G*)

function of the coupling parg(x) is also given by governs the critical behaviors at both ends of the critical line.
o For details on the critical behaviors governed by the two
G(X)= Nf’(x), e=c3—-3c2+3c. (453 fixed points, refer to thél=2 case in Sec. lll C, because the

critical behaviors for anyN globally coupled case become

. . _— . the same as those for the two-coupled case.
Consider a pair of initial functionsf(¢,G) on the syn- P

chronous saddle-node bifurcation liAe= A, wheref () is

just the 1D critical map an6(x) = (e/N)f.(x). By succes- V. SUMMARY
sive applications of the reduced renormalization oper&tor Th itical behavi for i . , led
of Eq. (4.40 to (f.,G), we have e critical behaviors for intermittency in two-couple

1D maps are studied by a reduced renormalization method.
e, We thus find two fixed points of the reduced renormalization
o Gp(x)= Nfé(x) (4.54  operator. Although they have common relevant eigenvalues
associated with scaling of the control parameter of the un-
_ a2 _ coupled 1D map, their relevant CE’s associated with cou-
en=2€-17€-1 (N=012...), (459 pling perturbations vary depending on the fixed points. We
where the rescaling factor foz=2 is a=2, fu(X) also study the intermittency for a dissipative-coupling case
=f.(x),Go(X)=G(x), andey,=e. Heref, converge to the and confirm the re_normal_ization res_ults. Two _fixed points are
1D fixed functionf* (x) of Eq. (3.16) with z=2 asn— . found to be associated with the critical behaviors near a criti-
Note that the recurrence relati¢a.55 for e is the same ¢l line segment. One fixed point with no relevant CE’s gov-
as that of Eq(3.52 for the dissipatively coupled case in Sec. €ns the critical behaviors inside the critical line, associated
Il C. As shown there, any initiaé inside the open interval With the 1D-like intermittent transition to chaos occurring on
(0,2) converges to the superstable fixed paht1 under the synchronization line. On the other hand, the other fixed
successive iterations of the transformati@n55. The left ~ Point with relevant CE's governs the critical behaviors at
end of the interval is un unstable fixed poett=0, which is both ends of the critical line, where the 1D-like intermittent
also the image of the right ereg= 2 under the transformation transition to_chgos end_s_due to the_ system desy_n_chro_nization.
(4.55); all the other points outside the interval diverges to theNote that this kmd_ of critical behaviors near a critical line are
minus infty under iterations of the transformati¢n.55.  @lso found for a linearly coupled ca5]. Finally, the re-
One can see easily that the intery8|2] of the parametee sults of the two- coupled 1D maps are also extended to many
corresopnds to a critical line segment joining two emgls 9lobally coupled 1D maps.
=0 andc,=2 on the synchronous saddle-node bifurcation
line A=A. in the c-A plane. Hence any initiaG(x) inside
the critical line segment is attracted to the first independent
reduced coupling fixed functioB{" (x) = (1/N)*(x) (corre- This work was supported by the the Korea Research
sponding toe* =1) under iterations ofR, while G(x)'s at  Foundation under Project No. 1997-001-D00099.

X
fn(x):afn—l(fn—l(z
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