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Intermittency in coupled maps
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Department of Physics, Kangwon National University, Chunchon, Kangwon-Do 200-701, Korea

~Received 3 August 1998; revised manuscript received 2 October 1998!

Using a ‘‘reduced’’ renormalization method, we study the critical behavior for intermittency in two-coupled
one-dimensional~1D! maps. Two fixed points of the reduced renormalization operator are found. They all have
common relevant eigenvalues associated with scaling of the control parameter of the uncoupled 1D map.
However, the relevant ‘‘coupling eigenvalues’’ associated with coupling perturbations vary depending on the
fixed points. We also study the intermittency for a dissipatively coupled case and confirm the renormalization
results. Finally, the results of the two coupled 1D maps are extended to many globally coupled 1D maps, in
which each 1D map is coupled to all the other ones with equal strength.@S1063-651X~99!11203-0#

PACS number~s!: 05.45.2a, 05.45.Ra, 05.45.Jn
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I. INTRODUCTION

An intermittent transition to chaos in the 1D map occu
in the vicinity of a saddle-node bifurcation@1#. Intermittency
just preceding a saddle-node bifurcation to a periodic att
tor is characterized by the occurrence of intermittent alter
tions between laminar and turbulent behaviors. Scaling r
tions for the average duration of laminar behavior in t
presence of noise have been first established@2# by consid-
ering a Langevin equation describing the map near the in
mittency threshold and using Fokker-Plank techniques.
same scaling results have been later found@3# by using the
same renormalization-group equation@4# for period doubling
with a mere change of boundary conditions appropriate
saddle-node bifurcation.

Recently, efforts have been made to generalize the sca
results of period doubling for the 1D map to coupled 1
maps@5–11#, which are used to simulate spatially extend
systems with effectively many degrees of freedom@12#. It
has been found that the critical scaling behaviors of per
doubling for the coupled 1D maps are much richer than th
for the uncoupled 1D map@8–11#. These results for the ab
stract system of the coupled 1D maps are also confirme
the real system of the coupled oscillators@13#. In a similar
way, the scaling results of the higher periodp-tuplings (p
5,3,4, . . . ) in the 1D map arealso generalized to the
coupled 1D maps@14#. Here we are interested in anoth
route to chaos via intermittency in coupled 1D maps. Usin
reduced renormalization method, we extend the scaling
sults of intermittency for the 1D map to coupled 1D map

This paper is organized as follows. In Sec. II we introdu
two-coupled 1D maps and discuss their symmetry. Bifur
tions associated with stability of periodic orbits are also d
cussed there. In Sec. III we employ the ‘‘reduced’’ renorm
ization method @10# developed for period doubling in
coupled 1D maps and study the critical behavior for int
mittency in two-coupled 1D maps. We thus find two fixe
points of the reduced renormalization operator. They h
the relevant eigenvalues associated with scaling of the c
trol parameter of the uncoupled 1D map as common on
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However, the relevant ‘‘coupling eigenvalues’’~CE’s! asso-
ciated with coupling perturbations vary depending on
fixed points. In order to confirm these renormalization
sults, we also study the intermittency for the dissipativ
coupling case. It is found that the two fixed points are as
ciated with the critical behaviors near a critical line segme
One fixed point with no relevant CE’s governs the critic
behavior inside the critical line, associated with a ‘‘1D-like
intermittent transition to chaos occurring on the synchro
zation line. On the other hand, the other fixed point w
relevant CE’s governs the critical behavior at both end po
of the critical line, where the 1D-like intermittent transitio
to chaos ends owing to the system desynchronization. N
that this kind of critical behaviors near a critical line are al
found for a linear-coupling case@15#. In Sec. IV we study the
critical behavior for intermittency in many globally couple
1D maps. Globally coupled systems, in which each elem
is coupled to all the other ones with equal strength, app
naturally in broad branches of science@16#. The results of the
two coupled maps are extended to this kind of many globa
coupled maps. Finally, we give a summary in Sec. V.

II. TWO-COUPLED 1D MAPS

After briefly reviewing the intermittency in case of the 1
map, we introduce two-coupled 1D maps and discuss t
symmetry. Bifurcations associated with stability of period
orbits are also discussed.

We first recapitulate the intermittent transition to cha
@1–3# in a 1D map with one control parameterA,Xt11
5u(Xt)(t denotes a discrete time!. A pair of orbits with
period p appears via saddle-node bifurcation, as the con
parameterA exceeds a threshold valueAc . One periodic or-
bit is a stable attractor, while the other one is an unsta
repeller. However, asA decreases belowAc , the two peri-
odic orbits disappear, and an intermittent chaotic attrac
characterized by the occurrence of intermittent alternati
between laminar and turbulent behaviors, appears.

One can easily explain the intermittency geometrically
follows. The curve of the equationY5u(p)(X)@u(p) is the
pth iterate ofu] has new 2p intersection points with theY
5X line for A.Ac , which collapse intop points tangent to
the Y5X line for A5Ac @i.e., we havep fixed points,Xt*
2887 ©1999 The American Physical Society
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2888 PRE 59SANG-YOON KIM
5u(p)(Xt* ), t51, . . . ,p for A5Ac]. However, asA decreases
below Ac the curve no longer touches theY5X line so that
a ‘‘channel’’ appears in the immediate vicinity of each po
tangent to theY5X line at A5Ac . If one orbit point falls
close to the entrance to one of the channels under repe
iterations ofu(p), it would take many iterations to go throug
the channel, which corresponds to the ‘‘laminar phase.’’ A
ter slow passage through the channel, the iterates ofu(p)

move wildly until they return to one of the channels. Th
corresponds to the ‘‘turbulent phase.’’ Thus the laminar a
turbulent phases appear intermittently.

The nearerA is to Ac , the longer the averaged lamina
time. To obtain the average duration of the laminar pha
consider thepth iterateu(p)(X) in the immediate vicinity of
one of the channels. Shifting the origin of coordinateX to a
fixed pointX* of u(p)(X) for A5Ac , we have

xt115 f ~xt![u~p!~xt1X* !2X* 'xt1auxtuz1e, z.1,
~2.1!

wherex5X2X* , a is a constant, ande is a control param-
eter proportional toA2Ac . Using a mapf of the form~2.1!,
it has been found in@3# that the mean duration of the lamina
phasel̄ (e) varies ase2(121/z). Hence the tangency orderz

determines the universality classes, becausel̄ depends on the
orderz. In this paper, we consider only the analytic case
even orderz (z52,4,6, . . . ).

We now consider a mapM consisting of two identical 1D
maps coupled symmetrically,

M :H Xt115W~Xt ,Yt!5u~Xt!1v~Xt ,Yt!,

Yt115W~Yt ,Xt!5u~Yt!1v~Yt ,Xt!,
~2.2!

wherev is a coupling function obeying a condition,

v~X,X!50 for any X. ~2.3!

The map~2.2! is called a symmetric map because it has
exchange symmetry such that

s21Ms~Z!5M ~Z! for all Z, ~2.4!

where Z5(X,Y), s is an exchange operator acting onZ
such thats(Z)5(Y,X), ands21 is its inverse. The set of al
fixed points ofs forms a synchronization lineY5X in the
state space. It follows from Eq.~2.4! that the exchange op
erator s commutes with the symmetric mapM, i.e., sM
5Ms. Thus the synchronization line becomes invariant u
derM, i.e., if a pointZ lies on the synchronization line, the
its imageM (Z) also lies on it. An orbit is called a~n! ~in-
phase! synchronous orbit if it lies on the synchronizatio
line, i.e., it satisfies

Xt5Yt[Xt* , for all t. ~2.5!

Otherwise, it is called an~out-of-phase! asynchronous orbit
Here we study the intermittency associated with a sad
node bifurcation to a pair of synchronous periodic orb
which can be easily found from the uncoupled 1D ma
Xt11* 5u(Xt* ), because of the coupling condition~2.3!.
t
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Stability of a synchronous orbit of periodp is determined
from the Jacobian matrixJ of M (p) (pth iterate of M ),
which is given by thep product of the linearized mapDM of
the map~2.2! along the orbit

J5)
t51

p

DM ~Xt* ,Xt* !

5)
t51

p S u8~Xt* !2V~Xt* ! V~Xt* !

V~Xt* ! u8~Xt* !2V~Xt* !
D , ~2.6!

where u8(x)5du(X)/dX and V(X)5]v(X,Y)/]YuY5X ;
hereafterV(X) will be referred to as the ‘‘reduced couplin
function’’ of v(X,Y). The eigenvalues ofJ, called the sta-
bility multipliers of the orbit, are given by

l15)
t

p

u8~Xt* !, l25)
t

p

@u8~Xt* !22V~Xt* !#.

~2.7!

Note thatl1 is just the stability multiplier for the case of th
uncoupled 1D map and the coupling affects onlyl2 .

A synchronous periodic orbit is stable when both mu
pliers lie inside the unit circle, i.e.,ul j u,1 for j 51 and 2.
Thus its stable region in the parameter plane is bounded
four bifurcation lines, i.e., those curves determined by
equationsl j561( j 51,2). When a multiplierl j increases
through 1, the stable synchronous periodic orbit loses its
bility via saddle-node or pitchfork bifurcation. On the oth
hand, when a multiplierl j decreases through21, it becomes
unstable via period-doubling bifurcation.~For more details
on bifurcations, refer to Ref.@17#.!

III. RENORMALIZATION ANALYSIS
OF TWO-COUPLED MAPS

Here we are interested in intermittency just preceding
saddle-node bifurcation. Using the ‘‘reduced’’ renormaliz
tion method@10,11# developed for period doubling, we gen
eralize the 1D results for intermittency to the case of tw
coupled 1D maps. We thus find two fixed points of t
reduced renormalization operator in Sec. III A and obta
their relevant eigenvalues in Sec. III B. We also study
intermittency for a dissipative-coupling case and confirm
renormalization results in Sec. III C.

A. Reduced renormalization operator and its fixed points

To study the intermittent transition to chaos near a sad
node bifurcation to a pair of synchronous orbits of periodp,
consider thepth iterateM (p) of M of Eq. ~2.2!,

M ~p!:Xt115W~p!~Xt ,Yt!, Yt115W~p!~Yt ,Xt!,
~3.1!

whereW(p) satisfies a recurrence relation

W~p!~X,Y!5W„W~p21!~X,Y!,W~p21!~Y,X!…. ~3.2!

The functionW(p) can be decomposed into the uncoupl
part u(p) and the remaining coupling part, i.e.,



-
f

t

io
nd

o

he

-

-
ap

or

t-

se
-

or
c-
of

-

PRE 59 2889INTERMITTENCY IN COUPLED MAPS
W~p!~X,Y!5u~p!~X!1@W~p!~X,Y!2u~p!~X!#. ~3.3!

When the control parameterA of the uncoupled 1D map is
equal to the threshold valueAc for the synchronous saddle
node bifurcation, we havep synchronous fixed points o
M (p) such thatYt* 5Xt* 5u(p)(Xt* ) for t51, . . . ,p. Shifting
the origin of coordinates (X,Y) to one of thep synchronous
fixed points (X* ,Y* ) @Y* 5X* 5u(p)(X* ) for A5Ac], we
have

T:H xt115F~xt ,yt!5 f ~xt!1g~xt ,yt!,

yt115F~yt ,xt!5 f ~yt!1g~yt ,xt!,
~3.4!

where

f ~x!5u~p!~x1X* !2X* , ~3.5!

g~x,y!5W~p!~x1X* ,y1Y* !2u~p!~x1X* !. ~3.6!

Since a synchronous saddle-node bifurcation occurs at
origin (0,0) for A5Ac in case of the mapT, the uncoupled
part f for the critical caseA5Ac satisfies

f ~0!50 and f 8~0!51. ~3.7!

Note also that the coupling functiong(x,y) satisfies the cou-
pling condition~2.3!, i.e.,

g~x,x!50 for any x. ~3.8!

We employ the same renormalization transformat
@10,11# as in the period-doubling case with changed bou
ary conditions~3.7!. The renormalization transformationN
for a coupled mapT consists of squaring (T2) and rescaling
~B! operators:

N~T![BT2B21. ~3.9!

Since we consider only synchronous orbits, the rescaling
erator is of the form

B5S a 0

0 a D , ~3.10!

wherea is a rescaling factor.
Applying the renormalization operatorN to the coupled

map ~3.4! n times, we obtain then-times renormalized map
Tn of the form

Tn :H xt115Fn~xt ,yt!5 f n~xt!1gn~xt ,yt!,

yt115Fn~yt ,xt!5 f n~yt!1gn~yt ,xt!.
~3.11!

Here f n andgn are the uncoupled and coupling parts of t
n-times renormalized functionFn , respectively. They satisfy
the following recurrence equations@10,11#:

f n11~x!5a f nF f nS x

a D G , ~3.12!
he

n
-

p-

gn11~x,y!5a f nXf nS x

a D1gnS x

a
,

y

a D C
1agnXf nS x

a D1gnS x

a
,

y

a D , f nS y

a D1gnS y

a
,

x

a D C
2a f nXf nS x

a D C. ~3.13!

Then Eqs.~3.12! and ~3.13! define a renormalization opera
tor R of transforming a pair of functions, (f ,g);

S f n11

gn11
D 5RS f n

gn
D . ~3.14!

A critical mapTc with the nonlinearity and coupling pa
rameters set to their critical values is attracted to a fixed m
T* under iterations of the renormalization transformationN,

T* :H xt115F* ~xt ,yt!5 f * ~xt!1g* ~xt ,yt!,

yt115F* ~yt ,xt!5 f * ~yt!1g* ~yt ,xt!.
~3.15!

Here (f * ,g* ) is a fixed point of the renormalization operat
R, which satisfies (f * ,g* )5R( f * ,g* ). Note that the equa-
tion for f * is just the fixed-point equation for the intermi
tency with boundary conditions~3.7! in the uncoupled 1D
map. It has been found in@3# that

f * ~x!5x@12~z21!axz21#21/~z21!

5x1axz1
z

2
a2x2z211•••

~a:arbitrary constant! ~3.16!

is a fixed point of the transformation~3.12! with

a521/~z21!. ~3.17!

@As mentioned in Sec. II, we consider only the analytic ca
of even orderz(z52,4,6, . . . ).] Consequently, only the equa
tion for the coupling fixed functiong* is left to be solved.

However, it is not easy to directly solve the equation f
the coupling fixed function. We therefore introduce a tra
table recurrence equation for a reduced coupling function
the coupling functiong(x,y), defined by

G~x![
]g~x,y!

]y U
y5x

. ~3.18!

Differentiating the recurrence equation~3.13! for g with re-
spect toy and settingy5x, we have

Gn11~x!5F f n8Xf nS x

a D C22GnXf nS x

a D CGGnS x

a D
1GnF f nS x

a D G f n8S x

a D . ~3.19!

Then Eqs.~3.12! and ~3.19! define a ‘‘reduced renormaliza
tion operator’’ R̃ of transforming a pair of functions (f ,G)
@10,11#:
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S f n11

Gn11
D 5R̃S f n

Gn
D . ~3.20!

We now look for a fixed point (f * ,G* ) of R̃, which
satisfies (f * ,G* )5R̃( f * ,G* ). Note thatG* is just the re-
duced coupling fixed function ofg* @i.e., G* (x)
5]g* (x,y)/]yuy5x]. Using a series-expansion method, w
find two solutions forG* :

GI* ~x!5 1
2 @11zaxz211z~z2 1

2 !a2x2~z21!1•••#,
~3.21!

GII* ~x!5
1

2Fbaxz211bS 3z2b

2
2

1

2Da2x2~z21!1••• G ,
~3.22!

wherea and b are arbitrary constants. Here we are able
sum the series in Eq.~3.21! and obtain a closed-form solu
tion,

GI* ~x!5 1
2 f * 8~x!. ~3.23!

However, unfortunately we cannot sum the series in
~3.22!, except for the casesb50 and z where we obtain
closed-form solutions,

GII* ~x!5H 0, for b50

1

2
@ f * 8~x!21#, for b5z.

~3.24!

We have also studied the intermittency using anot
renormalization method including a truncation@15#. Two
fixed points of the approximate renormalization operat
corresponding to the two fixed points of the reduced ren
maltion operatorR̃, have been found. The relevant eigenv
ues of the truncated fixed points are also the same as tho
the two fixed points ofR̃, which will be obtained below.

B. Reduced linearized operator and its relevant eigenvalues

Once a fixed point (f * ,g* ) of the renormalization opera
tor R is determined, its eigenvalues are obtained by line
izing R at the fixed point and solving the resultant eige
value problem. In general, it is required to know the coupl
fixed functiong* (x,y) to linearizeR around a fixed point
( f * ,g* ). However, it is shown that the eigenvalues are p
sibly obtained using the reduced coupling fixed functi
G* (x) rather thang* (x,y). We thus obtain the relevant e
genvalues of the two fixed points as follows.

Let us examine the evolution of a pair of function
@ f * (x)1h(x),g* (x,y)1w(x,y)#, close to a fixed point
( f * ,g* ) underR. Linearizing the renormalization operato
R at the fixed point (f * ,g* ), we obtain the recurrence equ
tion for the evolution of a pair of infinitesimal perturbation
(h,w):

S hn11

wn11
D 5LS hn

wn
D 5SL1 0

L3 L2
D S hn

wn
D , ~3.25!

where
o

.

r

r,
r-
-

of

r-
-

-

hn11~x!5@L1hn#~x!

5a f * 8F f * S x

a D GhnS x

a D1ahnF f * S x

a D G ,
~3.26!

wn11~x,y!5@L2wn#~x,y!1@L3hn#~x!, ~3.27!

@L2wn#~x,y!5aF1* XF* S x

a
,

y

a D ,F* S y

a
,

x

a D CwnS x

a
,
y

a D
1aF2* XF* S x

a
,

y

a D ,F* S y

a
,
x

a D CwnS y

a
,
x

a D
1awnFF* S x

a
,

y

a D ,F* S y

a
,
x

a D G , ~3.28!

@L3hn#~x!5aF1* FF* S x

a
,

y

a D ,F* S y

a
,

x

a D GhnS x

a D
1aF2* FF* S x

a
,
y

a D ,F* S y

a
,

x

a D GhnS y

a D
1ahnFF* S x

a
,

y

a D G2@L1hn#~x!. ~3.29!

Here F* (x,y)5 f * (x)1g* (x,y), and the subscripti ( i
51,2) of F* denotes the partial derivative with respect
the i th argument. Note that, althoughhn couples to both
hn11 andwn11 , wn couples only town11 . From this reduc-
ibility of L into a semiblock form, it follows that to obtain
the eigenvalues ofL it is sufficient to solve the eigenvalu
problems forL1 andL2 separately. The eigenvalues of bo
L1 andL2 give the whole spectrum ofL.

A pair of perturbations (h* ,w* ) is called an eigenpertur
bation with eigenvaluel, if

lS h*

w* D 5LS h*

w* D , ~3.30!

that is,

lh* ~x!5@L1h* #~x!, ~3.31!

lw* ~x,y!5@L2w* #~x,y!1@L3h* #~x!. ~3.32!

We first solve Eq.~3.31! to find eigenvalues ofL1 . Note that
this is just the eigenvalue equation in the 1D map case.
complete spectrum of eigenvalues and the correspon
eigenfunctions have been found in Refs.@3#. The form of the
eigenvalues isln52(z2n)/(z21) (n50,1,2, . . . ). Hence the
first z eigenvalues withn,z are relevant ones. The margin
onelz is associated with the arbitrary constanta in f * (x),
and all the other ones withn.z are irrelevant. Although the
eigenvaluesln’s of L1 are also eigenvalues ofL as men-
tioned in the preceding paragraph, (h* ,0) itself cannot be an
eigenperturbation ofL unlessL3 is a null operator.

Next, we consider a perturbation of the form (0,w) having
only the coupling part. In this case (0,w* ) is an eigenpertur-
bation ofL with eigenvaluel, only if w* satisfies
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lw* ~x,y!5L2w* ~x,y!. ~3.33!

The eigenvalues associated with the coupling perturbat
will be called the coupling eigenvalues~CE’s!.

However, it is not easy to directly solve the eigenval
equation forw* . We therefore introduce a tractable recu
rence equation for a reduced coupling perturbation of
coupling perturbation w(x,y), defined by F(x)
[]w(x,y)/]yuy5x . In the case of general perturbation
(h,w), differentiating the recurrence equation~3.27! with re-
lin

s
th

e

n
tio

ig

n

y

ns

e

spect toy and settingy5x, we obtain a recurrence equatio
for F:

Fn11~x!5@L̃2Fn#~x!1@L̃3hn#~x!, ~3.34!

@L̃2Fn#~x!5F f * 8Xf * S x

a D C22G* Xf * S x

a D CGFnS x

a D
1F f * 8S x

a D22G* S x

a D GFnXf * S x

a D C,
~3.35!
@L̃3hn#~x!5F f * 9Xf * S x

a D CG* S x

a D22G* 8Xf * S x

a D CG* S x

a D
1G* 8Xf * S x

a D Cf * 8S x

a D GhnS x

a D1G* S x

a Dhn8Xf * S x

a D C1G* Xf * S x

a D Chn8S x

a D . ~3.36!
e

be-
ated
int

n-

he
nc-
:

i-

fore
Then the recurrence equations~3.26! and~3.34! for h andF

define a reduced linearized operatorL̃ of transforming a pair
of perturbations, (h,F):

S hn11

Fn11
D 5L̃S hn

Fn
D 5S L1 0

L̃3 L̃2
D S hn

Fn
D . ~3.37!

Note that this equation can also be obtained by directly
earizing the reduced renormalization operatorR̃ of Eq.
~3.20! at its fixed point (f * ,G* ). Hence, Eq.~3.37! is just
the eigenvalue equation for the fixed point (f * ,G* ) of R̃.

The reducibility ofL̃ into a semiblock form again lets u
search for the reduced coupling eigenperturbations of
form (0,F* ), whereF* (x) satisfies

lF* ~x!5@L̃2F#* ~x!

5F f * 8Xf * S x

a D C22G* Xf * S x

a D CGF* S x

a D
1F f * 8S x

a D22G* S x

a D GF* Xf * S x

a D C.
~3.38!

Here the prime denotes a derivative with respect tox. Note
that this equation forF* is just a reduced equation of th
original eigenvalue equation~3.33! for w* , obtained by dif-
ferentiating Eq.~3.33! with respect toy and settingy5x.
Clearly all eigenvalusl of this reduced eigenvalue equatio
are also eigenvalues of the original eigenvalue equa
~3.33!. That is, each eigenfunctionF* (x) with a CEl cor-
responds to the reduced coupling eigenfunction of the or
nal coupling eigenfunctionw* (x,y) with the same CEl.

To solve the reduced eigenvalue equation~3.38!, it is suf-
ficient to know only the reduced coupling fixed functio
G* (x) of g* (x,y). Using the two solutions forG* in Eqs.
~3.21! and ~3.22!, we obtain the relevant CE’s, which var
-

e

n

i-

depending onG* (x), as follows. We first consider the cas
of the first solutionGI* (x)5 1

2 f * 8(x). In this case the re-

duced linearized operatorL̃2 of Eq. ~3.38! becomes a null
operator, because the right-hand side of the equation
comes zero. Hence there exist no relevant CE’s associ
with coupling perturbations, and consequently the fixed po
( f * ,GI* ) of R̃ has only relevant eigenvalues ofL1 , associ-
ated with the scaling of the control parameter of the u
coupled 1D map, like the 1D case.

Second, consider the case of the second solutionGII* of
Eq. ~3.22!. Using a series-expansion method, we find t
complete spectrum of CE’s and the corresponding eigenfu
tions. An eigenfunctionF* (x) can be expanded as follows

F* ~x!5(
l 50

`

clx
l . ~3.39!

Substituting the power series off * (x), f * 8(x), GII* (x),
and F* (x) into the reduced eigenvalue equation~3.38!, it
has the structure

lck5(
l
Mklcl , k,l 50,1,2, . . . . ~3.40!

Note that eachcl( l 50,1,2, . . . ) in theright-hand side is in-
volved only in the determination of coefficients of monom
als xk with k5 l 1m(z21) (m50,1,2, . . . ). HenceM be-
comes a lower triangular matrix. Its eigenvalues are there
just diagonal elements:

lk5Mkk5
2

ak 52~z212k!/~z21!, k50,1,2, . . . .

~3.41!

The first (z21) eigenvalueslk’s for 0<k<z22 are rel-
evant ones. The marginal eigenvaluelz21 is associated with
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the arbitrary constantb in GII* (x), and all the other eigenval
ues fork.z21 are irrelevant.

Each eigenfunctionFk* (x) with CE lk(k50,1,2, . . . ) is
of the form

Fk* ~x!5xkF11S z2b1
k

2Daxz211••• G . ~3.42!

In case of the largest CEl052, we are able to sum the serie
in Eq. ~3.42! for b50 andz and findF0* (x) in closed form:

F0* ~x!5H f * 8~x!, for b50,

1, for b5z.
~3.43!

We can also sum the series in Eq.~3.42! for all the irrelevant
cases~i.e., the casesk>z) and find the closed-form eigen
functions,

Fk* ~x!5
1

al
@ f * 8~x!22GII* ~x!#@ f * l~x!2xl #,

l 5k2z1151,2, . . . , ~3.44!

which are associated with coordinate changes@18#.

C. Critical behaviors near a critical line

In order to confirm the above renormalization results,
study the intermittency in the dissipatively coupled 1D ma
It is found that there exists a critical line segment associa
with intermittency in the parameter plane. We explicit
show that any pair of critical functions (f c ,Gc) at any inte-
rior point of the critical line is attracted to the first fixed poi
( f * ,GI* ) under iteratons of the reduced renormalization o

eratorR̃, while the pair of critical functions (f c ,Gc) at each
end point converges to the second fixed point (f * ,GII* ) of R̃.
Consequently, the critical behaviors inside the critical li
are governed by the first fixed point (f * ,GI* ) with no rel-
evant CE’s. On the other hand, the second fixed point w
relevant CE’s governs the critical behaviors at both ends
the critical line. The first fixed point with no CE’s has th
same relevant eigenvalues as the 1D fixed point. Theref
the critical behaviors inside the critical line become the sa
as those for the 1D case. However, such a 1D-like interm
tent transition to chaos, occurring on the synchronizat
line, ends at both ends of the critical line because of
system desynchronization. The scaling behaviors of the c
pling parameter near both ends are governed by the rele
CE of the second fixed point. Note also that this kind
critical behaviors near a critical line are also found for
linear-coupling case@15#.

We now choose the uncoupled 1D map in two-coup
1D mapsM of Eq. ~2.2! as

u~X!512AX2, ~3.45!

and consider a dissipative coupling case in which the c
pling function is given by

v~X,Y!5
c

2
@u~Y!2u~X!#. ~3.46!
e
.
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Herec is a coupling parameter. As an example, we consi
the saddle-node bifurcation to a pair of synchronous or
with period p53 occurring forA5Ac51.75. To study the
intermittency associated with this bifurcation, we first co
sider the third iterateM (3) of M @see Eq.~3.1!#, and then shift
the origin of coordinates (X,Y) to one of the three synchro
nous fixed points (X* ,Y* ) for A5Ac@Y* 5X*
5u(3)(X* )]. Thus we obtain a mapT of the form ~3.4!,
where the uncoupled and coupling partsf andg are given by

f ~x!5u~3!~x1X* !2X* , ~3.47!

g~x,y!5W~3!~x1X* ,y1Y* !2u~3!~x1X* !. ~3.48!

Near the region of the synchronous saddle-node bifurcat
f (x) can be expanded aboutx50 andA5Ac ,

f ~x!'x1ax21e, ~3.49!

where a5 1
2 ]2f /]x2ux50,A5Ac

and e5] f /]Aux50,A5Ac
(A

2Ac). Hence this corresponds to the most common c
with the tangency orderz52 @see Eq.~2.1!#. Note also that
the reduced coupling functionG(x) of g(x,y) @defined in
Eq. ~3.18!# is also given by

G~x!5
e

2
f 8~x!, e5c323c213c. ~3.50!

Consider a pair of initial functions (f c ,G) on the syn-
chronous saddle-node bifurcation lineA5Ac , wheref c(x) is
just the 1D critical map andG(x)5(e/2) f c8(x). By succes-

sive actions of the reduced renormalization transformationR̃
of Eq. ~3.20! on (f c ,G), we obtain

f n~x!5a f n21Xf n21S x

a D C, Gn~x!5
en

2
f n8~x!,

~3.51!

en52en212en21
2 , ~n50,1,2, . . .!, ~3.52!

where the rescaling factor forz52 is a52, f 0(x)
5 f c(x), G0(x)5G(x), and e05e. Here f n converges to
the 1D fixed functionf * (x) of Eq. ~3.16! with z52 as n
→`.

We now investigate the evolution ofG(x) under itera-
tions ofR̃. Figure 1 shows a plot of the curve determined
Eq. ~3.52!. Two intersection points between this curve a
the straight lineen5en21 are just the fixed pointse* of the
recurrence relation~3.52! for e

e* 50,1. ~3.53!

Stability of each fixed pointe* is determined by its stability
multiplier m@5den /den21ue* #. The fixed point ate* 51 is
superstable (m50), while the other one ate* 50 is unstable
(m52). The basin of attraction to the superstable fixed po
e* 51 is the open interval (0,2). That is, any initiale inside
the interval 0,e,2 converges toe* 51 under successive
iterations of the transformation~3.52!. The left end of the
interval is just the unstable fixed pointe* 50, which is also
the image of the right end point under the recurrence eq
tion ~3.52!. All the other points outside the interval diverg
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to the minus infinity under iterations of the transformati
~3.52!. Thus there exists a critical line segment joining tw
end pointscl50 ~corresponding toe50) andcr52 ~corre-
sponding toe52) on the synchronous saddle-node bifurc
tion line A5Ac in the c2A plane.

Any initial G(x) inside the critical line is attracted to th

first reduced coupling fixed functionGI* (x)5 1
2 f * 8(x) un-

der iterations ofR̃, which corresponds to the fixed poin
e* 51. Consequently, the critical behaviors inside the criti
line are governed by the first fixed point (f * ,GI* ) of R̃. This
first fixed point has no relevant CE’s, because the fixed p
e* 51 of the transformation~3.52! is superstable. Hence
has only the relevant eienvalues ofL1 ~i.e., those of the 1D
fixed point!. Since the tangency order for the dissipative
coupled case isz52, there exist two relevant eigenvalues
L1 , d154, andd1852. On the other hand,G(x)’s at both
ends of the critical line converge to the second reduced c
pling fixed function GII* (x)50 with b50, which corre-
sponds to the fixed pointe* 50. Accordingly, the second
fixed point (f * ,GII* ) governs the critical behaviors at bo
ends. In addition to the common relevant eigenvaluesd1 and
d18 , this second fixed point has one relevant CEd252, be-
cause the fixed pointe* 50 of the transformation~3.52! is
un unstable one with stability multiplierm52.

From now on, we present the detailed results on the c
cal behaviors near the critical line, governed by the two fix
points ofR̃. Figure 2 shows a phase diagram near the crit
line denoted by a solid line. The diagram is obtained fro
calculation of Lyapunov exponents. For the case of a s
chronous orbit, its two Lyapunov exponents are given by

s i~A!5 lim
m→`

1

m(
t50

m21

lnuu8~Xt!u, ~3.54!

s'~A,c!5 lim
m→`

1

m(
t50

m21

lnu~12c!u8~Xt!u5s i~A!1 lnu1

2cu. ~3.55!

FIG. 1. Plots of the curveen52en212en21
2 and the straight line

en5en21 .
-

l

nt

u-

i-
d
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Here s i(s') denotes the mean exponential rate of div
gence of nearby orbits along~across! the synchronization
line Y5X. Hereafter,s i(s') will be referred to as tangen
tial and transversal Lyapunov exponents, respectively. N
also thats i is just the Lyapunov exponent for the 1D cas
and the coupling affects onlys' .

The data points on thes'50 curve are denoted by soli
circles in Fig. 2. A synchronous orbit on the synchronizati
line becomes a synchronous attractor withs',0 inside the
s'50 curve. The type of this synchronous attractor is d
termined according to the sign ofs i . A synchronous
period-3 orbit withs i,0 becomes a synchronous period
attractor above the critical line segment, while a synchron
chaotic attractor withs i.0 exists below the critical line
segment. The periodic and chaotic parts in the phase diag
are denoted byP and C, respectively. There exists also
synchronous period-3 attractor withs i50 on the critical line
segment between the two parts.

We first consider a transition to chaos near an inter
point with cl,c,cr of the critical line segment, governe
by the first fixed point (f * ,GI* ) with no relevant CE’s. Here
we fix the value ofc at some interior point and vary th
control parametereA([Ac2A) of the uncoupled 1D map
For eA,0 there exists a synchronous period-3 attractor
the synchronization lineY5X. However, aseA is increased
from zero, the periodic attractor disappears and a new c
otic attractor appears on the synchronization line. As an
ample, see Fig. 3~a!, which shows a synchronous chaot
attractor for the caseeA51024. The motion on this synchro
nous chaotic attractor is characterized by the occurrenc
intermittent alternations between laminar and turbulent
haviors on the synchronization line, as shown in Fig. 3~b!.
This is just the intermittency occurring in the uncoupled 1
map, because the motion on the synchronization line is
same as that for the uncoupled 1D case. Thus, a ‘‘1D-lik
intermittent transition to chaos occurs inside the critical li
segment.

FIG. 2. Phase diagram for a dissipative-coupling case~4.2!.
Here solid circles denote the data points on thes'50 curve. The
region enclosed by thes'50 curve is divided into two parts de
noted byP andC. A synchronous period-3~chaotic! attractor with
s i,0 (s i.0) exists in the partP (C). The boundary curve de
noted by a solid line between theP andC parts is just the critical
line segment.



na

re

ew

te

-

a

a
ar

int

d
sys-

Fig.
the
rbit
and
is
a

n-
riti-

of

sy
r,

n

are

2894 PRE 59SANG-YOON KIM
The scaling relations of the mean duration of the lami
phasel̄ and the tangential Lyapunov exponents i for a syn-
chronous chaotic attractor are obtained from the leading
evant eigenvalued1 (54) of the first fixed point (f * ,GI* ),
like the 1D case@3#. A map with nonzeroe near an interior
point of the critical line segment is transformed into a n
map of the same form, but with a new parametere8 under a
renormalization transformation. Here the control parame
scales as

eA85d1eA522eA . ~3.56!

Then the mean durationl̄ and the tangential Lyapunov ex
ponents i satisfy the homogeneity relations,

l̄ ~eA8 !5 1
2 l̄ ~eA!, s i~eA8 !52s i~eA!, ~3.57!

which lead to the scaling relations,

l̄ ~eA!;eA
2m , s i~eA!;eA

m , ~3.58!

with exponent

m5 ln 2/lnd150.5. ~3.59!

The above 1D-like intermittent transition to chaos ends
both endscl andcr of the critical line segment. We fix the
control parameterA at the synchronous saddle-node bifurc
tion valueAc(51.75) and study the critical behaviors ne

FIG. 3. Iterates of the dissipatively coupled mapM of Eq. ~2.2!
with the uncoupled 1D map~4.1! and the coupling~4.2! for eA

(5Ac2A)51024 and c50.5; ~a! an orbit with initial point
(0.1,0.3) is attracted to a synchronous chaotic attractor on the
chronization lineY5X after exhibiting a short transient behavio
and~b! the plot of theX-componentXt

(3) of the third iterateM (3) of
M versus a discrete timet shows intermittent alternations betwee
laminar and turbulent behaviors.
r

l-

r

t

-

the two end points, governed by the second fixed po
( f * ,GII* ), by varying the coupling parameterc. Inside the
critical line segment (cl,c,cr), a synchronous period-3
attractor withs',0 exists on the synchronization line, an
hence the coupling tends to synchronize the interacting
tems. However, as the coupling parameterc passes through
cl or cr , the transversal Lyapunov exponents' of the syn-
chronous periodic orbit increases from zero, as shown in
4, and hence the coupling leads to desynchronization of
interacting systems. Thus the synchronous period-3 o
ceases to be an attractor outside the critical line segment,
a new~out-of-phase! asynchronous attractor appears. This
illustrated in Fig. 5. As a result of this transition from
synchronous to an asynchronous state forA5Ac , the 1D-
like intermittent transition to chaos, occurring on the sy
chronization line, ends when crossing both ends of the c
cal line.

The critical behaviors near both endscl and cr are the
same. Since the transversal Lyapunov exponents' is equal
to lnu12cu for A5Ac @see Eq.~3.55!#, it varies linearly with
respect toc near both ends~i.e., s';ec ,ec[cl2c or c
2cr). The scaling behavior ofs' is obtained from the rel-
evant CEd2 (52) of the second fixed point (f * ,GII* ) as
follows. Consider a map with nonzeroec , ~but with eA
50) near both ends. It is then transformed into a new one
the same form, but with a renormalized parameterec8 under a
renormalization transformation. Here the parameterec obeys
a scaling law,

ec85d2ec52ec . ~3.60!

Then the transversal Lyapunov exponents' satisfies the ho-
mogeneity relation,

sc~ec8!52sc~ec!. ~3.61!

This leads to the scaling relation,

sc~ec!;ec
n , ~3.62!

with exponent

n-

FIG. 4. Plot ofs'(5 lnu12cu) versus c forA5Ac . The values
of s' at both ends of the critical line segment are zero, which
denoted by solid circles.



g-

al
v
ed

h

t

en
si

y
,
i
m
o

ith
e

g
ical
ro-
en

ely
e
ht-

y

u-
the

D
ing
es
-

e

ta
no
sy

a
h
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n5 ln 2/lnd251. ~3.63!

Like the case of interior points of the critical line se
ment, the scaling behavior ofs i(eA) for c5cl or cr is also
obtained from the common relevant eigenvalued1 (54) of
the fixed point (f * ,GII* ), and hence it also satisfies the sc
ing relation ~3.54!. The scaling behaviors of the Lyapuno
exponentss i and s' near both ends are thus determin
from two relevant eigenvaluesd1 and d2 of the fixed point
( f * ,GII* ).

Finally, we also consider a linear-coupling case with t
coupling function v(X,Y)5c(Y2X). For this linearly
coupled case, there exist three critical line segments on
synchronous saddle-node bifurcation lineA5Ac (51.75)
@15#. The critical behaviors near each critical line segm
are also found to be the same as those for the above dis
tively coupled case.

IV. EXTENSION TO MANY GLOBALLY COUPLED MAPS

Recently, much attention has been paid to dynamical s
tems with many nonlinear elements and a global coupling
which each element is coupled to all the other elements w
equal strength. Globally coupled systems as the extre
limit of long-range couplings are seen in broad branches
science@16#. For example, coupled nonlinear oscillators w
a global coupling frequently occur in charge density wav

FIG. 5. Transition from a synchronous to an asynchronous s
for A5Ac . A synchronous period-3 orbit denoted by circles is
longer an attractor outside the critical line segment, and new a
chronous attractors exist for~a! c520.0001 and~b! c52.0001. We
denote a pair of asynchronous period-3 attractors by uptriangles
downtriangles in case of~a!, while the asynchronous attrractor wit
period 6 is denoted by ‘‘stars’’ in case of~b!.
-

e
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@19#, Josepson junction arrays@20#, andp-n junction arrays
@21#. This kind of dynamical systems with a global couplin
can be also regarded as mean-field versions of dynam
systems with local short-range couplings. Here we first int
duce many globally coupled 1D maps in Sec. IV A, and th
show that the critical behaviors ofN globally coupled maps
for N.2 are the same as those of the two dissipativ
coupled maps in Sec. IV B. In the final section IV C, th
renormalization results of the two coupled maps are straig
forwardly extended to the many globally coupled maps.

A. Many globally coupled 1D maps

Consider anN-coupled map with a periodic boundar
condition:

M :Xt11~m!5W~sm21Xt!

5W„Xt~m!,Xt~m11!, . . . ,Xt~m21!…,

m51, . . . ,N, ~4.1!

where the number of constituent elementsN is a positive
integer larger than or equal to 2,Xt(m) is the state of the
mth element at a lattice pointm and at a discrete timet, X
5„X(1),X(2), . . . ,X(N)…, s is the cyclic permutation of
the elements ofX, i.e., sX5„X(2), . . . ,X(N),X(1)…,
sm21 means (m21) applications ofs. The periodic condi-
tion imposesXt(m)5Xt(m1N) for all m. Like the two-
coupled case (N52), the functionW consists of two parts:

W~X!5u„X~1!…1v~X!, ~4.2!

whereu is an uncoupled 1D map andv is a coupling func-
tion obeying the condition

v~X, . . . ,X!50, for any X. ~4.3!

Thus theN-coupled map~4.1! becomes

M :Xt11~m!5u„Xt~m!…

1v„Xt~m!,Xt~m11!, . . . ,Xt~m21!…,

m51, . . . ,N. ~4.4!

Here we study many-coupled 1D maps with a global co
pling. In the extreme long-range case of global coupling,
coupling functionv is of the form

v„X~1!, . . . ,X~N!…

5
c

N (
m51

N

@r „X~m!…2r „X~1!…# for N>2,

~4.5!

wherer (X) is a function of one variable. Note that each 1
map is coupled to all the other ones with equal coupl
strengthc/N inversely proportional to the number of degre
of freedomN. Hereafter,c will be called the coupling param
eter.

TheN-coupled mapM is called a symmetric map, becaus
it has a cyclic permutation symmetry such that

te
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s21Ms~X!5M ~X!, for all X, ~4.6!

wheres21 is the inverse ofs. The set of all fixed points of
s forms a synchronization line in theN-dimensional state
space, on which

X~1!5•••5X~N!. ~4.7!

It follows from Eq. ~4.6! that the cyclic permutations com-
mutes with the symmetric mapM, i.e.,sM5Ms. Hence the
synchronization line becomes invariant underM. An orbit is
called a~n! ~in-phase! synchronous orbit if it lies on the syn
chronization line, i.e., it satisfies

Xt~1!5•••5Xt~N![Xt* , for all t. ~4.8!

Otherwise, it is called an~out-of-phase! asynchronous orbit
Here we study the intermittency associated with a synch
nous saddle-node bifurcation. Note also that synchronous
bits can be easily found from the uncoupled 1D map,Xt11*
5u(Xt* ), because of the coupling condition~4.3!.

B. Critical behaviors for the globally coupled case

Here we first discuss Lyapunov exponents of the synch
nous orbits inN globally coupled maps, and show that the
exists only one independent transversal Lyapunov expon
independently ofN, which is also the same as that for th
case of two dissipatively coupled maps. It follows from th
fact that the critical behaviors ofN globally coupled maps
for N.2 becomes the same as those of the two dissipati
coupled maps.

Consider an orbit$Xt%[$Xt(m),m51, . . . ,N% in many
coupled maps~4.4!. Stability analysis of the orbit can b
easily carried out by Fourier transforming with respect to
discrete space$m%. The discrete spatial Fourier transform
the orbit is

F@Xt~m!#[
1

N (
m51

N

e22p im j /N Xt~m!5j t~ j !,

j 50,1, . . . ,N21. ~4.9!

The Fourier transformj t( j ) satisfiesj t* ( j )5j t(N2 j ) (*
denotes complex conjugate!, and the wavelength of a mod
with index j is N/ j for j <N/2 and N/(N2 j ) for j .N/2.
Here j t(0) corresponds to the synchronous~Fourier! mode
of the orbit, while all the otherj t( j )’s with nonzero indices
j correspond to the asynchronous~Fourier! modes.

To determine the stability of a synchronous orbit@Xt(1)
5•••5Xt(N)[Xt* for all t], we consider an infinitesima
perturbation$DXt(m)% to the synchronous orbit, i.e.,Xt(m)
5Xt* 1DXt(m) for m51, . . . ,N. Linearizing theN-coupled
map ~4.4! at the synchronous orbit, we obtain

DXt11~m!5u8~Xt* !DXt~m!1(
l 51

N

V~ l !~Xt* !DXt~ l 1m21!,

~4.10!

where
-
r-

-

nt,

ly

e

u8~X!5
du

dx
, V~ l !~X![

]v~s~m21!X!

]Xl 1m21
U

X~1!5•••5X~N!5X

5
]v~X!

]Xl
U

X~1!5•••5X~N!5X

. ~4.11!

Hereafter, the functionsV( l )’s will be called ‘‘reduced cou-
pling functions’’ of v(X).

Let dj t( j ) be the Fourier transform ofDXt(m), i.e.,

dj t~ j !5F@DXt~m!#5
1

N (
m51

N

e22p im j /NDXt~m!,

j 50,1, . . . ,N21. ~4.12!

Heredj t(0) is the synchronous-mode perturbation along
synchronization line, while all the other onesdj t( j )’s with
nonzero indiciesj are the asynchronous-mode perturbatio
across the synchronization line. Then the Fourier transfo
of Eq. ~4.10! becomes

dj t11~ j !5Fu8~Xt* !1(
l 51

N

V~ l !~Xt* !e2p i ~ l 21! j /NG dj t~ j !,

j 50,1, . . . ,N21. ~4.13!

Note that all the modesj t( j )’s become decoupled for th
synchronous orbit.

The Lyapunov exponentl j of a synchronous orbit, char
acterizing the average exponential rate of divergence of
j th-mode perturbation, is given by

s j5 lim
m→`

1

m (
t50

m21

lnUu8~Xt* !1(
l 51

N

V~ l !~Xt* !e2p i ~ l 21! j /NU.
~4.14!

If the Lyapunov exponents j is negative or zero, then th
synchronous orbit is stable against thej th-mode perturba-
tion; otherwise it is unstable.

In case of a synchronous periodic orbit with periodp, the
Lyapunov exponents j in Eq. ~4.14! becomes

s j5
1

p
lnul j u, ~4.15!

wherel j , called the stability multiplier of the synchronou
orbit, is given by

l j5 )
t50

p21 S u8~Xt* !1(
l 51

N

V~ l !~Xt* !e2p i ~ l 21! j /ND .

~4.16!

The synchronous periodic orbit is stable against thej th-mode
perturbation whenl j lies inside the unit circle, i.e.,ul j u
,1. When the stability multiplierl j increases through 1, th
synchronous periodic orbit loses its stability via saddle-no
or pitchfork bifurcation. On the other hand, whenl j de-
creases through21, it becomes unstable via period-doublin
bifurcation.

It follows from the coupling condition~4.3! that
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(
l 51

N

V~ l !~X!50. ~4.17!

Hence the Lyapunov exponents0 becomes

s05 lim
m→`

1

m (
t50

m21

lnuu8~Xt* !u. ~4.18!

It is just the Lyapunov exponent of the uncoupled 1D m
While there is no coupling effect ons0 , coupling generally
affects the other Lyapunov exponentss j ’s ( j Þ0).

In case of the global coupling of the form~4.5!, the re-
duced coupling functions become

V~ l !~X!5H ~12N!V~X!, for l 51,

V~X!, for lÞ1,
~4.19!

where

V~X!5
c

N
r 8~X!. ~4.20!

SubstitutingV( l )’s into Eq. ~4.14!, we obtain

s j55 lim
m→`

1

m(
t50

m21

lnuu8~Xt* !u for j 50,

lim
m→`

1

m(
t50

m21

lnuu8~Xt* !2cr8~Xt* !u for j Þ0.

~4.21!

Heres0 is just the tangential Lyapunov exponents i of Eq.
~3.54!, characterizing the mean exponential rate of div
gence of nearby orbits along the synchronization line~4.8!.
On the other hand, all the other oness j ( j Þ0) ~character-
izing the mean exponential rate of divergence of nearby
bits across the synchronization line! are the same:

s15•••5sN21[s' . ~4.22!

Consequently, there exists only one independent transve
Lyapunov exponents' , independently ofN.

As for the case of two-coupled maps in Sec. III C, w
chooseu(X)512AX2 as the uncoupled 1D map, and co
sider a global-coupling case withr (X)5u(X), i.e., a global
coupling of the form

v„X~1!, . . . ,X~N!…

5
c

N (
m51

N

@u„X~m!…2u„X~1!…# for N>2.

~4.23!

@Here the case forN52 is just the dissipative coupling o
Eq. ~3.46!.# For this kind of global coupling, the independe
transversal Lyapunov exponents' is given by

s'5s i1 lnu12cu, ~4.24!

which is the same as that of Eq.~3.55! for the caseN52.
.

-

r-

sal

As in Sec. III C, we also consider the intermittency ass
ciated with a saddle-node bifurcation to a pair of synch
nous periodic orbits with period 3. Then the phase diagr
in Fig. 2 holds for allN (N>2) globally coupled maps
because the two independent Lyapunov exponentss i ands'

are the same, irrespectively ofN. Consequently, there exist
a critical line segment joining two endscl50 andcr52 on
the synchronous saddle-node-bifurcation lineA5Ac51.75
in thec2A plane for anyN globally coupled case. Thus, th
critical behaviors near the critical line in anyN globally
coupled maps become the same as those in the two dis
tively coupled maps.

C. Renormalization analysis of many globally coupled maps

Following the same procedure of Sec. III for two coupl
maps, we extend the renormalization results of two coup
maps to arbitraryN globally coupled maps. We thus find tw
fixed points of the reduced renormalization operator and
tain their relevant eigenvalues. These renormalization res
are also confirmed for the case of a global coupling of
form ~4.23!, like the case of the two dissipatively couple
maps.

To study the intermittency in the vicinity of a saddle-no
bifurcation to a pair of synchronous orbits with periodp in
an N-coupled mapM of Eq. ~4.1!, consider itspth iterate
M (p),

M ~p!:Xt11~m!5W~p!~sm21Xt!

5W~p!
„Xt~m!,Xt~m11!, . . . ,Xt~m21!…,

m51, . . . ,N, ~4.25!

whereW(p) satisfies a recurrence relation

W~p!~X!5W„W~p21!~X!,W~p21!~sX!, . . . ,

3W~p21!~sN21X!…, ~4.26!

and it can be also decomposed into two parts, the uncou
part u(p) and the remaining coupling part, i.e.,

W~p!~X!5u~p!
„X~1!…1@W~p!~X!2u~p!

„X~1!…#.
~4.27!

For the threshold valueAc of a synchronous saddle-nod
bifurcation, p synchronous fixed points ofM (p) appear.
Shifting the origin of coordinates„X(1), . . . ,X(N)… to one
of the p fixed points „X* (1), . . . ,X* (N)… (X* (1)5•••

5X* (N)[X* 5u(p)(X* ) for A5Ac…, we have

T:xt11~m!5F~sm21xt!

5 f „xt~m!…1g„xt~m!, . . . ,xt~m21!…,

m51, . . . ,N, ~4.28!

where

f „x~1!…5u~p!
„x~1!1X* …2X* , ~4.29!

g~x!5W~p!
„x~1!1X* , . . . ,x~N!1X* …2u~p!

„x~1!1X* ….
~4.30!
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Here x5(x1 , . . . ,xN), the uncoupled partf for the critical
caseA5Ac satisfies the condition~3.7!, and the coupling
function also obeys the condition~4.3!.

We employ the same renormalization transformationN of
Eq. ~3.9! with the rescaling operatoraI , wherea is a res-
caling factor, andI is theN3N identity matrix. Applying the
renormalization operatorN to the N-coupled map~4.28! n
times, we obtain then-times renormalizaed mapTn of the
form

Tn :xt11~m!5Fn~sm21xt!

5 f n„xt~m!…1gn„xt~m!, . . . ,xt~m21!…,

m51, . . . ,N. ~4.31!

Here the uncoupled and coupling partsf and g satisfy the
following recurrence relations:

f n11„x~1!…5a f nXf nS x~1!

a D C, ~4.32!

gn11~x!5a f nXFnS x

a D C1agnXFnS x

a D , . . . ,

2FnS sN21x

a D C2a f nXf nS x~1!

a D C. ~4.33!

Then Eqs.~4.32! and~4.33! define a renormalzation operato
R of transforming a pair of functions (f ,g):

S f n11

gn11
D 5RS f n

gn
D . ~4.34!

A critical map Tc is attracted to a fixed mapT* under
iterations of the renormalization transformationN,

T* :xt11~m!5F* ~sm21xt!

5 f * „xt~m!…

1g* „xt~m!,xt~m11!, . . . ,xt~m21!…,

m51, . . . ,N. ~4.35!

Here (f * ,g* ) is a fixed point of the renormalization operat
R, i.e., (f * ,g* )5R( f * ,g* ). Since f * is just the 1D fixed
map~3.16!, only the equation for the coupling fixed functio
g* is left to be solved.

As in case of two coupled maps, we construct a tracta
recurrence equation for a reduced coupling function ofg(x)
defined by

G~ l !~x!5
]g~x!

]x~ l ! U
x~1!5•••5x~N!5x

, ~4.36!

because it is not easy to directly solve the equation for
coupling fixed function. Differentiating the recurrence equ
tion ~4.33! for g with respect tox( l ) ( l 51, . . . ,N) and set-
ting x(1)5•••5x(n)5x, we obtain
le

e
-

Gn11
~ l ! 5 f n8Xf nS x

a D CGn
~ l !S x

a D
1Gn

~ l !Xf nS x

a D Cf n8S x

a D
1(

i 51

N

Gn
~ i !Xf nS x

a D CGn
~ l 2 i 11!S x

a D . ~4.37!

The reduced coupling functionsG( l )’s satisfy the sum rule
~4.17!, i.e., ( l 51

N G( l )(x)50, and they also satisfyG( l )(x)
5G( l 1N)(x) due to the periodic boundary condition.

As shown in Eq.~4.19!, there exists only one independe
reduced coupling functionG(x) for the globally coupled
case, such that

G~2!~x!5•••5G~N!~x![G~x!,

G~1!~x!5~12N!G~x!. ~4.38!

Then it is easy to see that the successive images$Gn
( l )(x)% of

$G( l )(x)% under the transformation~4.37! also satisfy Eq.
~4.38! @i.e., Gn

(2)5•••5Gn
(N)(x)[Gn(x), Gn

(1)(x)5(1
2N)Gn(x)]. Consequently, there remains only one rec
rence equation for the independent reduced coupling fu
tion G(x) @10#:

Gn11~x!5F f n8Xf nS x

a D C2NGnXf nS x

a D CGGnS x

a D
1GnXf nS x

a D Cf n8S x

a D . ~4.39!

Then, together with Eq.~4.32!, Eq. ~4.39! defines a reduced
renormalization operatorR̃ of transforming a pair of func-
tions (f ,G):

S f n11

Gn11
D 5R̃S f n

Gn
D . ~4.40!

Since the reduced renormalization transformation~4.40!
holds for any globally coupled cases ofN>2, it can be re-
garded as a generalized version of Eq.~3.20! for the case of
two coupled maps.

A pair of critical functions (f c ,Gc) with the parameters
set to their critical values is attracted to a fixed po
( f * ,G* ) under iterations ofR̃. Here f * is the 1D fixed map
~3.16!, andG* (x) is the independent reduced coupling fixe
function of g* (x) @i.e., G* (2)(x)5•••5G* (N)(x)
5G* (x), G* (1)(x)5(12N)G* (x)]. As in the two-
coupled case (N52) of Eqs.~3.21! and ~3.22!, we find two
series solutions forG* :

GI* ~x!5
1

N
@11zaxz211z~z2 1

2 !a2x2~z21!1•••#,

~4.41!

GII* ~x!5
1

NFbaxz211bS 3z2b

2
2

1

2Da2x2~z21!1••• G .
~4.42!
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Here a and b are arbitrary constants. The solutions forG*
have a common factor 1/N, and hence the functionN G* (x)
becomes the same, independently ofN; this can be also eas
ily understood by looking at the structure of Eq.~4.39!. In
case ofGI* (x), we can sum the series and obtain a clos
form solution,

GI* ~x!5
1

N
f 8* ~x!. ~4.43!

However, unfortunately we cannot sum the series inGII* (x)
except for the casesb50 andz where we obtain closed-form
solutions,

GII* ~x!5H 0, for b50,

1

N
@ f * 8~x!21#, for b5z.

~4.44!

Once a fixed point (f * ,g* ) of the renormalization opera
tor R is determined, its eigenvalues are obtained by line
izing R at the fixed point and solving the resultant eige
value problem. As shown in Sec. III B, the eigenvalues
possibly obtained using the independent reduced coup
fixed functionG* rather thang* , because all eigenvalues o
the reduced eigenvalue equation are also eigenvalues o
original eigenvalue equation. Note also that the reduced
genvalue equation can be obtained by directly linearizing
reduced renormalization operatorR̃ at its fixed point. We
thus linearizeR̃ at its fixed point (f * ,G* ) and obtain a
reduced linearized operatorL̃ transforming a pair of infini-
tesimal perturbations (h,F):

S hn11

Fn11
D 5L̃S hn

Fn
D 5S L1 0

L̃3 L̃2
D S hn

Fn
D , ~4.45!

where

hn11~x!5@L1hn#~x!

5a f * 8Xf * S x

a D ChnS x

a D1ahnXf * S x

a D C,
~4.46!

Fn11~x!5@L̃2Fn#~x!1@L̃3hn#~x!, ~4.47!

@L̃2Fn#~x!5F f * 8Xf * S x

a D C2NG* Xf * S x

a D CGFnS x

a D
1F f * 8S x

a D2NG* S x

a D GFnXf * S x

a D C,
~4.48!
-

r-
-
e
g

the
i-
e

@L̃3hn#~x!5F f * 9Xf * S x

a D CG* S x

a D
2NG* 8Xf * S x

a D CG* S x

a D
1G* 8Xf * S x

a D Cf * 8S x

a D GhnS x

a D
1G* S x

a Dhn8Xf * S x

a D C1G* Xf * S x

a D Chn8S x

a D .

~4.49!

It follows from the reducibility ofL̃ into a semiblock form
that to determine the eigenvalues ofL̃ it is sufficient to solve
the eigenvalue problems forL1 andL̃2 independently. Then
the eigenvalues of bothL1 and L̃2 give the whole spectrum
L̃.

The eigenvalue equation forL1 is given by Eq.~3.31!. As
mentioned there, that is just the eigenvalue equation for
1D map, in which case the complete spectrum of eigenva
and the corresponding eigenfunctions have been found
Refs.@3#.

We next consider an infinitesimal coupling perturbati
of the form (0,F) to a fixed point (f * ,G* ). If an indepen-
dent reduced coupling perturbationF* satisfies

lF* ~x!5@L̃2F* #~x!

5F f * 8Xf * S x

a D C2NG* Xf * S x

a D CGF* S x

a D
1F f * 8S x

a D2NG* S x

a D GF* Xf * S x

a D C,
~4.50!

then it is called the independent reduced coupling eigenfu
tion with CEl. Note that the eigenvalue equation~4.50! for
any N becomes the same as that for the two-coupled c
(N52), because the functionNG* (x) is the same, irrespec
tively of N. Hence we follow the same procedure in Se
III B for two coupled maps, and find the same relevant CE
for anyN globally coupled maps as follows~for more details,
refer to Sec. III B!:

~1!G* ~x!5GI* ~x!,

there exist no relevant CE’s;

~2!G* ~x!5GII* ~x!, ~4.51!

there exist (z21) relevant CE’s such that lk

52(z212k)/(z21) with eigenfunctionFk* (x) of Eq. ~3.42!

~k50, . . . ,z22!. ~4.52!

Finally, we confirm the above renormalization results f
the case of a global coupling of Eq.~4.23!. As an example,
we study the intermittency associated with a saddle-node
furcation to a pair of synchronous orbits with periodp53.
Considering the third iterateM (3) of M @see Eq.~4.25!# and
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then shifting the origin of coordinates to one of the thr
synchronous fixed points forA5Ac , we obtain a mapT of
the form ~4.28!. The uncoupled partf has the form~3.49!,
and hence that corresponds to the most common case
the tangency orderz52. The independent reduced couplin
function of the coupling partg(x) is also given by

G~x!5
e

N
f 8~x!, e5c323c213c. ~4.53!

Consider a pair of initial functions (f c ,G) on the syn-
chronous saddle-node bifurcation lineA5Ac , wheref c(x) is
just the 1D critical map andG(x)5(e/N) f c8(x). By succes-

sive applications of the reduced renormalization operatoR̃
of Eq. ~4.40! to ( f c ,G), we have

f n~x!5a f n21Xf n21S x

a D C, Gn~x!5
en

N
f n8~x! ~4.54!

en52en212en21
2 ~n50,1,2, . . . !, ~4.55!

where the rescaling factor forz52 is a52, f 0(x)
5 f c(x),G0(x)5G(x), ande05e. Here f n converge to the
1D fixed functionf * (x) of Eq. ~3.16! with z52 asn→`.

Note that the recurrence relation~4.55! for e is the same
as that of Eq.~3.52! for the dissipatively coupled case in Se
III C. As shown there, any initiale inside the open interva
(0,2) converges to the superstable fixed pointe* 51 under
successive iterations of the transformation~4.55!. The left
end of the interval is un unstable fixed pointe* 50, which is
also the image of the right ende52 under the transformation
~4.55!; all the other points outside the interval diverges to
minus infty under iterations of the transformation~4.55!.
One can see easily that the interval@0,2# of the parametere
corresopnds to a critical line segment joining two endscl
50 andcr52 on the synchronous saddle-node bifurcat
line A5Ac in the c-A plane. Hence any initialG(x) inside
the critical line segment is attracted to the first independ
reduced coupling fixed functionGI* (x)5(1/N) f * (x) ~corre-

sponding toe* 51) under iterations ofR̃, while G(x)8s at
-

o

t.
ith

e

nt

both ends are attracted to the second independent red
coupling fixed functionGII* (x)50 with b50 ~corresponding
to e* 50). Consequently, the critical behaviors inside t
critical line are governed by the first fixed point (f * ,GI* )
with no relevant CE’s, while the second fixed point (f * ,GII* )
governs the critical behaviors at both ends of the critical li
For details on the critical behaviors governed by the t
fixed points, refer to theN52 case in Sec. III C, because th
critical behaviors for anyN globally coupled case becom
the same as those for the two-coupled case.

V. SUMMARY

The critical behaviors for intermittency in two-couple
1D maps are studied by a reduced renormalization meth
We thus find two fixed points of the reduced renormalizat
operator. Although they have common relevant eigenval
associated with scaling of the control parameter of the
coupled 1D map, their relevant CE’s associated with c
pling perturbations vary depending on the fixed points. W
also study the intermittency for a dissipative-coupling ca
and confirm the renormalization results. Two fixed points
found to be associated with the critical behaviors near a c
cal line segment. One fixed point with no relevant CE’s go
erns the critical behaviors inside the critical line, associa
with the 1D-like intermittent transition to chaos occurring o
the synchronization line. On the other hand, the other fix
point with relevant CE’s governs the critical behaviors
both ends of the critical line, where the 1D-like intermitte
transition to chaos ends due to the system desynchroniza
Note that this kind of critical behaviors near a critical line a
also found for a linearly coupled case@15#. Finally, the re-
sults of the two- coupled 1D maps are also extended to m
globally coupled 1D maps.
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