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The critical behavior of period-doubling bifurcations is studied in two coupled one-dimensional (1D) maps. We find three
fixed maps of an approximate renormalization operator in the space of coupled maps. Each fixed map has a common relevant
eigenvalue associated with scaling of the nonlinear parameter of the 11 map. However, relevant “coupling™ eigenvalues associ-
ated with scaling of the coupling strength parameter vary depending on the fixed maps. The results of the renormalization analysis

agree well with numerical results.

1. Introduction

Since the discovery of the universal scaling be-
havior of period doubling in low-dimensional dy-
namical systems [1,2], efforts have been made in
studies of coupled systems to attempt to generalize
to higher-dimensional systems [3-11]. Herc we are
concerned with the critical behavior of period dou-
bling in two coupled one-dimensional (1D) maps.

The renormalization method has played a central
role in the study of critical behavior of period dou-
bling in low-dimensional maps; the fixed maps of the
period-doubling renormalization operator for 1D [ 1]
and two-dimensional (2D ) area-preserving maps [2]
have been found. In the case of four-dimensional
(4D) volume-preserving maps {two coupled 2D
area-preserving maps ), Mao and Greene [8] found
three fixed maps (truncated at quadratic terms) of
an approximate renormalization operator, which is
composed of squaring, truncating, and rescaling op-
erators; hereafter we will refer to the approximate
renormalization operator as the STR operator. Ad-
ditional fixed maps (truncated at cubic terms) as-
soclated with “inverse™ period doubling in the 4D

volume-preserving maps have also been found [9].
In this paper, using the STR method, we study the
critical behavior of period doubling in two coupled
1D maps.

In a recent numerical study on two coupled 1D
maps [11], we found an infinite number of critical
points. The structure of the critical set (set of critical
points) depends on the nature of the coupling func-
tions. In a linear coupling case in which the coupling
function has a leading linear term, an infinite num-
ber of critical line segments, together with the pre-
viously known zero coupling point [3], constitute
the critical set, whereas in the case of nonlinear cou-
pling in which the leading term is nonlinear, the crit-
ical set consists of the only one critical line segment.
The critical behavior depends on the position on the
critical set. We found two kinds of new critical be-
havior at each critical line segment in the linear cou-
pling case and one kind of new critical behavior at
the interior points of the critical line in the nonlinear
coupling case, in addition to the critical behavior at
the zero coupling point.

These numerical results suggest that there exist
three fixed maps of the period-doubling renormali-
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zation transformation in the space of coupled maps.
A “‘zero-coupling™ fixed map associated with the
critical behavior at the zero coupling point has been
found in ref. [3]. Using the STR method, we find
two new fixed maps associated with the new critical
behavior as well as the zero-coupling fixed map. All
the three fixed maps have a common relevant eigen-
value associated with scaling of the nonlinearity pa-
rameter of the uncoupled 1D map. However, rele-
vant “coupling” eigenvalues associated with scaling
of the coupling strength parameter depend on the
fixed maps. The values of the relevant eigenvalues
are close to those of the parameter scaling factors ob-
tained numerically using the scaling matrix method

[11].

2. Two coupled 1D maps

We consider a map 7T consisting of two identical
1D maps coupled symmetrically,

T X =) +g(x, vi)
Verr =f0) + 80y X)) (1

where the subscript / denotes a discrete time, f{x)
is a 1> map with a quadratic extremum, and g(x, y)
is a coupling function. Here the coupling function g
obeys the condition

g(x,x)=0 foranyx. (2)

It follows from condition (2) that the partial deriv-
atives of g at y=. satisfy a “sum rule”,

2
Z} gi{x,x)=0, (3)

where the subscript / of g denotes the partial deriv-
ative of g with respect to the ith argument.

Map (1) is invariant under the exchange of co-
ordinates, x<y. The set of points, which are invar-
iant under the exchange of coordinates, forms a sym-
metry line, y=ux. If an orbit lies on the symmetry line,
then it is called an “in-phase” orbit; otherwise it is
called an “‘out-of-phase” orbit. Here we study only
in-phase orbits (x,=y, for all /).

Let us introduce new coordinates, X and Y,

X=i(x+y), Y=}(x=p). )
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Then the map 7 of eq. (1) becomes
X =F(X, 1)

=: [[(Xi+Y)+/(Xi=Y)]

+Hig( X+ Y, X, —-Y)+eg(X, - Y, X, +Y)],
Yie1=G(X, Y

=: [f(X,+Y) (X, —Y)]

+%[g(Xl+YH Xl_Yr)_g(-'Yl_Yan-'_Yx)] 5
(5)

This map is invariant under the reflection, Y— — Y,
and hence, the symmetry line becomes ¥=0. Then
the in-phase orbit of the old map (1) becomes the
orbit of this new map with ¥=0. Moreover, since
g(X, X)=0 for any X, the coordinate X of the in-
phase orbit satisfies the uncoupled 1D map, X,
=/(X).

Linear stability of an in-phase orbit of period p is
determined from the Jacobian matrix M of 77, which
is the p-product of the linearized map DT of map
(5) along the orbit

P
M= []:[1 DT(X;,0)

A (D) 0 )
- ,131( 0 -2, xy) ©
where f'(X)=df(X)/dX and the sum rule (3) is

used. The eigenvalues of M, called the stability mul-
tipliers of the orbit, are

2= ij'(x.-),

o= n LF/(X) —2g:(X,. X)) . (7)

Note that A, is just the stability multiplier of the or-
bit of the 1D map and coupling affects only 2,. The
in-phase orbit is stable only when the moduli of both
multipliers are less than unity, i.¢., |A;] <1 fori=1
and 2.

When its first stability multiplier 4, of an in-phase
orbit passes through — 1, this orbit loses its stability
via “in-phase” period-doubling bifurcation, giving
rise to the birth of the period-doubled in-phase orbit.
The successive in-phase period-doubling bifurca-
tions complete an infinite sequence. Unlike the 1D
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map case. there exists an infinite number of critical
points in the space of the nonlinearity parameter and
the coupling parameter. The structure of the critical
set (set of critical points) depends on the nature of
the coupling functions. We found three (two) kinds
of critical behaviors in the linear (nonlinear) cou-
pling case, depending on the position on the critical
set. For details of the critical sets and the critical be-
havior refer to ref. [11].

3. Three fixed maps of the STR operator

The STR operator, which includes a truncation, is
an approximation of the renormalization operator in
the full function space of coupled maps. In the fol-
lowing procedure, the operation can be naturally
represented by a transformation of parameters which
correspond 1o the coefficients of truncated polyno-
mials of coupled maps. The first step is to truncate
map {5) at its quadratic terms, and then we obtain

Tp: Xiy 1 =A4/C+BX,+CXE+FYE,
Y =DY,+EX,Y, . (8)

which is a six-parameter family of coupled maps.
Other terms do not appear since F( X, Y) iseven and
G(X, V) is odd in Yin eq. (5). Here P stands for
the six parameters, i.e., P=(A4, B, C, D, E. F). The
construction of eq. (8) corresponds to a truncation
of the infinite dimensional space of coupled maps to
a six-dimensional space. The parameters, 4, B, C, D.
E, and F can be regarded as the coordinates of the
truncated space.

We look for fixed maps of the renormalization op-
erator # in the truncated six-dimensional space of
coupled maps,

H(T)=ATA", (9)

where T and #(7T) are within the truncated space,
and A is a rescaling operator. That is, the approxi-
mate renormalization operator # is composed of
squaring (7°?), truncating (at quadratic terms), and
rescaling (4) operators. Thus eq. (9) becomes the
definition of the STR operator.

The old coordinates x and v of in-phase orbits scale
with the 1D orbital scaling factor a, sin¢e the loca-
tion of in-phase orbits is determined from the 1D
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map. Therefore the rescaling operator A in this co-
ordinate system is

o 0
A=(0 a). (10)

A is invariant under any linear coordinate changes,
and hence, it is the rescaling operator also in the new
coordinates (X, ).

The operation # with 4 of eq. (10} in the trun-
cated space can be represented by a transformation
of parameters, i.e., a map from P=(4, B, C, D, E,
FytoPP=(A, B, C', D' E,F'),

A’ A

F=a L (1+B+A) (11a)

B'=B(B+241) , (11b)
i C‘ 2

C:E(B-i—B +24), (11¢)

D'=D(D+AE/C) , (11d)
. E .

L’:a(BD+D+AI:/C), (1lle)
_F 2

F'= = (24+B+D%). (11f)

The fixed point P* of the map can be determined by
solving P=P’. The parameter C sets only the scale in
X and thus is arbitrary. We now fix the scale in X by
setting C=1. Then, we have, from egs. (11a)-(11f),
six equations for the six unknowns, 4, B, a, D, E,
and F. We find three solutions for P* associated with
the period-doubling bifurcation, as will be seen be-
low. Map (8) with a solution P* (T5.) 15 the fixed
map of the STR operator; for brevity, Tp. will be de-
noted a T*.

We first note that egs. (11a)-(11c) are for the un-
knowns A, B, and «a only. We find four solutions for
A, B, and «,

A=la, B=0, a=-1-/3=-2732..., (12a)
A=la, B=0, a=-1+./3=0732..., (12b)
A=0, B=1, a=2, (12¢)
A=1(1-B),
B=(—1+/E) - (1+/B) -1,
a=1+B2=8.668.... (12d)
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We compare the values of a with the numerically ob-
tained valuc (= —2.502...) [1]. and choose only
the first case as the solution associated with the pe-
riod-doubling bifurcation. Substituting the values of
A, B,and e of eq. (12a) into egs. (11d)-(11f), we
obtain three solutions for D, £, and F,

D=0, E=2., F: arbitrary real number . (13a)
D=0, E=0, F: arbitrary rcal number . (13b)
D=1, E=0, F=0. (13¢)

All these three solutions arc associated with the crit-
ical behavior of period doubling in coupled maps, as
will be seen below. Hereafter, we will call each map
from the top as Z, I, and £ map, respectively. as listed
in table [.

Consider an infinitesimal perturbation e3P (e
small) to a fixed point, P*=(4*, .., F'*), of the
transformation of parameters (11a)—(11f). Lincar-
izing the transformation at P* we obtain the equa-
tion for the evolution of 8P,

5P =J5P. (14)

where Jis the Jacobian matrix of the transformation
at P*, 1.c.,

aP’

I=p |

IIt

(15)
A perturbation 3P is said to be an eigenperturbation
with eigenvalue 2 if

dP' =3P, (16)

The eigenvalue 4 can be determined from the char-
acteristic equation of the Jacobian matrix ./,

Det(/-A1)=0, (17)
where [ is the 6 X6 unit matrix. Let us denote the
cigenvector of J with eigenvalue / as F= (V. ..., V).
Table 1
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Then the infinitesimal eigenperturbation eV to P*
generates an infinitesimal eigenperturbation €87 to
the fixed map 7* with the solution P*,

ST(X, VY= (8F(X.Y),8G(X,V)), (18)
where
OF(X, Y)= Fl;(lr’; — é—: V3)

+ X+ 15X+, Y2
3G(X, Y)=V, Y+ . XY. (19)

The evolution of a map 7" (=7T*+¢ed7T) close tc a
fixed map 7* under the renormalization transfor-
mation .# can be written as

A(T*+e8T)=T*+ €8T +0(e?) . (20)

If 87 is an eigenperturbation (18) with eigenvatue
4, then the resulting perturbation 87" in #(7T) be-
comes 87" =A8T.

The 6x6 Jacobian matrix J decomposes into
smaller blocks: two 1 X | blocks and two 2 X 2 blocks.
For the 1< 1 blocks, eigenvalues are just the entities
of the blocks, that is,

a(” ar’ D?
=——| =1, A,= =1+ —. 21
5| =l A=5r| = (21)

/.-l

Here 4, 1s an eigenvalue associated with a scale
change in X. The eigenvalue 4, is also associated with
a scale change in Y in the case D=0; this case cor-
responds to the Z and / maps in table 1, and hence,
Fis arbitrary. However, in case D=1, corresponding
to the E map, /, becomes an irrelevant eigenvalue
whose modulus is less than unity. Note that the E
map 1s invariant under a scale change in ¥ since F=0.

The remaining four eigenvalues are those of the
following 2 2 blocks,

Fixed point P* (associated with the period doubling bifurcation) of egs. (11a)-(11f) and the rescaling factor a.. We have fixed the scale

in X by setting C=1.

Fixed map A B @« D E F
z j00 0 -1- \‘6 0 Z arbitrary
I Lo 0 -1-y3 0 0 arbitrary
E b 0 1.3 i 0 0
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d(A". B')
My=—=2"2
h 3(A. B) |p

24

A
all+24+B)+ — oad+ —(1+2B)
@ «

2B 2(A+B)

P

(22a)

_AD.E)
M=) |,

2D+ AE AD
= . (22b)
E D E
Z(14B) = (1+4B)+2- 4
[0 4 o o

P>

The two eigenvalues of M, (/=1,2) are called ¢, and
o} and are listed in table 2.

The three fixed maps have common eigenvalues,
o, and d;, of M,. These eigenvalues correspond to
those of the 1D map. Compared with the numerical
value (4=4.669...) [1] of the relevant eigenvalue §
associated with scaling of the nonlinearity parameter
of the 1D map, the value of §, (=3 —a) is not bad
for a first order approximation (truncating at qua-
dratic terms) *'. The second eigenvalue, 8| =« (=
—1 —\/3), 1s associated with a shift of the X
coordinate.

The eigenvalues of A5, 4, and &%, are associated
with coupling. These eigenvalues will be referred to
as “‘coupling” eigenvalues, As shown in table 2, the
Z map has two relevant coupling eigenvalues, d, =&
and 45 =2. The eigenperturbations {18) with these
eigenvalues are as follows,

*! In the 1D map case, the accuracy of the Feigenbaum constants
d and « is improved in the second order approximation, as
shown in table 2 of ref. [12].

Table 2
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52=a=—1—\/§,

SF(X, Y)=0, 8G(X,Y)=Y—

AY.
T (23a)

p=2, 8F(X, Y)=0, 8G(X,Y)=XY. (23b)

Unlike the case of the Z map, the number of relevant
coupling eigenvalues for the / and £ maps 1s zero and
one, respectively (see table 2). For the I map, M,
becomes a null matrix, and hence, there exists no
coupling eigenvalue. Therefore 1t has only one rele-
vant non-coordinate eigenvalue d,, like the 1D map
case. The F map has one relevant coupling eigen-
value, d,=2, and the corresponding eigenperturba-
tion 18

SF(X, Y)=0, 6G(X,Y)=Y, (24)

In order to compare the results of the above renor-
malization analysis with those of our previous nu-
merical study [11], we first make the scale changes
X—AX and Y- AY in all the three fixed maps. Sec-
ond, we fix the scale in Y in the Z and I maps by set-
ting F=1 (i.e.,, make a scale change Y- Y/\/I?).
Then the form of the fixed maps becomes

X =1+AX2+GY?,
Yo =DY, +EAX,Y,, (25)

where G=A for the Z and 7/ maps, and =0 for the
E map.
The Z map can be transformed back into the form,

,¥,+[ = 1 +.-4.Y,2. }’,+1 == 1 +4y,2 . (26)

with x=X+7Y and y=X—-Y. Obviously, map (26)
consist of two uncoupled 1D fixed maps (truncated
at quadratic terms). Thercfore the Z map is asso-
ciated with the critical behavior at the zero-coupling
point [3]. The Z map has two relevant coupling ei-
genvalues, 4 and 65 (see table 2). In the coordinates

Some eigenvalues, d,, 7, d», and 45 of a fixed map 7T* of the renormalization operator are shown. In the last two columns, the values of
the stability multipliers of a fixed point of the fixed map are listed, and o= -1~ \/3.

Fixed map d M d; 85 At A3

Z - o o 2 -/ 12« 11—/ 1 -2«
I 3—cr a nonexistent nonexistent -/ 12«

E -« « 2 a! l-1-2a 1
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{x. y). thc cigenperturbations (23a) and (23h)
become.

52:(]!:—]—\/5,

X1 =9g(x; 1)

Yie1=0g(y. x,) . (27)
=2,

X =0g{x vy =4A(x; —v) (X, +y)

Ve =080V, X)) . (28)

Note that the leading term of eigenperturbation (27)
is linear, whereas that of cigenperturbation {28) is
nonlinear. Therefore the critical behavior at the zero
coupling point depends on the nature of the cou-
pling, i.e., the leading term of the coupling function.
The values of 5, and J5 are close to the numerical
values of the coupling-paramcter scaling factor ,
[I1] at the zero coupling point in the linear
(72=—2.502...} and nonlinear {y.=1.999...) cou-
pling cases, respectively.

At a critical point, stability multipliers 4, , and A,,,
of an in-phase orbit of period 2” converge to the crit-
ical stability multipliers, A7 and 2% as i»oo [11]. In
addition to the coupling eigenvalues, we also obtain
these critical stability multipliers. The invariance of
a fixed map 7* under the renormalization transfor-
mation # implies that, if 7* has a periodic point
(x. v) with period 27, then A~' (x, ») is a periodic
point of T* with period 2"*'. Since rescaling does
not affect the stability multipliers, all in-phase orbits
of period 2" (n=0, 1, ...) have the same stability
multipliers, which are just the critical stability mul-
tipliers, AT and A3%. Therefore the critical stability
multipliers have the values of the stability multi-
pliers of a fixed point (X, 0) of the fixed map (25),

I=24X, Mi=D+EAX, (29)

where X=(1—,/1-2a)/a. The three fixed maps
have a common critical stability multiplier, 2% =
l1—/1=2a=—1.542..., which is close to the nu-
merical value of the critical stability in the 1D map
case, A*=—1.601... [ 1]. However, 1% depends on the
fixed maps. For the Z map, A3 becomes the same as
At

For the I map, eq. {(25) becomes
X =1+4X2+4¥2 Y., =0. (30)

The second critical stability multiplier for this case
1s 4% =0. As mentioned earlier, this fixed map with
zero Jacobian determinant has no relevant coupling
eigenvalue, and hence, it has only one relevant non-
coordinate eigenvalue d,, like the 1D map case. In
ref. [11], we found that, at interior points of the crit-
ical line segments in the linear and nonlinear cou-
pling cases, the second critical stability multiplier is
zero and there exists no coupling-parameter scaling
factor, 1.e., the critical behavior at interior points is
essentially the same as that in the 1D map case. The
I map, therefore, governs the critical behavior at in-
terior points of ¢ritical line segments in the linear and
nonlinear coupling cases.
For the £ map, ¢q. (25) becomes

‘Xrl‘+1=1+.r“41’,2‘ Y,+] =Y, f (31)

As shown 1n table 2, this fixed map has one relevant
coupling eigenvalue §,=2, which agrees well with the
numerical value (7,=1.999...) [11] of the coupling-
parameter scaling factor . at both ends of each crit-
1cal line segment in the linear coupling case. The sec-
ond critical stability multiplier is A3 =1, which also
agrees well with the numerical value (43 =1.000...)
[11] of the second critical stability multiplier at both
ends of each critical line segment in the linear cou-
pling case. Therefore the £ map s associated with
the critical behavior at both ends of each critical line
segment in the linear coupling case.

4. Summary

Using an approximate renormalization method
(truncating at quadrati¢ terms), we study the critical
behavior of period-doubling in two ceupled 1D maps.
We find two new fixed maps ([ and E maps) as well
as the previously found Z map. The [ and £ maps
are associated with the new critical behavior ob-
served at interior points of each critical line segment
in the linear and nonlinear coupling cases and at both
ends of each critical line segment in the linear cou-
pling case, respectively.

All fixed maps have a common relevant eigen-
value, associated with the scaling behavior of the
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nonlinearity parameter of the uncoupled 1D map.
However, the number of relevant coupling eigen-
values for the Z, E, and J maps 1s two, one, and zero,
respectively. The values of the relevant coupling ei-
genvalues agree well with the numerical values of the
coupling-parameter scaling factor. Also, the values
of the stability multipliers of the fixed point of the
fixed maps are close to the numerical values of the
critical stability muliipliers.
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