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POWER SPECTRA OF HIGHER PERIOD MULTIPLINGS IN AREA-PRESERVING MAPS
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We have studied the power spectra of higher period p-multiplings for p=3, 4. 5 and 6 in area-preserving maps. The ratio of the
successive average heights of the peaks of the spectrum for each p-multipling is found to approach a universal scaling limit that
increases with p.

The study of periodic orbitals in Hamiltonian systems is relevant to a number of important problems such
as plasma confinement in fusion, particle instability in beam-beam interactions, and celestial mechanics. A
very useful approach to the study of Hamiltonian systems is the method of the Poincaré surface of section.
Hamiltonian systems with » degrees of freedom can be modeled by 2(n— 1)-dimensional symplectic maps. For
Hamiltonian systems with two degrees of freedom, they are simply described by area-preserving maps.

To relate theory to experiment, one of the most directly accessible quantities is the power spectrum that con-
tains information of the global scaling behavior. The power spectra of period doubling in one and two di-
mensions have been studied, and they are found to exhibit universal scaling properties {1,2]. In two dimen-
sions, besides period doubling, higher period p-multiplings atso occur [3,4]. The local scaling behaviors of higher
period p-tuplings have been studied [5-8]. It is therefore interesting to study the power spectra of the higher
period p-multiplings to examine their global scaling behavior. In this paper we have studied the power spectra
of period multiplings for p=3, 4, 5 and 6.

The map was use in this study is the area-preserving Hénon map T

T x'=—y+2(x), y=x, (1)
where f,(x)=4(1—ax?). The map can be written as the product of two involutions S*=(75)?>=1, where

S o x'=y, y=x, (2a)
TS: x'=—x+2L(y). v =vy. (2b)

This symmetry property greatly facilitates the search for periodic orbits [5].
To study the power spectrum, let us consider a periodic orbit x, with period p” (i.e., x,,,»=x;). Its Fourier
transform 1s given by

pn

1
- I,IFU’ s 3
l(w)—\/—lljzle X, (3)
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where w=2mm/p", m=0, 1, ..., p"— 1. The power spectrum is

I 1
Plw)=|x(w)|*=— gl X7+ (e' U= 4.0 ) XX,
P’ ! p"

Jn=1 F>m

p pi—1 pn—f pr—1
Z 3+2y 3 x,,,x,,,Hcoswl) S(0)+2 Z S cos wl , (4)

I=1 m=1

where

ol

S(")=5/§] XXt (5)

As n—oo and /<< p”, S(/) tends to the autocorrelation function introduced in ref. {1]. In two dimensions, X;
is a two-vector.

For a period-p” orbit, the power spectrum is discrete and the peaks of the spectrum are delta functions that
appear at w=2mm/p”", m=0. 1, .., p"—1. As a period-p bifurcation occurs, new peaks will appear at
w=2n(pm—1}/p"*!, where I=1, .., p—1, and m=1, ..., p*. To classify the contributions of successive bi-
furcations in the power spectrum, we write

nop-1 pF-] 2 7
Plel= PGDOJ(U))-P}:I sz Z PAmlé( %)’ (6)
where
PA:»JI—S(0)+2 z SU)CO (hi;i;m) (7)

1s the height of each peak in the spectrum. The quantity of interest is the ratio of the successive average heights
of the peaks. The average height of the peaks generated by the kth bifurcation in the power spectrum is defined
as

et 5L (8)
Pp(k)= — P12 o
Inserting eq. (7) into eq. (8), we get
Pl Pl prt 2n(pm—~1TI
¢’p(k)=S(O)+2 Z SO —= k-1 ): Z cos (M)
Ji=1 ( l)p I=1 m=1 D
The sum can be easily evaluated:
p=1 pk=1 2 - 5
y ¥ cos(%)l) =(p—1)p“', ifj=p* (/aninteger)
F=1 m=1
=—p~<-1, if j=p“~'and /# pg (g and / integers):
=0, otherwise. (10)
We have therefore
pn—k_1 l pn—kp.
¢p(k)=S(0)+2( b3 S(p"l)——l Z ZS(p""‘(pl—I))), fork<n,
I=1 i=1 I=
I =
=S(O)_p_f Y S((p=-0)), fork=n. (11)
— L r=1
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Table 1
The ratios 28" of the successive average heights of the power spectra of multipling. Column (a) is from the autocorrelation function
and column (b) from FFT.

k p=2 p=3 p=4 p=>5 p=06

(a) {b) (a) (b} (a) (b) (a) (b) (a) (b)
3 53.6 53.4 121.6 120.9 165.4 165.4 189.6 187.0 221.1 221.1
4 62.4 62.4 122.4 122.9 171.1 171.1 195.2 195.6 2238 223.8
5 58.4 58.6 122.0 122.0 168.8 168.8 193.4 194.7 223.9 2239
6 61.0 60.2 122.2 122.2 170.8 170.8 195.2 195.2
7 122.5 122.0
8 123.1 123.0
avg. 60 123 170 195 224
rate 2.05 1.38 1.15 1.15

Asymptotically, the ratio of the successive average heights of the peaks

2P =g,(k)/0,(k+1) (12)

approaches a universal limit. In the case of period doubling, 25‘*’~21 for one-dimensional maps [1] and
282~ 60 for two-dimensional area-preserving maps. It is our purpose to find the scaling limits of the power
spectra of higher period p-multiplings and see how they vary with p.

In the bifurcation of higher period multiplings, unlike period-doubling, the original stable mother orbit re-
mains stable while one of the two daughter orbits is stable and the other one unstable [3,4]. Therefore, there
exist two kinds of critical orbits at the period multipling accumulation point: one stable and the other unstable
[ 5-8].We compute the power spectrum of these two kinds of critical orbits and the results for them are the
same.

To check consistency, we have employed two methods to compute the power spectrum: the autocorrelation
function method and the fast Fourier transform (FFT) method. The results of the two methods agree very
well (see table 1). In our numerical calculation 25 was computed to order n=10 for p=3, n=8 for p=4
and 5, and n=7 for p=6.

It is seen that the scaling ratio 2% increases with p in period multipling. However the rate of increase seems
to slow down and approach a limiting value ~ 1.15. Of course, this observation is very tentative; it is never-
theless interesting.

The results reported in this work may be of relevance to future experiments involving Hamiltonian systems.
However, the increasingly large values of 28'” indeed make it quite difficult to observe those bifurcations in
the asymptotic regime unless very precise measurements can be made.

This work was supported in part by the U.S. Department of Energy under grant DE-FG05-87ER40374.
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