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a b s t r a c t

We investigate the effect of network architecture on burst and spike synchronization in a directed
scale-free network (SFN) of bursting neurons, evolved via two independent α- and β-processes. The
α-process corresponds to a directed version of the Barabási–Albert SFN model with growth and
preferential attachment, while for the β-process only preferential attachments between pre-existing
nodes are made without addition of new nodes. We first consider the ‘‘pure’’ α-process of symmetric
preferential attachment (with the same in- and out-degrees), and study emergence of burst and spike
synchronization by varying the coupling strength J and the noise intensity D for a fixed attachment
degree. Characterizations of burst and spike synchronization are also made by employing realistic
order parameters and statistical-mechanical measures. Next, we choose appropriate values of J and
D where only burst synchronization occurs, and investigate the effect of the scale-free connectivity
on the burst synchronization by varying (1) the symmetric attachment degree and (2) the asymmetry
parameter (representing deviation from the symmetric case) in the α-process, and (3) the occurrence
probability of the β-process. In all these three cases, changes in the type and the degree of population
synchronization are studied in connection with the network topology such as the degree distribution,
the average path length Lp, and the betweenness centralization Bc . It is thus found that just taking into
consideration Lp and Bc (affecting global communication between nodes) is not sufficient to understand
emergence of population synchronization in SFNs, but in addition to them, the in-degree distribution
(affecting individual dynamics) must also be considered to fully understand for the effective population
synchronization.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Weare concerned about population synchronization of bursting
neurons. Bursting occurs when neuronal activity alternates, on a
slow timescale, between a silent phase and an active (bursting)
phase of fast repetitive spikings (Coombes & Bressloff, 2005;
Izhikevich, 2000, 2006, 2007; Rinzel, 1985, 1987). This type of
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bursting activity occurs due to the interplay of the fast ionic
currents leading to spiking activity and the slower currents
modulating the spiking activity. Hence, the dynamics of bursting
neurons have two timescales: slow bursting timescale and fast
spiking timescale. Thanks to a repeated sequence of spikes in the
bursting, there aremany hypotheses on the importance of bursting
activities in the neural information transmission (Izhikevich,
2004, 2006; Izhikevich, Desai, Walcott, & Hoppensteadt, 2003;
Krahe & Gabbian, 2004; Lisman, 1997); for example, (a) bursts
are necessary to overcome the synaptic transmission failure, (b)
bursts are more reliable than single spikes in evoking responses
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in postsynaptic neurons, and (c) bursts can be used for selective
communication betweenneurons. There are several representative
examples of bursting neurons such as intrinsically bursting
neurons and chattering neurons in the cortex (Connors & Gutnick,
1990; Gray & McCormick, 1996), thalamic relay neurons and
thalamic reticular neurons in the thalamus (Lee, Govindaiah, &
Cox, 2007; Llinás & Jahnsen, 1982; McCormick & Huguenard,
1992), hippocampal pyramidal neurons (Su, Alroy, Kirson, & Yaari,
2001), Purkinje cells in the cerebellum (Womack & Khodakhah,
2002), pancreatic β-cells (Chay & Keizer, 1983; Kinard, de Vries,
Sherman, & Satin, 1999; Pernarowski, Miura, & Kevorkian, 1992),
and respiratory neurons in pre-Botzinger complex (Butera, Rinzel,
& Smith, 1999; Del Negro, Hsiao, Chandler, & Garfinkel, 1998).

These bursting neurons exhibit two different patterns of
synchronization due to the slow and the fast timescales of
bursting activity. Burst synchronization (synchrony on the slow
bursting timescale) refers to a temporal coherence between
the active phase (bursting) onset or offset times of bursting
neurons, while spike synchronization (synchrony on the fast
spike timescale) characterizes a temporal coherence between
intraburst spikes fired by bursting neurons in their respective
active phases (Omelchenko, Rosenblum, & Pikovsky, 2010; Rubin,
2007). For example, large-scale burst synchronization (called the
sleep spindle oscillation of 7–14 Hz) has been found to occur
via interaction between the excitatory thalamic relay cells and
the inhibitory thalamic reticular neurons in the thalamus during
the early stages of slow-wave sleep (Bazhenov & Timofeev, 2006;
Steriade, McCormick, & Sejnowski, 1993). These sleep spindle
oscillations are involved in memory consolidation (Gais, Plihal,
Wagner, & Born, 2000; Sejnowski & Destexhe, 2000). In contrast,
this kind of burst synchronization is also correlated with abnormal
pathological rhythms associated with neural diseases such as
movement disorder (Parkinson’s disease and essential tremor)
(Bevan, Magill, Terman, Bolam, & Wilson, 2002; Brown, 2007;
Hammond, Bergman, & Brown, 2007; Park, Worth, & Rubchinsky,
2010; Uhlhaas & Singer, 2006) and epileptic seizure (Fisher et al.,
2005; Uhlhaas & Singer, 2006). Particularly, for the case of the
Parkinson’s disease hypokinetic motor symptoms (i.e., slowness
and rigidity of voluntary movement) are closely related to burst
synchronization occurring in the beta band of 10–30 Hz range in
the basal ganglia, while hyperkinetic motor symptom (i.e., resting
tremor) is associated with burst synchronization of ∼5 Hz.

In this paper, we study burst and spike synchronization of
bursting neurons, associated with neural information processes in
health and disease, in complex networks. Synaptic connectivity in
brain networks has been found to have complex topology which
is neither regular nor completely random (Bassett & Bullmore,
2006; Bullmore & Sporns, 2009; Buzsáki, Geisler, Henze, & Wang,
2004; Chklovskii, Mel, & Svoboda, 2004; Larimer & Strowbridge,
2008; Song, Sjöström, Reigl, Nelson, & Chklovskii, 2005; Sporns,
2011; Sporns & Honey, 2006; Sporns, Tononi, & Edelman, 2000).
Particularly, brain networks have been found to exhibit power-
law degree distributions (i.e., scale-free property) in the rat
hippocampal networks (Bonifazi et al., 2009; Li, Ouyang, Usami,
Ikegaya, & Sik, 2010; Morgan & Soltesz, 2008; Wiedemann, 2010)
and the human cortical functional network (Eguíluz, Chialvo,
Cecchi, Baliki, & Apkarian, 2005). Furthermore, robustness against
simulated lesions of mammalian cortical anatomical networks
(Felleman & Van Essen, 1991; Scannell, Blakemore, & Young, 1995;
Scannell, Burns, Hilgetag, O’Neill, & Young, 1999; Sporns, Chialvo,
Kaiser, & Hilgetag, 2004; Young, 1993; Young, Scannell, Burns,
& Blakemore, 1994) has also been found to be most similar to
that of a scale-free network (SFN) (Kaiser, Martin, Andras, &
Young, 2007). These kinds of SFNs are inhomogeneous with a
few ‘‘hubs’’ (superconnected nodes), in contrast to statistically
homogeneous networks such as random graphs and small-
world networks (Albert & Barabási, 2002; Barabási & Albert,
1999). Many recent works on various subjects of neurodynamics
(e.g., coupling-induced burst synchronization, delay-induced burst
synchronization, and suppression of burst synchronization) have
been done in SFNs with a few percent of hub neurons with an
exceptionally large number of connections (Batista, Batista, de
Pontes, Viana, & Lopes, 2007; Batisa, Batisa, de Pontes, Lopes, &
Viana, 2009; Batista, Lopes, Viana, & Batisa, 2010; Ferrari, Viana,
Lopes, & Stoop, 2015;Wang, Chen, & Perc, 2011;Wang, Perc, Duan,
& Chen, 2009).

The main purpose of our study is to investigate the effect
of scale-free connectivity on emergence of burst and spike
synchronization in a directed SFN of bursting neurons, evolved
via two independent local α- and β-processes which occur
with probabilities α and β (α + β = 1), respectively. The
α-process corresponds to a directed version of the standard
Barabási–Albert SFN model (i.e., growth and preferential directed
attachment) (Albert & Barabási, 2002; Barabási & Albert, 1999). On
the other hand, for the β-process only preferential attachments
between pre-existing nodes are made without addition of new
nodes (i.e., no growth) (Albert & Barabási, 2000, 2002; Bollobás,
Borgs, Chayes, & Riordan, 2003; Dorogovtsev & Mendes, 2000).
Consequently, degrees of pre-existing nodes are intensified via
the β-process. These α- and β-processes occur naturally in the
evolution of communication networks (e.g., world-wide web) and
social networks (e.g., collaboration graph of actors or authors)
(Albert & Barabási, 2000, 2002; Barabási et al., 2002; Bollobás
et al., 2003; Dorogovtsev & Mendes, 2000). We expect that
in addition to the growing α-process, incorporation of the
β-process (intensifying the internal connections between pre-
existing nodes) may be regarded as a natural extension in typical
SFNs, independently of their specific nature. For details on the
extended models of network evolution, refer to Refs. Albert
and Barabási (2002), Albert and Barabási (2000), Bollobás et al.
(2003) andDorogovtsev andMendes (2000)where local processes,
incorporating addition of new nodes and addition or removal of
connections between pre-existing nodes, are discussed. Following
this line, as our brain network of bursting neurons we employ the
SFNmodel evolved via the α- and the β-processes, as in our recent
work on sparse synchronization of spiking neurons (Kim & Lim,
2015b). We also expect that generation of SFNs by preferential
attachment via α- and the β-processes might be related to brain
plasticity which refers to the brain’s ability to change its structure
and function by modifying structure and strength of synaptic
connections during the development in humans (Pascual-Leone
et al., 2011) and rats (Song et al., 2005). Our SFN is composed of
suprathreshold Hindmarsh–Rose (HR) neurons. The HR neurons
are representative bursting neurons (Hindmarsh & Rose, 1982,
1984; Rose & Hindmarsh, 1985), and they interact through
inhibitory GABAergic synapses (involving the GABAA receptors).
Population synchronization in the network of HR neurons with
inhibitory synapses was much studied in many aspects (Che et al.,
2011; Liang, Tang, Dhamala, & Liu, 2009; Pereira, Baptista, Kurths,
& Reyes, 2007; Wu, Xu, & He, 2005). Following this line, we
restrict our attention to only the inhibitory HR bursting neurons,
although there are also many other excitatory bursting neurons
(e.g., cortical chattering cells Connors & Gutnick, 1990; Gray &
McCormick, 1996 and thalamic relay cells Lee et al., 2007; Llinás
& Jahnsen, 1982; McCormick & Huguenard, 1992). Particularly,
the sleep spindle rhythm in the reticularis thalami nucleus was
studied in a population of inhibitory bursting neurons (Wang &
Rinzel, 1993). We also expect that by providing a synchronous
oscillatory output to the excitatory bursting cells, networks of
inhibitory bursting neurons play the role of the backbones of
bursting rhythms (Buzsáki, 2006; Buzsáki et al., 2004).

We first consider the case of ‘‘pure’’ α-process (i.e., α = 1)
with symmetric preferential attachment with the same in- and



S.-Y. Kim, W. Lim / Neural Networks 79 (2016) 53–77 55
out-degrees (l(in)α = l(out)α ≡ lα), and study emergence of burst syn-
chronization and ‘‘complete’’ synchronization (composed of both
burst and spike synchronization) by varying the coupling strength
J and the noise intensity D for a fixed attachment degreelα (=20).
Thus, we obtain a state diagram in the J–D plane where complete
synchronization occurs within a part of the region of burst syn-
chronization. For an intensive study we fix the value of J , and in-
vestigate the evolution of population states by increasing D. For
small D, complete synchronization emerges. However, as D passes
a lower threshold D∗

l the intraburst spike synchronization breaks
up, and then only the burst synchronization appears. Eventually
when passing a higher thresholdD∗

h , a transition to desynchroniza-
tion occurs due to a destructive effect of noise to spoil the synchro-
nization. This type of burst and (intraburst) spike synchronization
may be well visualized in the raster plot of neural spikes which is a
collection of spike trains of individual neurons. For the case of burst
synchronization, synchronous bursting bands appear in the raster
plot, and (intraburst) spiking stripes also exist within the burst-
ing bands for the case of complete synchronization. Such raster
plots of spikes are fundamental data in experimental neuroscience.
Then, the instantaneous population firing rate (IPFR) R(t) which
may be directly obtained from the raster plot of spikes is often used
as a collective quantity describing the whole population behavior
(Brunel & Hakim, 2008; Wang, 2010). Through frequency filter-
ing, we separate the slow bursting and the fast (intraburst) spiking
timescales of the bursting activity for independent characteriza-
tion of burst and spike synchronization. Then, R(t) can be decom-
posed into the instantaneous population burst rate (IPBR) Rb(t)
and the instantaneous population spike rate (IPSR) Rs(t)which de-
scribe burst and spike synchronization separately. For more direct
visualization of bursting behavior, we also consider another raster
plot of bursting onset or offset times. For the case of burst synchro-
nization, synchronous bursting stripes appear in the raster plot.We
note that, from this type of raster plot of bursting onset or offset
times, one can directly obtain the IPBR R(on)

b (t) or R(off )
b (t) without

frequency filtering. For characterization of burst and (intraburst)
spike synchronization, we employ realistic order parameters and
statistical-mechanicalmeasures, based on the IPBRs (Rb(t),R

(on)
b (t),

and R(off )
b (t)) and the IPSR [Rs(t)], which were introduced in our

recent work (Kim & Lim, 2015a). Then, the higher and the lower
thresholds, D∗

h and D∗

l , for the bursting and the spiking transitions
may be determined in terms of the bursting and the spiking or-
der parameters (corresponding to the time-averaged fluctuations
of the IPBRs and the IPSR), respectively. Furthermore, in the region
of D < D∗

h , the degree of burst synchronization seen in the raster
plot of bursting onset times may be well measured in terms of a
statistical-mechanical bursting measureM(on)

b , introduced by con-
sidering both the occupation degree of bursting onset times (rep-
resenting the density of bursting stripes) and their pacing degree
(denoting the smearing of the bursting stripes) in the raster plot.
Similarly, in the region of D < D∗

l , the degree of (intraburst) spike
synchronization may also be measured in terms of a statistical-
mechanical spiking measure Ms which is given by the product of
the occupation and the pacing degrees of the spiking times in the
raster plot. Next, we choose appropriate values of J and D where
only the burst synchronization occurs in the above pure α-process
with symmetric attachment of lα = lα (=20), and study the effect
of the scale-free connectivity on the burst synchronization by vary-
ing (1) the degree lα of symmetric attachment and (2) the ‘‘asym-
metry’’ parameter 1lα of asymmetric preferential attachment of
new nodes with different in- and out-degrees (l(in)α = lα + 1lα
and l(out)α = lα − 1lα such that l(in)α + l(out)α = 2lα = constant).
In addition to the α-process, as the third case of network archi-
tecture, we also study the effect of the β-process (intensifying
the internal links between pre-existing nodes without adding new
nodes) by (3) increasing the probability β . In these 3 cases of vary-
ing lα , 1lα , and β , we investigate changes in the degree and the
type of population synchronization in connection with network
topology such as the average path length Lp (representing typical
separation between two nodes in the network) and the between-
ness centralization Bc (denoting the relative load of communica-
tion traffic concentrated to the head hub), both of which affect the
global communication between nodes, and the in-degree distribu-
tion affecting the individual neuronal dynamics (characterized by
the mean bursting/spiking rates). It is thus found that not only Lp
and Bc , but also the in-degree distribution are important network
factors to determine the pacing degree of population synchroniza-
tion of bursting neurons in SFNs (i.e., dispersion of mean burst-
ing/spiking rates of individual neurons as well as effectiveness of
global communication between nodes are responsible for the pop-
ulation synchronization). Specifically, as lα is increased fromlα and
both 1lα and β are also increased from 0, the pacing degree of
the burst synchronization increases thanks to the combined effects
of the in-degree distribution, Lp, and Bc . Eventually, when passing
their higher thresholds l∗α,h, 1l∗α,h, and β∗, complete synchroniza-
tion emerges, respectively. In contrast, with decreasing lα from lα
and1lα from 0, the pacing degree of the burst synchronization de-
creases, and transitions to desynchronization occur when passing
their lower thresholds l∗α,l and 1l∗α,l, respectively.

This paper is organized as follows. In Section 2, we describe
a directed SFN of inhibitory suprathreshold bursting HR neurons,
evolved via two independent α- and β-processes, and then the
governing equations for the population dynamics are given. With
the characterization methods given in Appendix A, in Section 3,
we first study emergence of burst and spike synchronization for
the case of pure α-process with a fixed symmetric preferential
attachment degree lα (=20), and then investigate the effect of
scale-free connectivity on burst and spike synchronization by
varying the degree lα of symmetric attachment, the asymmetry
parameter 1lα of the asymmetric attachment, and the probability
β of the β-process, in relation to network topology such as the
in-degree distribution, Lp, and Bc . Finally, a summary is given in
Section 4. Detailed explanations on methods for characterization
of individual states, population states and network topology in
SFNs are given separately in Appendix A for usefulness to catch
the main points. In Appendix B, we also present lists of acronyms,
variables for the systems and variables for the characterization in
Tables B.2–B.4, respectively, to keep track of all the acronyms and
variables used. For your reference, refer to B.2–B.4 for acronyms,
system variables, and variables for characterization, respectively,
when necessary in the following sections.

2. Scale-free network of inhibitory bursting Hindmarsh–Rose
neurons

In this section, we first describe our SFN evolved via two
independent α- and β-processes in Section 2.1. Then, the
governing equations for the population dynamics in the SFN are
given in Section 2.2.

2.1. Scale-free networks evolved via two independent α- and
β-processes

We consider an SFN of N inhibitory suprathreshold bursting
neurons equidistantly placed on a one-dimensional ring of radius
N/2π . We employ a directed variant of the Barabási–Albert SFN
model, composed of two independent α- and β-processes which
are performed with probabilities α and β (α + β = 1), respec-
tively (Albert & Barabási, 2000, 2002; Barabási & Albert, 1999; Bol-
lobás et al., 2003;Dorogovtsev&Mendes, 2000; Kim&Lim, 2015b):
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refer to Fig. 1 of Kim and Lim (2015b) for the diagram of these
two processes. The α-process corresponds to a directed version of
the standard Barabási–Albert SFNmodel (i.e. growth and preferen-
tial directed attachment). For the α-process, at each discrete time
t a new node is added, and it has l(in)α incoming (afferent) edges
and l(out)α outgoing (efferent) edges via preferential attachments
with l(in)α (pre-existing) source nodes and l(out)α (pre-existing) target
nodes. The (pre-existing) source and target nodes i (which are con-
nected to the new node) are preferentially chosen depending on
their out-degrees d(out)

i and in-degrees d(in)
i according to the attach-

ment probabilities Πsource(d
(out)
i ) and Πtarget(d

(in)
i ), respectively:

Πsource(d
(out)
i ) =

d(out)
i

Nt−1
j=1

d(out)
j

and Πtarget(d
(in)
i ) =

d(in)
i

Nt−1
j=1

d(in)
j

, (1)

where Nt−1 is the number of nodes at the time step t − 1. Here-
after, the cases of l(in)α = l(out)α (≡lα) and l(in)α ≠ l(out)α will be referred
to as symmetric and asymmetric preferential attachments, respec-
tively. On the other hand, for the β-process, there is no addition
of new nodes (i.e., no growth), and only symmetric preferential at-
tachments with the same in- and out-degrees [l(in)β = l(out)β (≡lβ)]
aremadebetween lβ pairs of (pre-existing) source and target nodes
which are also preferentially chosen according to the attachment
probabilitiesΠsource(d

(out)
i ) andΠtarget(d

(in)
i ) of Eq. (1), respectively,

such that self-connections (i.e., loops) and duplicate connections
(i.e., multiple edges) are excluded. Through the β-process, the
number of preferentially attached edges increases without adding
nodes. Hence, degrees of pre-existing nodes are more intensified
and the global communication becomes better (Albert & Barabási,
2000, 2002; Bollobás et al., 2003; Dorogovtsev & Mendes, 2000;
Kim& Lim, 2015b). For generation of an SFNwithN nodes, we start
with the initial network at t = 0, consisting of N0 = 50 nodes
where node 1 is connected bidirectionally to all the other nodes,
but the remaining nodes (except the node 1) are sparsely and ran-
domly connected with a low probability p = 0.1. Then, the α- and
β-processes are repeated until the total number of nodes becomes
N . For our initial network, the node 1 will be grown as the head
hub with the highest degree.

2.2. Governing equations for the population dynamics

As an element in our SFN, we choose the representative burst-
ing HR neuron model which was originally introduced to describe
the time evolution of the membrane potential for the pond snails
(Hindmarsh&Rose, 1982, 1984; Rose&Hindmarsh, 1985).We con-
sider the SFN composed of N HR bursting neurons; N = 103, ex-
cept for the case of order parameters and spatial cross-correlation
functions. Eqs. (2)–(6) govern the population dynamics in the SFN:

dxi
dt

= yi − ax3i + bx2i − zi + IDC + Dξi − Isyn,i, (2)

dyi
dt

= c − dx2i − yi, (3)

dzi
dt

= r [s(xi − xo) − zi] , (4)

where

Isyn,i =
J

d(in)
i

N
j=1(≠i)

wijgj(t)(xi − Xsyn), (5)

gj(t) =

Fj
f=1

E(t − t(j)f − τl);

E(t) =
1

τd − τr
(e−t/τd − e−t/τr )Θ(t). (6)
Table 1
Parameter values used in our computations.

(1) Single HR bursting neurons (Longtin, 1997)
a = 1 b = 3 c = 1 d = 5 r = 0.001
s = 4 xo = 1.6

(2) External stimulus to HR bursting neurons
IDC = 1.4

(3) Inhibitory GABAergic synapse (Brunel & Wang, 2003)
τl = 1 τr = 0.5 τd = 5 Xsyn = −2

(4) Pure α-process (α = 1) with symmetric attachment
l(in)α = l(out)α ≡ lα(=20) J: Varying D: Varying

(5) Effect of scale-free connectivity (3 cases)
J = 4 D = 0.06

Pure α-process: lα : Varying (1st case of symmetric attachment)
1lα : Varying (2nd case of asymmetric attachment)

Combined α- and β-processes (with symmetric attachment):
lα = 20 lβ = 5 β: Varying (3rd case)

Here, the state of the ith neuron at a time t (measured in units
of milliseconds) is characterized by three state variables: the
fast membrane potential xi, the fast recovery current yi, and the
slow adaptation current zi. The parameter values used in our
computations are listed in Table 1. More details on the external
stimulus on the single HR neuron, the synaptic currents, and the
numerical integration of the governing equations are given in the
following subsubsections.

2.2.1. External stimulus to the single HR neuron
Each bursting HR neuron (whose parameter values are in the

1st item of Table 1) is stimulated by a common DC current IDC
and an independent Gaussian white noise ξi (see the 5th and the
6th terms in Eq. (2)) satisfying ⟨ξi(t)⟩ = 0 and ⟨ξi(t) ξj(t ′)⟩ =

δij δ(t − t ′), where ⟨· · · ⟩ denotes the ensemble average. The noise
ξ is a parametric one that randomly perturbs the strength of the
applied current IDC , and its intensity is controlled by the parameter
D. As IDC passes a threshold I∗DC (≃1.26) in the absence of noise (i.e.,
D = 0), each single HR neuron exhibits a transition from a resting
state to a bursting state (see Fig. 1(a)). For the suprathreshold
case of IDC = 1.4, deterministic bursting occurs when neuronal
activity alternates, on a slow time scale (≃552 ms), between
a silent phase and an active (bursting) phase of fast repetitive
spikings. An active phase of the bursting activity begins (ends) at
a bursting onset (offset) time when the membrane potential x of
the bursting HR neuron passes the bursting threshold of x∗

b = −1
from below (above). In Fig. 1(b), the dotted horizontal line (x∗

b =

−1) denotes the bursting threshold (the solid and open circles
denote the active phase onset and offset times, respectively),
while the dashed horizontal line (x∗

s = 0) represents the spiking
threshold within the active phase. As shown in Fig. 1(c), projection
of the phase flow onto the x–z plane seems to be a hedgehog-like
attractor. Bursting activity (alternating between a silent phase and
an active (bursting) phase of fast repetitive spikings) occurs on
the hedgehog-like attractor (the body (spines) of the hedgehog-
like attractor corresponds to the silent (active) phase). Fig. 1(d)
and 1(e) show the interburst interval (IBI) and the (intraburst)
interspike interval (ISI) histograms, respectively. The average IBI
is 552 ms, corresponding to the slow bursting frequency fb ≃

1.8 Hz, while the average ISI interval is 18.3 ms, corresponding
to the fast spiking frequency fs ≃ 54.5 Hz. In this way, the HR
neuron exhibits bursting activity with two distinct slow and fast
timescales. Throughout this paper, we consider the suprathreshold
case of IDC = 1.4 (see the 2nd item of Table 1) where each HR
neuron exhibits spontaneous bursting activity without noise.
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Fig. 1. Single bursting HR neuron for D = 0. (a) Bifurcation diagram in the single
HR neuron. Solid line represents a stable resting state, while for the bursting state,
maximum and minimum values of the membrane potential x are denoted by solid
circles. (b) Time series of x(t) and (c) phase portrait in the x–z plane for IDC = 1.4.
The dotted horizontal line (x∗

b = −1) in (b) represents the bursting threshold (the
solid and open circles denote the active phase onset and offset times, respectively),
while the dashed horizontal line (x∗

s = 0) represents the spiking threshold within
the active phase. Histograms for (d) interburst intervals (IBIs) and (e) intraburst
interspike intervals (ISIs) for IDC = 1.4.

2.2.2. Synaptic currents
The last term Isyn,i in Eq. (2) denotes the synaptic coupling of

the network. As shown in Eq. (5), Isyn,i is just a synaptic current
injected into the ith neuron. The synaptic connectivity is given
by the connection weight matrix W (= {wij}) where wij = 1 if
the neuron j is presynaptic to the neuron i; otherwise, wij = 0.
Here, the synaptic connection ismodeled by using the directed SFN
(evolved via the α- and β-processes). Then, the in-degree of the
ith neuron, d(in)

i (i.e., the number of synaptic inputs to the neuron
i) is given by d(in)

i =
N

j(≠i) wij. The fraction of open synaptic ion
channels at time t is represented by g(t). The time course of gj(t)
of the jth neuron is given by a sum of delayed double-exponential
functions E(t− t(j)f −τl) (see Eq. (6)), where τl is the synaptic delay,

and t(j)f and Fj are the f th spike and the total number of spikes of the
jth neuron at time t , respectively. Here, E(t) (which corresponds to
contribution of a presynaptic spike occurring at time0 to g(t) in the
absence of synaptic delay) is controlled by the two synaptic time
constants: synaptic rise time τr and decay time τd, and Θ(t) is the
Heaviside step function: Θ(t) = 1 for t ≥ 0 and 0 for t < 0. The
coupling strength is controlled by the parameter J , and Xsyn is the
synaptic reversal potential. For the inhibitory GABAergic synapse
(involving the GABAA receptors), the values of τl, τr , τd, and Xsyn
are listed in the 3rd item of Table 1.

2.2.3. Numerical integration
Numerical integration of stochastic differential equations

(2)–(4) is done using the Heun method (San Miguel & Toral,
2000) (with the time step 1t = 0.01 ms). For each realization
of the stochastic process, we choose a random initial point
[xi(0), yi(0), zi(0)] for the ith (i = 1, . . . ,N) neuron with uniform
Fig. 2. State diagram in the J–D plane in the pure α-process (α = 1) with symmet-
ric preferential attachment of lα (=20). Complete synchronization (including both
burst and intraburst spike synchronization) occurs in the dark gray region, while in
the gray region only the burst synchronization appears.

probability in the range of xi(0) ∈ (−1.5, 1.5), yi(0) ∈ (−10, 0),
and zi(0) ∈ (1.2, 1.5).

3. Effect of scale-free connectivity on burst and spike synchro-
nization of bursting HR neurons

In this section, we study the effect of scale-free connectivity
on burst and spike synchronization in a directed SFN of inhibitory
suprathreshold bursting HR neurons, evolved via two independent
local α- and β-processes. Methods for characterization of indi-
vidual and population states and network topology are explained
in detail in Appendix A. By employing these methods, we make
characterization of population and individual states in connection
with network topology. In Section 3.1, we first study emergence
of burst and spike synchronization in the directed Barabási–Albert
SFN (corresponding to the pure α-process) of HR neurons for a
fixed symmetric preferential attachment degree. In Section 3.2, we
investigate the effect of scale-free connectivity on burst and spike
synchronization by varying the degree of symmetric attachment lα ,
the asymmetry parameter 1lα of the asymmetric attachment, and
the probability β of the β-process. Changes in the degree and the
type of population synchronization are also discussed in associa-
tion with network topology such as the in-degree distribution, the
average path length Lp, and the betweenness centralization Bc .

3.1. Burst and spike synchronization in the directed Barabási–Albert
SFN

We first consider the directed Barabási–Albert SFN (i.e., pure
α-process) of N bursting HR neurons, equidistantly placed on
a one-dimensional ring of radius N/2π . The HR neurons are
suprathreshold ones which can fire spontaneously, and they are
coupled via inhibitory synapses. We investigate emergence of
burst and spike synchronization by varying the coupling strength
J and the noise intensity D for a fixed symmetric attachment
degree lα (=20) (see the fourth item in Table 1). Fig. 2 shows
the state diagram in the J–D plane. Complete synchronization
(including both the burst and (intraburst) spike synchronization)
emerges in the dark gray region, while in the gray region only the
burst synchronization (without spike synchronization) appears.
In the absence of noise (i.e., D = 0), desynchronization occurs
for sufficiently small J . However, when passing a lower bursting
threshold J∗b,l (≃0.8) a transition to burst synchronization occurs
due to a constructive role of J for the population synchronization.
With increasing J from J∗b,l, the degree of burst synchronization
increases, and eventually complete synchronization emerges as
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Fig. 3. Complete and burst synchronization in the pure α-process (α = 1) with symmetric preferential attachment of lα (=20): complete synchronization (including
both burst and intraburst spike synchronization) for D = 0 and 0.03, burst synchronization (without intraburst spike synchronization) for D = 0.06 and 0.08, and
desynchronization for D = 0.12. (a1)–(a5) Raster plots of spikes, (b1)–(b5) plots of IPFR kernel estimates R(t), (c1)–(c5) plots of low-pass filtered IPBRs Rb(t), and (d1)–(d5)
plots of band-pass filtered IPSRs Rs(t) for various values ofD = 0, 0.03, 0.06, 0.08, and 0.12. (e1) One-sided power spectrumof1Rb(t) [=Rb(t)−Rb(t)] (the overbar represents
the time average) with mean-squared amplitude normalization and (e2) distribution of mean bursting rates (MBRs) of individual neurons for D = 0.06. Power spectrum is
obtained from 216 (=65 536) data points.
J passes a lower spiking threshold J∗s,l (≃2.6). However, with
further increase in J , the degree of burst synchronization decreases
because of a destructive role of J to spoil the synchronization.
Thus, the (intraburst) spike synchronization first breaks up when
passing a higher spiking threshold J∗s,h (≃11.5). Then, only the burst
synchronization persists. Eventually, as J passes a higher bursting
threshold J∗b,h (≃18.4), a transition to desynchronization occurs.

For further intensive study we fix the value of J at J = 4,
and investigate the evolution of population states by increasing D.
As examples of population states, Fig. 3(a1)–(a5) show the raster
plots of neural spikes for various values of noise intensity D: com-
plete synchronization for D = 0 and 0.03, burst synchronization
for D = 0.06 and 0.08, and desynchronization for D = 0.12.
From these raster plots, we obtain smooth IPFR kernel estimates
R(t) of Eq. (A.2) in Fig. 3(b1)–(b5). We note that R(t) describes the
whole population behavior with both the slow bursting and the
fast spiking timescales. For more clear investigation of population
synchronization, we separate the slow and the fast timescales via
frequency filtering, and decompose the IPFR kernel estimate R(t)
into the IPBR Rb(t) and the IPSR Rs(t). Through low-pass filter-
ing of R(t) with cut-off frequency of 10 Hz, we obtain the slowly-
oscillating IPBR Rb(t) (containing only the bursting behavior
without spiking) in Fig. 3(c1)–(c5). On the other hand, via band-
pass filtering of R(t) with lower and higher cut-off frequencies
of 30 Hz (high-pass filter) and 90 Hz (low-pass filter), we obtain
the fast-oscillating IPSR Rs(t) (including only the intraburst spik-
ing behavior) in Fig. 3(d1)–(d5). For D = 0, ‘‘bursting bands’’, each
of which is composed of ‘‘spiking stripes’’, appear successively at
nearly regular time intervals, as shown in Fig. 3(a1); a magnifi-
cation of the 1st bursting band is given in Fig. 8(a1) (where the
spiking stripes are well seen). For this case, in addition to burst
synchronization, (intraburst) spike synchronization also occurs in
each bursting band. As a result of this complete synchronization,
the IPFR kernel estimate R(t) exhibits a bursting activity (i.e., fast
spikes appear on a slow wave in R(t)), as shown in Fig. 3(b1).
Through frequency filtering of R(t), the IPBR Rb(t) and the IPSR
Rs(t) show the slow bursting and the fast (intraburst) spiking oscil-
lations in Fig. 3(c1) and 3(d1), respectively. However, with increas-
ing D, bursting bands become smeared in the raster plot, and loss
of spike synchronization also begins to occur in each bursting band
due to smearing of spiking stripes. As an example, see the case of
D = 0.03: the raster plot of spikes, the IPFR kernel estimate R(t),
the IPBR Rb(t), and the IPSR Rs(t) are shown in Fig. 3(a2), 3(b2),
3(c2) and 3(d2), respectively. As a result of smearing, the ampli-
tudes of R(t), Rb(t), and Rs(t) decrease (i.e., the degrees of both
burst and spike synchronization decrease). When passing a lower
spiking thresholdD∗

l (≃0.048), complete loss of spike synchroniza-
tion occurs in each bursting band (i.e., intraburst spikes become in-
coherent within each bursting band). Consequently, only the burst
synchronization (without spike synchronization) persists. As an
example, see the case of D = 0.06 in Fig. 3(a3), (b3), (c3), and (d3).
For this case of burst synchronization, R(t) shows a slow-wave
oscillation without spikes. Hence, the IPBR Rb(t) exhibits slowly-
oscillating behavior, while the IPSR Rs(t) with small fluctuations
becomes nearly stationary. As D is further increased, such ‘‘inco-
herent’’ bursting bands (where intraburst spikes are incoherent)
becomemore andmore smeared, and thus the degree of burst syn-
chronization decreases (e.g., see Fig. 3(a4), (b4), (c4), and (d4) for
D = 0.08). Consequently, the amplitudes of both R(t) and Rb(t)
are further decreased, and Rs(t) becomes more nearly stationary.
Eventually, as D passes a higher bursting threshold D∗

h (≃0.109),
bursting bands begin to overlap, which leads to complete loss
of burst synchronization. In this way, completely unsynchronized
stateswith nearly stationary R(t), Rb(t), and Rs(t) appear, as shown
in Fig. 3(a5), (b5), (c5) and (d5) for D = 0.12. We also note that
only some fraction of HR neurons make burstings in each burst-
ing band (i.e., burst skipping occurs). Fig. 3(e1) and (e2) show the
power spectrum of 1Rb(t) [=Rb(t) − Rb(t)] and distribution of
mean bursting rates (MBRs) f (i)

b of individual neurons forD = 0.06.
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Fig. 4. Determination of the higher bursting noise threshold D∗

h for the bursting
transition in terms of a realistic thermodynamic bursting order parameter ⟨Ob⟩r in
the pure α-process (α = 1) with symmetric preferential attachment of lα (=20).
(a) Plots of the bursting order parameter ⟨Ob⟩r versus D. Burst synchronization for
D = 0.1: raster plots of spikes and plots of low-pass filtered IPBRs Rb(t) for N =

(b1) 103 and (b2) 104 . Unsynchronization for D = 0.12: raster plots of spikes and
plots of low-pass filtered IPBRs Rb(t) for N = (c1) 103 and (c2) 104 .

The population bursting frequency f (p)
b (i.e., corresponding to the

frequency of Rb(t)) is 5.4 Hz, while the ensemble-averaged MFR of
individual neurons ⟨f (i)

b ⟩ is 1.8 Hz. Hence, in an average sense, only
one third of the whole HR neurons exhibit burstings in each burst-
ing band.

For determination of the higher bursting threshold D∗

h for
the bursting transition (i.e., transition from burst synchronization
to desynchronization), we employ a realistic bursting order
parameter Ob of Eq. (A.4), corresponding to the time-averaged
fluctuation of the low-pass filtered IPBR Rb(t). Fig. 4(a) shows
the plot of ⟨Ob⟩r (⟨· · · ⟩r : realization-average) versus D. For D <
D∗

h (≃0.109), burst synchronization appears because the values of
⟨Ob⟩r become saturated to non-zero limit values as N is increased.
However, asDpasses the higher bursting thresholdD∗

h , the bursting
order parameter ⟨Ob⟩r tends to zero as N → ∞, and hence a
transition to desynchronization occurs due to a destructive role of
noise spoiling the burst synchronization.We consider examples for
D = 0.1 and D = 0.12. Fig. 4(b1) and 4(b2) show the raster plots
of spikes and the IPBRs Rb(t) for N = 103 and 104, respectively,
in the case of burst synchronization of D = 0.1. For this case,
with increasing N , more clear bursting bands appear in the raster
plot, and Rb(t) shows more regular oscillation with nearly same
amplitudes. On the other hand, for the case of desynchronization
ofD = 0.12, spikes in the raster plots become completely scattered
(without forming any bursting bands) and Rb(t) becomes more
andmore nearly stationary (i.e., noisy fluctuations of Rb(t) become
reduced) as N is increased (see Fig. 4(c1) and (c2)).

For more direct visualization of bursting behavior, we also
consider another raster plot of bursting onset and offset times,
from which we can directly obtain the IPBR kernel estimates of
band width h = 50 ms, R(on)

b (t) and R(off )
b (t), without frequency
filtering. Fig. 5(a1)–(a5) show the raster plots of bursting onset
times for various values of D, and the corresponding IPBR kernel
estimates R(on)

b (t) are shown in Fig. 5(c1)–(c5). Similarly, the raster
plots of bursting offset times are given in Fig. 5(b1)–(b5), and
Fig. 5(d1)–(d5) show the corresponding IPBR kernel estimates
R(off )
b (t). For the case of burst synchronization, bursting stripes

(composed of bursting onset or offset times and representing
burst synchronization) appear successively in the raster plot. The
bursting onset and offset stripes are time-shifted (e.g., compare
Fig. 5(a1) and (b1) for D = 0). For this synchronous case,
the corresponding IPBR kernel estimates, R(on)

b (t) and R(off )
b (t),

show slow-wave oscillations with the same population bursting
frequency f (p)

b ≃ 5.4 Hz, although they are phase-shifted
(e.g., compare Fig. 5(c1) and (d1) for D = 0). On the other hand,
in the case of desynchronization, bursting onset or offset times
are scattered completely without forming any bursting stripes
in the raster plots, and the corresponding IPBR kernel estimates
R(on)
b (t) and R(off )

b (t) become nearly stationary. Then, like the
case of the bursting order parameter Ob of Eq. (A.4), the mean
square deviations of R(on)

b (t) and R(off )
b (t) also are bursting order

parameters of Eq. (A.5), used to determine the higher bursting
threshold D∗

h for the bursting transition. Fig. 5(e1) and 5(e2) show
plots of the bursting order parameters ⟨O

(on)
b ⟩r and ⟨O

(off )
b ⟩r versus

D, respectively. As in the case of ⟨Ob⟩r , in the same region of D <
D∗

h(≃ 0.108), burst synchronization appears because the values of
⟨O

(on)
b ⟩r and ⟨O

(off )
b ⟩r become saturated to non-zero limit values as

N → ∞. On the other hand, when passing the higher threshold
D∗

h , ⟨O
(on)
b ⟩r and ⟨O

(off )
b ⟩r tend to zero in the thermodynamic limit

of N → ∞, and hence transition to desynchronization occurs.
In this way, the higher bursting threshold D∗

h for the bursting
transition may be well determined through calculation of each of
the three realistic bursting order parameters, ⟨Ob⟩r , ⟨O

(on)
b ⟩r and

⟨O
(off )
b ⟩r . Particularly, ⟨O

(on)
b ⟩r and ⟨O

(off )
b ⟩r are more direct ones

than ⟨Ob⟩r because they are based on the IPBR kernel estimates
R(on)
b (t) and R(off )

b (t) which are directly obtained from the raster
plots of the bursting onset and offset times without frequency
filtering, respectively. Hereafter, for convenience we consider only
the raster plot of bursting onset times for characterization of burst
synchronization, because both the raster plots of bursting onset
and offset times show the same bursting behaviors.

To further understand the bursting transition, we investigate
the effect of the noise intensity D on the ‘‘microscopic’’ dynamical
cross-correlations between neuronal pairs of bursting neurons. To
this end, we introduce the spatial cross-correlation C (b,on)

L (L =

1, . . . ,N/2) between neuronal pairs separated by a spatial
distance L in Eq. (A.10) which corresponds to the average of all the
temporal cross-correlations between the instantaneous individual
burst rates (IIBRs) of Eq. (A.8) r (b,on)

i (t) and r (b,on)
i+L (t) (i = 1, . . . ,N)

at the zero-time lag. Fig. 6(a1)–(a4) show plots of the spatial cross-
correlation function C (b,on)

L versus L in the case of N = 103

for various values of D in the region of burst synchronization.
The spatial cross-correlation functions C (b,on)

L are nearly non-zero
constants in the whole range of L, and hence the correlation length
η for all cases of (a1)–(a5) becomes N/2 (=500) covering the
whole network (note that the maximal distance between neurons
is N/2 because of the ring architecture on which HR neurons
exist). Consequently, the whole network is composed of just one
single synchronized block. For N = 104, the non-zero flatness
of C (b,on)

L in Fig. 6(b1)–(b4) also extends to the whole range (L =

N/2 = 5000) of the network, and the correlation length becomes
η = 5000, which also covers the whole network. Then, the
normalized correlation length η̃ (=

η

N ), representing the ratio of
the correlation length η to the network size N (i.e., denoting the
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Fig. 5. Representation of bursting states in terms of active phase (bursting) onset and offset times and determination of the higher bursting noise threshold D∗

h for the
bursting transition in terms of realistic bursting order parameters ⟨O

(on)
b ⟩r and ⟨O

(off )
b ⟩r in the pure α-process (α = 1) with symmetric preferential attachment oflα (=20):

burst synchronization for D = 0, 0.03, 0.06, and 0.08, and desynchronization for D = 0.12. (a1)–(a5) Raster plots of bursting onset times, (b1)–(b5) raster plots of bursting
offset times, (c1)–(c5) time series of IPBR kernel estimates R(on)

b (t), and (d1)–(d5) time series of IPBR kernel estimates R(off )
b (t). Plots of realistic thermodynamic bursting

order parameters (e1) ⟨O
(on)
b ⟩r (based on R(on)

b (t)) and (e2) ⟨O
(off )
b ⟩r (based on R(off )

b (t)) versus D.
relative size of synchronized blocks when compared to the whole
network size), has a non-zero limit value, 1/2, and consequently
burst synchronization emerges in the whole network. The degree
of burst synchronization may also be measured in terms of the
average spatial cross-correlation degree ⟨C (b,on)

L ⟩L (⟨· · · ⟩L: length-
average) given by averaging of C (b,on)

L over all lengths L. For
each D, we obtain ⟨⟨C (b,on)

L ⟩L⟩r by averaging over 20 realizations.
Fig. 6(c) shows the plot of ⟨⟨C (b,on)

L ⟩L⟩r . In the region of complete
synchronization for D < D∗

l , ⟨⟨C (b,on)
L ⟩L⟩r drops rapidly, and

then it slowly decreases to zero in the region of ‘‘pure’’ burst
synchronization for D∗

l < D < D∗

h . In contrast to the case of
complete and burst synchronization, the spatial cross-correlation
functions C (b,on)

L for D = 0.12 and 0.14 are nearly zero for both
cases of N = 103 and 104, as shown in Fig. 6(d1)–(d2) and
Fig. 6(e1)–(e2). For these cases, due to a destructive role of noise
spoiling the pacing between bursting onset times, the correlation
lengths η become nearly zero, independently of N , and hence no
population synchronization occurs in the network.

We now measure the degree of burst synchronization in the
synchronized region of 0 < D < D∗

h . As shown in Fig. 5(a1)–(a4),
burst synchronization may be well visualized in the raster plots of
bursting onset times. For D = 0 clear bursting stripes (composed
of bursting onset times and indicating burst synchronization)
appear in the raster plot. As D is increased, bursting stripes
become more and more smeared. Eventually, when passing the
higher bursting threshold D∗

h , bursting onset times are completely
scattered without forming any bursting stripes, as shown in
Fig. 5(a5). For this case of burst synchronization, the IPBR kernel
estimates R(on)

b (t) exhibit slow-wave oscillations, as shown in
Fig. 5(c1)–(c4).With increasingD, the amplitude ofRb(t)decreases,
and it becomes nearly stationary as D passes D∗

h . We measure
the degree of burst synchronization seen in the raster plot of
bursting onset times in Fig. 5(a1)–(a4) in terms of a statistical-
mechanical bursting measure M(on)

b , based on R(on)
b (t), introduced

by considering the occupation pattern (representing the density of
the bursting onset stripes) and the pacing pattern (denoting the
smearing of the bursting onset stripes) of bursting onset times
in the bursting stripes as explained in Appendix A.6. Fig. 7(a)–(c)
show ⟨O(on)

b ⟩r of Eq. (A.12) (average occupation degree), ⟨P (on)
b ⟩r of

Eq. (A.15) (average pacing degree), and the statistical-mechanical
bursting measure ⟨M(on)

b ⟩r of Eq. (A.16) for 13 values of D in the
synchronized region. In the whole region of D, ⟨O(on)

b ⟩r ≃ 0.33.
Hence, about one third of total HR neurons make burstings in
each global bursting cycle, as shown in Fig. 3(e1) and (e2). Similar
to the case of the average spatial correlation degree ⟨⟨C (b,on)

L ⟩L⟩r

in Fig. 6(c), ⟨P (on)
b ⟩r decreases rapidly in the region of complete

synchronization (i.e., region of D < D∗

l ), while it decreases slowly
to zero in the region of ‘‘pure’’ burst synchronization (i.e., region of
D∗

l < D < D∗

h). Since ⟨O(on)
b ⟩r ≃ 0.33, ⟨M(on)

b ⟩r ≃ ⟨P (on)
b ⟩r/3.

For characterization of the burst synchronization, we also in-
troduce another statistical-mechanical bursting correlation mea-
sure M(b,on)

c , based on the cross-correlations between the kernel
estimate IPBR R(on)

b (t) and the IIBR kernel estimates r (b,on)
i (t) (i =

1, . . . ,N) through extension of the case of spiking neurons (Lim
& Kim, 2010). This correlation-based measure M(b,on)

c may also be
regarded as a statistical-mechanical measure because it quanti-
fies the average contribution of (microscopic) IIBRs r (b,on)

i (t) to
the (macroscopic) IPBR R(on)

b (t). The normalized cross-correlation
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Fig. 6. Characterization of bursting transition in terms of spatial cross-correlations in the pure α-process (α = 1) with symmetric preferential attachment oflα (=20). Plots
of the spatial correlation function C (b,on)

L between neuronal pairs versus spatial distance L for the synchronized cases of D = 0, 0.03, 0.06, and 0.08 when N = (a1)–(a4) 103

and (b1)–(b4) 104 . (c) Plot of the average spatial-correlation degree ⟨C (b,on)
L ⟩L versus D. Plots of the spatial correlation function C (b,on)

L versus L for the unsynchronized cases
of D = 0.12 and 0.14 when N = (d1)–(d2) 103 and (e1)–(e2) 104 .
Fig. 7. Measurement of the degree of burst synchronization in the pure α-process (α = 1) with symmetric preferential attachment of lα (=20). Plots of (a) the average
occupation degree ⟨O(on)

b ⟩r of bursting onset times, (b) the average pacing degree ⟨P (on)
b ⟩r of bursting onset times, and (c) the statistical-mechanical burstingmeasure ⟨M(on)

b ⟩r

versus D. (d) Plot of the statistical-mechanical bursting correlation measure ⟨M(b,on)
c ⟩r versus D.
function C (b,on)
i (τ ) between R(on)

b (t) and r (b,on)
i (t) is given by

C (b,on)
i (τ ) =

1R(on)
b (t + τ)1r (b,on)

i (t)
1R(on)

b
2
(t)


1r (b,on)
i

2
(t)

, (7)

where τ is the time lag, 1R(on)
b (t) = R(on)

b (t) − R(on)
b (t), 1r (b,on)

i (t)

= r (b,on)
i (t) − r (b,on)

i (t), and the overline denotes the time average.
Then, the statistical-mechanical bursting correlation measure
M(b,on)
c is given by the ensemble-average of C (b,on)

i (0) at the zero-
time lag:

M(b,on)
c =

1
N

N
i=1

C (b,on)
i (0). (8)

Here, the number of data points used for the calculation of
temporal cross-correlation function is 2 × 104 in each realization.
Since the sampling time for getting each data point is 1ms, 2×104

data points for calculation of the cross-correlation function may
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Fig. 8. Intraburst spike synchronization and determination of the lower spiking noise thresholdD∗

l for the intraburst spiking transition in terms of a realistic thermodynamic
spiking order parameter ⟨Os⟩r in the pure α-process (α = 1) with symmetric preferential attachment of lα (=20). (a1)–(a5) Raster plots of spikes, (b1)–(b5) IPFR kernel
estimates R(t), and (c1)–(c5) band-pass filtered IPSRs Rs(t) in the 1st global bursting cycle of the low-pass filtered IPBR Rb(t) (after the transient time of 2 × 103 ms) for
various values of D = 0, 0.01, 0.03, 0.04, and 0.06. (d) Plots of the spiking order parameter ⟨Os⟩r versus D. Intraburst spike synchronization for D = 0.04: raster plots of
spikes and plots of IPSRs Rs(t) for N = (e1) 103 and (e2) 104 . Intraburst spike desynchronization for D = 0.06: raster plots of spikes and plots of IPSRs Rs(t) for N = (f1) 103

and (f2) 104 .
be obtained in each realization of 2 × 104 ms after a transient
time of 2 × 103 ms. We then obtain ⟨M(b,on)

c ⟩r by averaging over
20 realizations. Fig. 7(d) shows the plot of ⟨M(b,on)

c ⟩r versus D. As
D is increased, ⟨M(b,on)

c ⟩r drops rapidly in the region of complete
synchronization for D < D∗

l , while it slowly decreases to zero in
the region of ‘‘pure’’ burst synchronization for D∗

l < D < D∗

h , like
the case ofM(b,on)

b .
In addition to the above burst synchronization, we also

investigate intraburst spike synchronization of bursting HR
neurons by varying the noise intensity D for J = 4. Fig. 8(a1)–8(a5)
and 8(b1)–8(b5) show the raster plots of intraburst spikes and
the corresponding IPFR kernel estimates R(t) during the 1st global
bursting cycle, respectively. For D = 0, the 1st bursting band
is composed of (somewhat clear) spiking stripes, and hence the
corresponding R(t) exhibits a bursting activity (i.e., fast spikes
appear on a slow wave in R(t)). Through band-pass filtering of
R(t), we obtain the fast-oscillating IPSR Rs(t) (showing only the
intraburst spiking behavior without a slow wave) in Fig. 8(c1).
As D is increased, intraburst spiking stripes become more and
more smeared due to a destructive role of noise spoiling the spike
synchronization, and hence the amplitudes of Rs(t) decrease (see
Fig. 8(c2)–(c5)), although the underlying slow-wave oscillations of
R(t)persist. Eventually,whenpassing a lower spiking thresholdD∗

l ,
complete loss of the intraburst spike synchronization occurs, and
then only pure burst synchronization persists.

For determination of D∗

l for the spiking transition (i.e., transi-
tions from complete synchronization (including both burst syn-
chronization and intraburst spike synchronization) to pure burst
synchronization), we employ a realistic spiking order parameter
Os of Eq. (A.7), corresponding to the time-averaged fluctuation of
the IPSR Rs(t). Fig. 8(d) shows plots of ⟨Os⟩r versusD.When passing
the lower spiking threshold D∗

l (≃0.048), a transition from intra-
burst spike synchronization to intraburst spike desynchronization
occurs because the values of ⟨Os⟩r tend to zero in the thermody-
namic limit of N → ∞. Consequently, only for D < D∗

l intraburst
spike synchronization appears. In this way, D∗

l for the intraburst
spiking transition may be well determined in terms of the spiking
order parameter ⟨Os⟩r . We consider two examples for D = 0.04
and 0.06. Fig. 8(e1) and 8(e2) show the raster plots of intraburst
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Fig. 9. Measurement of the degree of intraburst spike synchronization in the pure α-process (α = 1) with symmetric preferential attachment of lα (=20). Plots of (a)
the average occupation degree ⟨Os⟩r of spikes, (b) the average pacing degree ⟨Ps⟩r of spikes, (c) the statistical-mechanical spiking measure ⟨Ms⟩r , and (d) the statistical-
mechanical spiking correlation measure ⟨M(s)

c ⟩r versus D. Data for ⟨Os⟩r , ⟨Ps⟩r , ⟨Ms⟩r , and ⟨M(s)
c ⟩r are denoted by solid circles. For comparison, data for ⟨O(on)

b ⟩r , ⟨P
(on)
b ⟩r ,

⟨M(on)
b ⟩r , and ⟨M(b,on)

c ⟩r represented by open circles and denoting the degree of burst synchronization, are also given. The vertical dotted line represents the lower spiking
threshold D∗

l (≃0.048).
spikes and the IPSRs Rs(t) for N = 103 and 104, respectively, in the
case of intraburst spike synchronization of D = 0.04. For this case,
with increasing N , more clear spiking stripes appear in the raster
plot, and Rs(t) shows more regular oscillation. On the other hand,
for the case of intraburst desynchronization of D = 0.06, intra-
burst spikes in the raster plot become completely scattered (with-
out forming any spiking stripes) and Rs(t) becomesmore andmore
nearly stationary (i.e., noisy fluctuations of Rs(t) become reduced)
as N is increased (see Fig. 8(f1) and (f2)).

Within the whole region of intraburst spike synchronization
(D < D∗

l ), we also measure the degree of intraburst spike
synchronization by employing a statistical-mechanical spiking
measure Ms, based on the IPSR Rs(t) (Kim & Lim, 2015a). As
shown in Fig. 8(a1)–(a4), spike synchronization may be well
visualized in the raster plot of spikes; spiking stripes (composed of
intraburst spikes and indicating intraburst spike synchronization)
appear in the 1st bursting band (corresponding to the 1st bursting
cycle of Rb(t)) of the raster plot. Like the case of bursting cycles
of Rb(t), spiking cycles (corresponding to the spiking stripes)
of Rs(t) may also be introduced: for more details, refer to
Fig. 7 in Kim and Lim (2015a). Then, similar to the case of
burst synchronization, we measure the degree of intraburst spike
synchronization seen in the raster plot in terms of a statistical-
mechanical spiking measure, based on Rs(t), by considering the
occupation and the pacing patterns of intraburst spikes in the
spiking stripes. The spiking measure M(s)

1,j of the jth spiking
cycle in the 1st bursting cycle is defined by the product of
the occupation degree O(s)

1,j of spikes (denoting the density of
the jth spiking stripe) and the pacing degree P (s)

1,j of spikes
(representing the smearing of the jth spiking stripe). For the 1st
bursting cycle, we obtain the spiking-averaged occupation degree
O(s)
1 (=⟨O(s)

1,j⟩s), the spiking-averaged pacing degree P (s)
1 (=⟨P (s)

1,j ⟩s),
and the spiking-averaged statistical-mechanical spiking measure
M(s)

1 (=⟨M(s)
1,j ⟩s), where ⟨· · · ⟩s represents the average over the

spiking cycles. In each realization, we follow 500 bursting cycles
and get O(s)

i , P (s)
i , andM(s)

i in each ith bursting cycle. Then, through
the average over all bursting cycles, we obtain the bursting-
averaged occupation degree Os (=⟨O(s)

i ⟩b), the bursting-averaged
pacing degree Ps (=⟨P (s)

i ⟩b), and the bursting-averaged statistical-
mechanical spiking measure Ms (=⟨M(s)

i ⟩b). We note that Os, Ps,
and Ms are obtained through double-averaging [⟨⟨· · · ⟩s⟩b] over
the spiking and bursting cycles. For each D, we repeat the above
process to get Os, Ps, and Ms for multiple realizations. Thus, we
obtain ⟨Os⟩r (average occupation degree of spikes), ⟨Ps⟩r (average
pacing degree of spikes), and ⟨Ms⟩r (average statistical-mechanical
spikingmeasure) through average over 20 realizations. The data of
⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r are denoted by solid circles in Fig. 9(a)–9(c),
respectively. For comparison, data of ⟨O(on)

b ⟩r , ⟨P
(on)
b ⟩r , and ⟨M(on)

b ⟩r
for the case of burst synchronization are also represented by open
circles in the region of 0 ≤ D < D∗

h . In the whole region of
intraburst spike synchronization, ⟨Os⟩r ∼ 0.22. For the case of
burst synchronization, a fraction (about 1/3) of the HR neurons
exhibits the bursting active phase: ⟨Ob⟩r ≃ 0.33. When compared
with ⟨Ob⟩r ≃ 0.33 for the case of burst synchronization, only
a fraction (about 2/3) of HR neurons that exhibit bursting fire
full action potentials during the burst. Unlike the nearly constant
⟨Os⟩r , ⟨Ps⟩r decreases monotonically to zero. We also note that
⟨Ps⟩r is much less than ⟨P (on)

b ⟩r (e.g., for D = 0, ⟨Ps⟩r ≃ 0.20
and ⟨P (on)

b ⟩r ≃ 0.59). Since ⟨Os⟩r is nearly constant, ⟨Ms⟩r is given
approximately by0.22 ⟨Ps⟩r . Consequently, the degree of intraburst
spike synchronization, ⟨Ms⟩r , is much less than the degree of burst
synchronization, ⟨M(on)

b ⟩r .
Moreover, we also introduce another statistical-mechanical

spiking correlation measure M(s)
c , based on the cross-correlations

between the IPSR Rs(t) and the instantaneous individual spike
rates (IISRs) r (s)

i (t) (i = 1, . . . ,N) (Lim & Kim, 2010). Like the case
of the IIBR r (b,on)

i (t) of Eq. (A.8), the IISR r (s)
i (t)may also be obtained

through convolution of the spike train of the ith neuron with
the Gaussian kernel function Kh(t) of band width h (=1 ms). We
may get the normalized cross-correlation function C (s)

i (τ ) between
Rs(t) and r (s)

i (t), as in Eq. (7) for the burst synchronization. Then,
the statistical-mechanical spiking correlation measure M(s)

c is
given by the ensemble-average of the normalized cross-correlation
function of C (s)

i (0) at the zero-time lag. For calculation of M(s)
c , the

average number of data points used for the calculation of temporal
cross-correlation function is 186 for each global bursting cycle
whose length is 186 ms; these 186 data points may be obtained
during the 186 ms (corresponding to the length of each global
bursting cycle) because the sampling time for getting each data
point is 1 ms. We also follow 500 global bursting cycles in each
realization. We obtain ⟨M(s)

c ⟩r by averaging over 20 realizations.
Fig. 9(d) shows theplot of ⟨M(s)

c ⟩r versusD. AsD is increased, ⟨M(s)
c ⟩r

also decreases to zero monotonically, like the case of ⟨Ms⟩r .
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Fig. 10. Emergence of burst and spike synchronization for various values of symmetric attachment degree lα in the pure α-process (α = 1): desynchronization for lα = 5,
burst synchronization for lα = 15 and 20, and complete synchronization (including both burst and intraburst spike synchronization) for lα = 35 and 45. (a1)–(a5) Raster
plots of spikes, (b1)–(b5) raster plots of bursting onset times, (c1)–(c5) plots of IPFR kernel estimates R(t), (d1)–(d5) plots of low-pass filtered IPBRs Rb(t), (e1)–(e5) plots of
band-pass filtered IPSRs Rs(t), and (f1)–(f5) plots of IPBR kernel estimates R(on)

b (t) for various values of lα = 5, 15, 20, 35, and 45. Plots of (g) spiking order parameter ⟨Os⟩r

and (h) bursting order parameter ⟨O
(on)
b ⟩r versus lα .
3.2. Effect of the scale-free connectivity on burst and spike synchro-
nization

In this subsection, we fix the values of J and D at J = 4 and
D = 0.06 (see the fifth item in Table 1) where only the burst
synchronization (without intraburst spike synchronization) occurs
in the above pure α-process with symmetric attachment of lα =lα (=20) (see Fig. 3(a3), (b3), (c3), and (d3)), and then investigate
the effect of scale-free connectivity on the burst synchronization in
the following three cases by varying (1) the degree of symmetric
attachment lα and (2) the asymmetry parameter 1lα of the
asymmetric attachment in the pure α-process (i.e., the standard
Barabási–Albert SFN model with growth and preferential directed
attachment) and by changing (3) the probabilityβ of theβ-process
(intensifying the internal connections between pre-existing nodes
without addition of new nodes). The results for these 3 cases are
given in the following subsubsections.

3.2.1. 1st case of network architecture: varying the degree of
symmetric attachment lα

As the first case of network architecture, we consider the effect
of the degree lα of the symmetric preferential attachment (l(in)α =

l(out)α ≡ lα). Fig. 10(a1)–10(a5) show raster plots of spikes for
lα = 5, 15, 20, 35, and 45, respectively. Their corresponding IPFR
kernel estimates R(t) are also given in Fig. 10(c1)–(c5). We note
that R(t) exhibits the whole combined behaviors (including both
burst and intraburst spike synchronization). To see the bursting
and spiking behaviors separately, we obtain the IPBR Rb(t) and the
IPSR Rs(t) through frequency-filtering of R(t), which are shown in
Fig. 10(d1)–(d5) for Rb(t) and Fig. 10(e1)–(e5) for Rs(t). Moreover,
for more direct visualization of bursting behavior, we also get
the raster plots of bursting onset times (see Fig. 10(b1)–(b5)) for
various values of lα , and the corresponding IPBR kernel estimates
R(on)
b (t) are shown in Fig. 10(f1)–(f5). As lα is increased from lα =
lα (=20) (studied above in Section 3.1), bursting bands in the raster
plots of spikes and bursting stripes in the raster plots of bursting
onset times become more clear. Hence, the amplitudes of Rb(t)
and R(on)

b (t) for lα = 35 and 45 become larger than that for lα =lα . Furthermore, when passing a higher spiking threshold l∗α,h, a
transition to intraburst spike-synchronized states occurs. This type
of spike synchronization is well shown in the fast-oscillating IPSR
Rs(t) for lα = 35 and 45.We also note that the spiking amplitude of
Rs(t) (i.e., the degree of spike synchronization) for lα = 45 is larger
than that for lα = 35. In this way, with increasing lα from lα = lα
the population synchronization becomes better. On the other hand,
as lα is decreased from lα = lα , the amplitudes of Rb(t) and R(on)

b (t)
decrease, as shown in the case of lα = 15. Eventually,whenpassing
a lower bursting threshold l∗α,l, a transition to desynchronization
occurs. As an example of desynchronization, see the case of lα = 5
where Rb(t) and R(on)

b (t) are nearly stationary. To determine the
higher and the lower thresholds, l∗α,h and l∗α,l, for the spiking and the
bursting transitions, we employ the spiking and the bursting order
parameters, ⟨Os⟩r of Eq. (A.7) (representing the time-averaged
fluctuation of Rs(t)) and ⟨O

(on)
b ⟩r of Eq. (A.5) (denoting the time-

averaged fluctuation of R(on)
b (t)). Fig. 10(g) and 10(h) show plots

of ⟨Os⟩r and ⟨O
(on)
b ⟩r versus lα , respectively. When passing the

higher spiking threshold l∗α,h (≃28), a transition to intraburst spike
synchronization occurs because ⟨Os⟩r goes to non-zero limit values
in the thermodynamic limit of N → ∞. Consequently, for lα >
l∗α,h complete synchronization (including both burst and spike
synchronization) appears. On the other hand, as lα is decreased
and passes the lower threshold l∗α,l (≃9), a transition from burst
synchronization to desynchronization takes place because the
values of ⟨O(on)

b ⟩r tend to zero as N is increased to ∞.
As in our recent work on spiking neurons in SFNs (Kim &

Lim, 2015b), for characterization of the effect of lα on network
topology, we study the local property of the SFN in terms of
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Fig. 11. Effect of the symmetric attachment degree lα on the degree of burst and spike synchronization in the pureα-process (α = 1). Plots of the out-degree d(out) versus the
in-degree d(in) for lα = (a1) 5, (a2) 15, (a3) 20, (a4) 35, and (a5) 45. (b) Plots of the average in-degree ⟨d(in)

⟩r in thewhole population, the average in-degree ⟨d(in)
peri⟩r in the group

of peripheral nodes, and the average in-degree ⟨d(in)
hub⟩r in the group of hubs versus lα . (c) Plot of the average path length ⟨Lp⟩r versus lα . (d) Plots of themaximumbetweenness

centrality ⟨Bmax⟩r of the head hub, the average betweenness centrality ⟨⟨B⟩hub⟩r of secondary hubs, and the average betweenness centrality ⟨⟨B⟩peri⟩r of peripheral nodes
versus lα . (e) Plot of the betweenness centralization ⟨Bc⟩r versus lα . (f) Plots of fractions ⟨Bmax⟩r/⟨Btot ⟩r , ⟨B

(hub)
tot ⟩r/⟨Btot ⟩r , and ⟨B(peri)

tot ⟩r/⟨Btot ⟩r versus lα . Here, quantities in
(b)–(f) are obtained via 20 realizations. Plots of MBRs of individual neurons for lα = (g1) 5, (g2) 15, (g3) 20, (g4) 35, and (g5) 45. Plots of MSRs (mean spiking rates) of
individual neurons for lα = (h1) 5, (h2) 15, (h3) 20, (h4) 35, and (h5) 45. Plots of (i) the average occupation degrees of bursting onset times ⟨O(on)

b ⟩r and spikings ⟨Os⟩r , (j) the
average pacing degrees of bursting onset times ⟨P (on)

b ⟩r and spikings ⟨Ps⟩r , and (k) the statistical-mechanical bursting measure ⟨M(on)
b ⟩r and spiking measure ⟨Ms⟩r versus lα .

Data for ⟨O(on)
b ⟩r , ⟨P

(on)
b ⟩r , and ⟨M(on)

b ⟩r are denoted by open circles, while those for ⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r are represented by solid circles. The vertical dotted line represents
the higher spiking threshold l∗α,h (≃28).
the in- and out-degrees. Plots of the out-degree d(out) versus the
in-degree d(in) for lα = 5, 15, 20, 35, and 45 are shown in
Fig. 11(a1)–11(a5), respectively. The nodes are classified into the
hub group (composed of the head hub with the highest degree
and the secondary hubs with higher degrees) and the peripheral
group (consisting of a majority of nodes with lower degrees). For
visualization, the peripheral groups are enclosed by rectangles.
Hereafter, boundaries of the rectangles are determined by the
thresholds d(in)

th and d(out)
th where fraction of nodes is 0.2%. Then, the

hub groups lie outside the rectangles, where the node 1 (denoted
by the open circle) corresponds to the head hub with the highest
degree and the other ones are called as secondary hubs. This type
of degree distribution is a ‘‘comet-shaped’’ one; the peripheral and
the hub groups correspond to the coma (surrounding the nucleus)
and the tail of the comet, respectively. The in- and out-degrees
are distributed nearly symmetrically around the diagonal, andwith
increasing lα they are shifted upward. Fig. 11(b) shows plots of the
average in-degree ⟨d(in)

⟩r (solid circles) in the whole population,
the average in-degree ⟨d(in)

peri⟩r (triangles) in the peripheral group,
and the average in-degree ⟨d(in)

hub⟩r (inverted triangles) in the hub
group versus lα . As lα is increased, both ⟨d(in)

peri⟩r and ⟨d(in)
hub⟩r increase
in a similar rate. Since the peripheral group is a majority one,
⟨d(in)

⟩r lies a little above ⟨d(in)
peri⟩r . In this way, with increasing lα the

total number of connections in the SFN increases.
In addition to the degree distribution of individual nodes, we

study the group property of the SFN in terms of the average
path length Lp and the betweenness centralization Bc by varying
lα . The average path length Lp of Eq. (A.17), representing typical
separation between two nodes in the network, is obtained through
the average of the shortest path lengths of all nodal pairs. We note
that Lp characterizes the global efficiency of information transfer
between distant nodes. Next, we consider the betweenness
centrality Bi of the node i, given in Eq. (A.18), which denotes
the fraction of all the shortest paths between any two other
nodes that pass through the node i. This betweenness centrality
Bi characterizes the potentiality in controlling communication
between other nodes in the rest of the network. In our SFN,
the head hub (i.e., node 1) with the highest degree also has the
maximum betweenness centrality Bmax, and hence the head hub
has the largest load of communication traffic passing through
it. To examine how much the load of communication traffic is
concentrated on the head hub, we obtain the group betweenness
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centralization Bc of Eq. (A.19), representing the degree to which
the maximum betweenness centrality Bmax of the head hub
exceeds the betweenness centrality of all the other nodes. Large Bc
implies that load of communication traffic is much concentrated
on the head hub, and hence the head hub tends to become
overloaded by the communication traffic passing through it. As
a result, it becomes difficult to obtain efficient communication
between nodes because of destructive interference between many
signals passing through the head hub (Nishikawa, Motter, Lai, &
Hoppensteadt, 2003). Fig. 11(c) shows the plot of the average
path length ⟨Lp⟩r versus lα . As lα is increased, ⟨Lp⟩r decreases
monotonically due to increase in the total number of connections.
Such decrease in ⟨Lp⟩r leads to reduction in intermediatemediation
of nodes controlling the communication in the whole network.
Hence, with increasing lα the total centrality Btot , given by the
sum of betweenness centralities Bi of all nodes (i.e., Btot =N

i Bi = Bmax + B(hub)
tot + B(peri)

tot , where B(hub)
tot (B(peri)

tot ) is the total
centrality in the group of secondary hubs (peripheral nodes)) is
reduced. How the total betweenness Btot decreases with increase
in lα is shown in Fig. 11(d). As lα is increased, the maximum
betweenness ⟨Bmax⟩r (crosses) of the head hub is much more
reduced than the average centralities of the secondary hubs and
the peripheral nodes, ⟨⟨B⟩hub⟩r (inverted triangles) and ⟨⟨B⟩peri⟩r
(triangles), which results in decrease in differences between
Bmax of the head hub and Bi of other nodes. As a result, with
increasing lα the betweenness centralization ⟨Bc⟩r decreases, as
shown in Fig. 11(e). Fig. 11(f) also shows plots of fractions
⟨Bmax⟩r/⟨Btot⟩r (crosses), ⟨B(hub)

tot ⟩r/⟨Btot⟩r (inverted triangles), and
⟨B(peri)

tot ⟩r/⟨Btot⟩r (triangles) versus lα . These fractions represent
how the total centrality Btot is distributed in the head hub, the
secondary hub group, and the peripheral group. As already shown
in ⟨Bc⟩r , with increasing lα , the fraction ⟨Bmax⟩r/⟨Btot⟩r for the
head hub (i.e., relative load of communication traffic for the
head hub) decreases. More than half load of total communication
traffic is given to the group of secondary hubs because of their
large average in-degree. However, with increasing lα , the role of
peripheral nodes, controlling communication between nodes, also
increases due to increase in their average in-degree. Hence, as lα
is increased, the fraction ⟨B(hub)

tot ⟩r/⟨Btot⟩r for the secondary hub
group decreases due to increase in the fraction ⟨B(peri)

tot ⟩r/⟨Btot⟩r
for the peripheral group. Thanks to the effect of lα on ⟨Lp⟩r and
⟨Bc⟩r , with increasing lα , typical separation between two nodes in
the network becomes shorter and load of communication traffic
becomes less concentrated on the head hub, which results from
increase in the total number of connections. Consequently, with
increase in lα , efficiency of global communication between nodes
becomes better, which may lead to increase in the degree of burst
and spike synchronization.

We note that individual dynamics vary depending on the
synaptic inputs with the in-degree d(in) of Eq. (5). Hence, the
in-degree distribution affects MBRs (mean bursting rates) and
MSRs of individual neurons. Fig. 11(g1)–11(g5) show plots of
MBRs of individual neurons versus d(in) for lα = 5, 15, 20,
35, and 45, respectively. We first consider the case of lα =

5. Since the in-degree of a peripheral neuron is small, its pre-
synaptic neurons belong to a small subset of the whole population.
MBRs of the peripheral neurons change depending on the average
MBR of pre-synaptic neurons in the small subset. If MBRs of
the pre-synaptic neurons are fast (slow) on average, then the
post-synaptic peripheral neuron receives more (less) synaptic
inhibition, and hence its MBR becomes slow (fast). Consequently,
MBRs of the peripheral neurons are broadly distributed around
the ensemble-averaged horizontal gray line of ⟨f (b)

i ⟩ ≃ 1.78 Hz.
The average MBR ⟨f (b)

i ⟩peri (≃1.80 Hz) of peripheral neurons is a
little faster than ⟨f (b)

i ⟩ because MBRs of the peripheral neurons are
distributed a little more above the gray line. On the other hand,
the pre-synaptic neurons of a hub neuron with higher in-degree
belong to a relatively larger sub-population of the whole network,
which results in reduced variation in the synaptic inhibitions
received by the hub neurons. Hence, the distribution of MBRs
of the hub neurons becomes a little reduced. Moreover, since
⟨f (b)

i ⟩peri > ⟨f (b)
i ⟩, the average MBR ⟨f (b)

i ⟩hub (≃1.62 Hz) of
hub neurons becomes slower than the ensemble-averaged MBR
⟨f (b)

i ⟩. However, as lα is increased from 5, the total number of
inward connections increases, which favors the pacing between
neurons. Then, the ensemble-averaged MBRs ⟨f (b)

i ⟩ increase, while
variations in MBRs from ⟨f (b)

i ⟩ decrease (see Fig. 11(g1)–(g5)).
For the case of MSRs of individual neurons, with increasing lα
similar tendency for changes in both the ensemble-averagedMSRs
⟨f (s)

i ⟩ and variations in MSRs of neurons from ⟨f (s)
i ⟩ also occurs,

as shown in Fig. 11(h1)–(h5). Particularly, this kind of changes
appear distinctly for both cases of burst [lα > l∗α,l (≃9)] and
(intraburst) spike [lα > l∗α,h (≃28)] synchronization because
individual neurons receive more coherent inputs; for both cases
of burst desynchronization and intraburst spike desynchronization
only a little changes occur. Fig. 11(i)–(k) show the average
occupation degrees of bursting onset times ⟨O(on)

b ⟩r and spikings
⟨Os⟩r , the average pacing degrees of bursting onset times ⟨P (on)

b ⟩r
and spikings ⟨Ps⟩r , and the statistical-mechanical burstingmeasure
⟨M(on)

b ⟩r and spiking measure ⟨Ms⟩r versus lα; open circles
represent data for burstings, while solid circles denote data for
spikings. For the case of burst synchronization, with increasing
lα the variation in MBRs decreases, and hence ⟨P (on)

b ⟩r increases
distinctly. On the other hand, ⟨O(on)

b ⟩r makes a little increase around
0.33 because of a slight increase in the ensemble-averaged MBR
⟨f (b)

i ⟩. Then, ⟨M(on)
b ⟩r (given by the product of the occupation

and the pacing degrees) also increases markedly like the case
of ⟨P (on)

b ⟩r . For the case of (intraburst) spike synchronization,
⟨Os⟩r also makes a little increase around 0.22, and hence only
a fraction (about 2/3) of HR neurons that exhibit bursting fire
full action potentials during the burst. On the other hand, with
increasing lα ⟨Ps⟩r makes a distinct increase. But, it is much less
than ⟨P (on)

b ⟩r , because both the ensemble-averaged MSR ⟨f (s)
i ⟩ and

the variation inMSRs from ⟨f (s)
i ⟩ aremuch larger than those for the

bursting case. Consequently, the degree of spike synchronization
⟨Ms⟩r (∼0.22 ⟨Ps⟩r) is also much less than the degree of burst
synchronization ⟨M(on)

b ⟩r (∼0.33 ⟨P (on)
b ⟩r).

3.2.2. 2nd case of network architecture: varying the asymmetry
parameter 1lα

As the second case of network architecture, we consider the
case of asymmetric preferential attachment l(in)α ≠ l(out)α . We
set l(in)α = lα + 1lα and lα(out)

= lα − 1lα such that l(in)α +

l(out)α = 2lα = constant (i.e., the total number of in- and out-
connections is fixed), and investigate the effect of asymmetric at-
tachment on the burst synchronization (which occurs for J = 4,
D = 0.06, and lα = lα(=20)) by varying the asymmetry pa-
rameter 1lα . Raster plots of spikes for 1lα = −15, −10, 0, 10,
and 15 are shown in Fig. 12(a1)–12(a5), respectively. For more di-
rect visualization of bursting behavior, Fig. 12(b1)–(b5) also show
the raster plots of bursting onset times for the same values of
1lα . From the raster plots of spikes, we obtain IPFR kernel esti-
mates R(t) (showing thewhole combined behaviors including both
burst and spike synchronization) in Fig. 12(c1)–(c5). Through fre-
quency filtering, we separate the slow bursting and the fast spik-
ing timescales, and decompose R(t) into the IPBR Rb(t) and the
IPSR Rs(t) which exhibit the bursting and the spiking behaviors
separately. Fig. 12(d1)–12(d5) and 12(e1)–12(e5) show Rb(t) and
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Fig. 12. Emergence of burst and spike synchronization for various values of asymmetric parameter 1lα in the pure α-process (α = 1): desynchronization for 1lα = −15,
burst synchronization for 1lα = 0 and 15, and complete synchronization (including both burst and intraburst spike synchronization) for 1lα = 10 and 15. (a1)–(a5) Raster
plots of spikes, (b1)–(b5) raster plots of bursting onset times, (c1)–(c5) plots of IPFR kernel estimates R(t), (d1)–(d5) plots of low-pass filtered IPBRs Rb(t), (e1)–(e5) plots of
band-pass filtered IPSRs Rs(t), and (f1)–(f5) plots of IPBR kernel estimates R(on)

b (t) for various values of 1lα = −15, −10, 0, 10, and 15. Plots of (g) spiking order parameter
⟨Os⟩r and (h) bursting order parameter ⟨O

(on)
b ⟩r versus 1lα .
Rs(t) for various values of 1lα , respectively. For bursting behav-
ior, the IPBR kernel estimates R(on)

b (t) are also obtained from the
raster plots of bursting onset times, and shown in Fig. 12(f1)–(f5).
As the asymmetry parameter 1lα is increased from the symmetric
case of 1lα = 0, both bursting bands in the raster plots of spikes
and bursting stripes in the raster plots of bursting onset times be-
come more clear. Therefore, the amplitudes of Rb(t) and R(on)

b (t)
for 1lα = 10 and 15 become larger than those for 1lα = 0.
Moreover, when passing a higher spiking threshold 1l∗α,h, a transi-
tion to intraburst spike-synchronization occurs. This type of spike-
synchronized states are well shown in the fast-oscillating IPSRs
Rs(t) for 1lα = 10 and 15. For these cases, the spiking ampli-
tude of Rs(t) (representing the degree of spike synchronization)
for 1lα = 15 is larger than that for 1lα = 10. Consequently, as
1lα is increased from 1lα = 0, the burst and spike synchroniza-
tion becomes better. In contrast, with decreasing 1lα from 0 the
amplitudes of Rb(t) and R(on)

b (t) decrease, as shown in the case of
1lα = −10. Eventually, when passing a lower bursting thresh-
old 1l∗α,l, unsynchronized states appear. As an example of desyn-
chronization, see the case of 1lα = −15 where Rb(t) and R(on)

b (t)
are nearly stationary. For these spiking and bursting transitions,
we use both the spiking order parameter ⟨Os⟩r of Eq. (A.7) and
the bursting order parameter ⟨O

(on)
b ⟩r of Eq. (A.5) to determine the

higher and the lower thresholds, l∗α,h and l∗α,l, respectively. Fig. 12(g)
and 12(h) show plots of ⟨Os⟩r and ⟨O

(on)
b ⟩r versus 1lα , respec-

tively. As 1lα is increased and passes the higher spiking threshold
1l∗α,h (≃6), a transition to intraburst spike synchronization takes
place because ⟨Os⟩r saturates to non-zero limit values as N is in-
creased to ∞. As a result, for 1lα > 1l∗α,h complete synchroniza-
tion (including both burst and spike synchronization) emerges. On
the other hand, as lα is decreased and passes the lower threshold
1l∗α,l (≃ −12), a transition from burst synchronization to desyn-
chronization occurs because the values of ⟨O

(on)
b ⟩r tend to zero in

the thermodynamic limit of N → ∞.
To study the relation between network topology and popu-
lation synchronization, we consider the effect of the asymmetry
attachment on the network topology by varying 1lα . Plots of the
out-degree d(out) versus the in-degree d(in) for 1lα = −15, −10, 0,
10, and 15 are shown in Fig. 13(a1)–13(a5), respectively. Amajority
of peripheral nodes with lower degrees are enclosed by rectangles,
while hubs with higher degrees lie outside the rectangles (partic-
ularly, the head hub is denoted by the open circle). For the case of
symmetric attachment with 1lα = 0, the in- and out-degrees of
the hubs and the peripheral nodes are distributed nearly symmet-
rically around the diagonal. On the other hand, the degree distribu-
tions vary significantly in the case of asymmetric attachment with
1lα ≠ 0. For1lα > 0, the in-degrees of peripheral nodes are more
than their out-degrees, while the out-degrees of hubs are much
more than their in-degrees. The degree distributions for 1lα > 0
seem to be similar to those obtained through counter-clockwise
rotations of the symmetric distribution for1lα = 0 about a center,
as shown in Fig. 13(a4)–(a5). Thus, the distribution of in-degrees
is narrow, while the distribution of out-degrees is wide, unlike the
case of symmetric attachment. We also examined the power-law
distribution of in-degrees, as shown in Fig. 11(b1)–(b3) in our pre-
vious work (Kim & Lim, 2015b). As is well known, the exponent
for the power-law distribution for 1lα = 0 is γ = 3 (Albert &
Barabási, 2002; Barabási & Albert, 1999). On the other hand, the ex-
ponent γ is less than 3 for 1lα < 0 because of broad distribution,
while it is larger than 3 for1lα > 0 because of narrow distribution.
As a result, the ensemble-averaged in-degree ⟨d(in)

⟩ for 1lα > 0,
affecting distribution of individualMBRs andMSRs, becomes larger
than that for 1lα = 0 due to increase in average in-degrees of
the majority of peripheral nodes. In contrast, for 1lα < 0, the in-
degrees of peripheral nodes are less than their out-degrees, while
the out-degrees of hubs are much less than their in-degrees. The
degree distributions for 1lα < 0 seem to be similar to those ob-
tained through clockwise rotations of the symmetric distribution
for 1lα = 0 about a center, as shown in Fig. 13(a1)–(a2). Hence,
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Fig. 13. Effect of the asymmetric parameter 1lα on the degree of burst and spike synchronization in the pure α-process (α = 1). Plots of the out-degree d(out) versus the
in-degree d(in) for 1lα = (a1) −15, (a2) −10, (a3) 0, (a4) 10, and (a5) 15. (b) Plots of the ensemble-averaged in-degree ⟨d(in)

⟩r in the whole population, the average in-degree
⟨d(in)

peri⟩r in the group of peripheral nodes, and the average in-degree ⟨d(in)
hub⟩r in the group of secondary hubs versus 1lα . (c) Plot of the average path length ⟨Lp⟩r versus 1lα .

(d) Plots of the maximum betweenness centrality ⟨Bmax⟩r , the average betweenness centrality ⟨⟨B⟩hub⟩r of secondary hubs, and the average betweenness centrality ⟨⟨B⟩peri⟩r
of peripheral nodes versus 1lα . (e) Plot of the betweenness centralization ⟨Bc⟩r versus 1lα . (f) Plots of fractions ⟨Bmax⟩r/⟨Btot ⟩r , ⟨B

(hub)
tot ⟩r/⟨Btot ⟩r , and ⟨B(peri)

tot ⟩r/⟨Btot ⟩r versus
1lα . Here, quantities in (b)–(f) are obtained via 20 realizations. Plots of MBRs of individual neurons versus 1lα for 1lα = (g1) −15, (g2) −10, (g3) 0, (g4) 10, and (g5) 15.
Plots of MSRs of individual neurons for 1lα = (h1) −15, (h2) −10, (h3) 0, (h4) 10, and (h5) 15. Plots of (i) the average occupation degrees of bursting onset times ⟨O(on)

b ⟩r

and spikings ⟨Os⟩r , (j) the average pacing degrees of bursting onset times ⟨P (on)
b ⟩r and spikings ⟨Ps⟩r , and (k) the statistical-mechanical bursting measure ⟨M(on)

b ⟩r and spiking
measure ⟨Ms⟩r versus 1lα . Data for ⟨O(on)

b ⟩r , ⟨P
(on)
b ⟩r , and ⟨M(on)

b ⟩r are denoted by open circles, while those for ⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r are represented by solid circles. The
vertical dotted line represents the higher spiking threshold 1l∗α,h(≃ 6).
the distribution of in-degrees iswide, while the distribution of out-
degrees is narrow. As a result of decreased average in-degrees of
themajority of peripheral nodes, the ensemble-averaged in-degree
⟨d(in)

⟩ for 1lα < 0, affecting distribution of individual MBRs and
MSRs, becomes smaller than that for 1lα = 0. Fig. 13(b) shows
plots of the average in-degree ⟨d(in)

⟩r (solid circles) in the whole
population, the average in-degree ⟨d(in)

peri⟩r (triangles) in the periph-
eral group, and the average in-degree ⟨d(in)

hub⟩r (inverted triangles)
in the hub group versus1lα . With increasing1lα , ⟨d

(in)
peri⟩r increases

slowly, while ⟨d(in)
hub⟩r decreases rapidly. Since the peripheral group

is amajority one, ⟨d(in)
⟩r lies a little above ⟨d(in)

peri⟩r . Consequently, as
1lα is increased, the distribution of in-degrees becomes narrower,
which also implies that, with increasing 1lα the distribution of
out-degrees becomes wider because the total number of in- and
out-connections is fixed. In this way, as |1lα| (magnitude of the
asymmetry parameter1lα) is increased, mismatching between in-
and out-degrees of nodes increases, with keeping the total number
of in- and out-connections constant, in contrast to the above 1st
case of symmetric attachment where the total number of connec-
tions increases with increasing lα .
Next, we study the effect of 1lα on the average path length Lp
of Eq. (A.17) (representing typical separation between two nodes)
and the betweenness centralization Bc of Eq. (A.19) (denoting
the relative degree of load of communication traffic concentrated
to the head hub), both of which affect global communication
between nodes. Fig. 13(c) and 13(d) show the plots of Lp and
Bc versus 1lα , respectively. As |1lα| is increased, both Lp and
Bc increase symmetrically, independently of the sign of 1lα ,
due to increased mismatching between in- and out-degrees of
nodes. Since both inward and outward links are involved equally
in computation of Lp and Bc , the values of Lp and Bc for both
cases of different signs but the same magnitude (i.e., 1lα and
−1lα) become the same. Such increase in Lp implies enhancement
of intermediate mediation of nodes controlling communication
between nodes (i.e., enhancement in total betweenness Btot ).
As shown in Fig. 13(e), with increasing |1lα| the maximum
betweenness ⟨Bmax⟩r (crosses) of the head hub is much more
enhanced than the average centralities of the secondary hubs and
the peripheral nodes, ⟨⟨B⟩hub⟩r (inverted triangles) and ⟨⟨B⟩peri⟩r
(triangles). Hence, as |1lα| is increased, differences between Bmax
of the head hub and Bi of other nodes are increased, which
leads to increase in Bc . For large Bc , it is difficult to get efficient
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communication between nodes due to destructive interference
betweenmany signals passing through the head hub. Fig. 13(f) also
shows plots of fractions ⟨Bmax⟩r/⟨Btot⟩r (crosses), ⟨B(hub)

tot ⟩r/⟨Btot⟩r

(inverted triangles), and ⟨B(peri)
tot ⟩r/⟨Btot⟩r (triangles) versus 1lα .

These fractions denote how the total centrality Btot is distributed
in the head hub, the secondary hub group, and the peripheral
group. As already shown in ⟨Bc⟩r , with increasing |1lα|, the
fraction ⟨Bmax⟩r/⟨Btot⟩r for the head hub (i.e., relative load of
communication traffic for the head hub) increases symmetrically.
The secondary hub group has more than half load of total
communication traffic due to their large average in-degree.
However, with increasing |1lα|, the fraction ⟨B(hub)

tot ⟩r/⟨Btot⟩r for
the secondary hub group decreases in a slow symmetrical way
due to a slow slight increase in the fraction ⟨B(peri)

tot ⟩r/⟨Btot⟩r for the
peripheral group (resulting from a little increase in the number
of peripheral nodes). As a result of effect of 1lα on Lp and Bc ,
with increasing |1lα| efficiency of global communication between
nodes becomesworse. However, unlike the symmetric change in Lp
and Bc , population synchronization varies depending on the sign
of 1lα . As an example, see both cases of 1lα = 10 and −10
in Fig. 12. Their population synchronization is different because
of distinctly different in-degree distributions affecting MBRs and
MSRs of individual neurons, although their Lp and Bc are the same.

As shown in the above case of symmetric attachment in Fig. 11,
the in-degree distributions affect MBRs and MSRs of individual
neurons. Fig. 13(g1)–13(g5) (Fig. 13(h1)–13(h5)) show plots of
MBRs (MSRs) of individual neurons versus d(in) for 1lα = −15,
−10, 0, 10, and 15, respectively. As 1lα is increased from 0, the
distributions of in-degrees become narrowed, which results in
decrease in variations inMBRs (MSRs). In addition, with increasing
1lα from 0, the ensemble-averaged MBRs ⟨f (b)

i ⟩ (MSRs ⟨f (s)
i ⟩)

(represented by horizontal gray lines) also decrease due to increase
in average inhibition given to individual neurons (resulting from
increased ensemble-averaged in-degrees). On the other hand,
with decreasing 1lα from 0, the distributions of in-degrees
become broadened, and hence variations inMBRs (MSRs) increase.
Moreover, as 1lα is decreased from 0, the ensemble-averaged
MBRs ⟨f (b)

i ⟩ (MSRs ⟨f (s)
i ⟩) increase because of decrease in average

inhibition given to neurons (resulting from decreased ensemble-
averaged in-degrees). This kind of changes occur distinctly for
both cases of burst [1lα > 1l∗α,l (≃ −12)] and (intraburst)
spike [1lα > 1l∗α,h (≃6)] synchronization because individual
neurons receive more coherent inputs; in both cases of burst
desynchronization and intraburst spike desynchronization only a
little changes appear. Based on these changes in MBRs and MSRs,
we discuss their effects on the pacing and occupation degrees for
both cases of burst and spike synchronization. Fig. 13(i)–(k) show
the average occupation degrees of bursting onset times ⟨O(on)

b ⟩r
and spikings ⟨Os⟩r , the average pacing degrees of bursting onset
times ⟨P (on)

b ⟩r and spikings ⟨Ps⟩r , and the statistical-mechanical
bursting measure ⟨M(on)

b ⟩r and spiking measure ⟨Ms⟩r versus 1lα .
Here, open circles denote data for burstings, while solid circles
represent data for spikings. For the case of burst synchronization,
with increasing 1lα the variation in MBRs decreases, and hence
⟨P (on)

b ⟩r increases. On the other hand, ⟨O(on)
b ⟩r decreases due to

decreased ensemble-averaged MBRs. However, ⟨P (on)
b ⟩r increases

more rapidly than decrease in ⟨O(on)
b ⟩r . Consequently, with increase

in 1lα , ⟨M
(on)
b ⟩r (given by the product of ⟨O(on)

b ⟩r and ⟨P (on)
b ⟩r ) also

increases. For the case of intraburst spike synchronization, as 1lα
is increased, ⟨Os⟩r also decreases because of decrease in ensemble-
averaged MSR. Since it is less than ⟨O(on)

b ⟩r , only a fraction of HR
neurons that exhibit bursting fire full action potentials during
the burst. On the other hand, with increasing 1lα ⟨Ps⟩r makes an
increase due to decreased variation in MSRs. But, it is much less
than ⟨P (on)
b ⟩r , because both the ensemble-averaged MSR ⟨f (s)

i ⟩ and
the variation in MSRs from ⟨f (s)

i ⟩ are much larger than those for
the bursting case. Like the bursting case, ⟨Ps⟩r also increases more
rapidly than decrease in ⟨Os⟩r , and hencewith increasing1lα ⟨Ms⟩r
also increases. However, the degree of spike synchronization ⟨Ms⟩r

is much less than the degree of burst synchronization ⟨M(on)
b ⟩r .

3.2.3. 3rd case of network architecture: varying β

As the third case of network architecture, along with the above
α-process (occurring with the probability α) we consider the β-
process (occurring with the probability β; α + β = 1). Unlike
the case of α-process, no new nodes are added, and symmetric
preferential attachmentswith the same in- andout-degrees [l(in)β =

l(out)β (≡lβ)] are made between lβ pairs of (pre-existing) source
and target nodes which are also preferentially chosen according
to the attachment probabilities Πsource(d

(out)
i ) and Πtarget(d

(in)
i ) of

Eq. (1), respectively, such that self-connections (i.e., loops) and
duplicate connections (i.e., multiple edges) are excluded. Here we
set lβ = 5 (see the fifth item in Table 1). We investigate the
effect of the β-process on the burst synchronization (which occurs
J = 4 and D = 0.06 in the pure α-process with symmetric
preferential attachment (l(in)α = l(out)α ≡ lα = 20)) by varying
β . Fig. 14(a1)–14(a4) (Fig. 14(b1)–14(b4)) show raster plots of
spikes (raster plots of bursting onset times) for β = 0, 0.1,
0.3, and 0.6, respectively. Their corresponding IPFR (IPBR) kernel
estimates, R(t) [R(on)

b (t)] are also shown in Fig. 14(c1)–14(c4)
(Fig. 14(f1)–14(f4)) for various values of β , respectively. Through
frequency filtering, we decompose R(t) into the IPBR Rb(t)
and the IPSR Rs(t), which exhibit the bursting and the spiking
behaviors separately and are shown in Fig. 14(d1)–14(d4) and
Fig. 14(e1)–14(e4), respectively. As β is increased, the bursting
bands in the raster plots of spikes (the bursting stripes in the
raster plots of bursting onset times) becomemore clear, and hence
the amplitude of Rb(t) [R(on)

b (t)] increases. Furthermore, when
passing a spiking threshold β∗, a transition to intraburst spike-
synchronization occurs. This kind of spike synchronization is well
shown in the fast-oscillating IPSR Rs(t) for β = 0.3 and 0.6. To
determine β∗, we employ the spiking order parameter ⟨Os⟩r of
Eq. (A.7). Fig. 14(g) shows plots of ⟨Os⟩r versus β . As β passes
the spiking threshold β∗ (≃0.16), a transition to intraburst spike
synchronization occurs because ⟨Os⟩r saturates to non-zero limit
values as N is increased to ∞. Consequently, for β > β∗ complete
synchronization (including both burst and spike synchronization)
emerges.

We also study the effect of the network topology on burst
and spike synchronization by varying β . Fig. 15(a1)–15(a4) show
‘‘comet-shaped’’ plots of the out-degree d(out) versus the in-degree
d(in) for β = 0, 0.1, 0.3, and 0.6, respectively. For each β , peripheral
nodes (corresponding to the coma part of the comet) are enclosed
by the rectangle, while hubs (corresponding to the tail part of
the comet) lie outside the rectangle and the head hub (node 1)
with the highest degree is denoted by the open circle. In the
β-process, the probability that the head hub with the highest
degree may be chosen as a source and/or a target node is low
because self-connections and duplicate connections are excluded.
Such probability for the peripheral node with the lowest degree is
also lowbecause its degree is lowest. Hence, in theβ-process, there
is noparticular change in thedegrees at both ends (with thehighest
and the lowest degrees) of the comet-shaped degree distribution,
in contrast to the first case of symmetric attachment in the
α-process (see Fig. 11). On the other hand, there is distinct
increase in the degrees of some (pre-existing) peripheral nodes
and secondary hubs through the β-process, which leads to
the immigration of some peripheral nodes into the secondary
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Fig. 14. Emergence of burst and spike synchronization for various values of the probability β in the β-process: burst synchronization for β = 0 and 0.1, and complete
synchronization (including both burst and intraburst spike synchronization) for β = 0.3 and 0.6. (a1)–(a5) Raster plots of spikes, (b1)–(b5) raster plots of bursting onset
times, (c1)–(c5) plots of IPFR kernel estimates R(t), (d1)–(d5) plots of low-pass filtered IPBRs Rb(t), (e1)–(e5) plots of band-pass filtered IPSRs Rs(t), and (f1)–(f5) plots of
IPBR kernel estimates R(on)

b (t) for various values of β = 0, 0.1, 0.3, and 0.6. (g) Plots of spiking order parameter ⟨Os⟩r versus β .
hub group. As a result, with increasing β the tail part of the
comet (i.e. corresponding to the secondary group) is particularly
intensified than the coma part of the comet (corresponding to the
peripheral group), because the number of links of secondary hubs
is much more increased than those of peripheral nodes. Fig. 15(b)
shows plots of the average in-degree ⟨d(in)

⟩r (solid circles) in
the whole population, the average in-degree ⟨d(in)

peri⟩r (triangles) in
the peripheral group, and the average in-degree ⟨d(in)

hub⟩r (inverted
triangles) in the hub group versus β . With increasing β , ⟨d(in)

hub⟩r

increases rapidly in comparison to the slow increase in ⟨d(in)
peri⟩r ,

in contrast to the case of the 1st case of network architecture
where both the hub group and the peripheral group are intensified
in a similar rate with increasing lα (compare with Fig. 11(b)). In
this way, the secondary hub group is much intensified than the
peripheral group through the β-process. Hence, as β is increased,
the ensemble-averaged degree ⟨d(in)

⟩r in thewhole population also
increases slowly because of slow increase in the average in-degree
in the majority group of peripheral nodes. Consequently, with
increasing β , the total number of connections increases slowly.

In addition to the degree distribution, we also measure the
average path length Lp and the betweenness centralization Bc by
varying β . Fig. 15(c) and 15(d) show the plots of Lp and Bc versus
β , respectively. As β is increased, both Lp and Bc decrease in a
slow monotonic way due to slow increase in the total number of
connections. As explained above, decrease in Lp leads to reduction
in total centrality Btot (i.e., the sum of centralities of the head
hub, the secondary hubs, and the peripheral nodes). How Btot
decreases with increase in β can be seen explicitly in Fig. 15(e).
We note that the maximum betweenness ⟨Bmax⟩r (crosses) of the
head hub is much more reduced than the average centralities of
the secondary hubs and the peripheral nodes, ⟨⟨B⟩hub⟩r (inverted
triangles) and ⟨⟨B⟩peri⟩r (triangles), which results in decrease in
differences between Bmax of the head hub and Bi of other nodes
(i.e., decrease in Bc). Thus, with increasing β relative load of
communication traffic for the head hub decreases. How the total
centrality Btot is distributed in the head hub, the secondary hub
group, and the peripheral group may also been seen in the plots
of fractions ⟨Bmax⟩r/⟨Btot⟩r (crosses), ⟨B(hub)

tot ⟩r/⟨Btot⟩r (inverted
triangles), and ⟨B(peri)

tot ⟩r/⟨Btot⟩r (triangles) versus lα in Fig. 15(f),
where B(hub)

tot (B(peri)
tot ) is the total centrality in the group of secondary

hubs (peripheral nodes). As already shown in ⟨Bc⟩r , with increasing
β the fraction ⟨Bmax⟩r/⟨Btot⟩r for the head hub decreases. However,
unlike the 1st case of varying lα , as β is increased, the fraction
⟨B(hub)

tot ⟩r/⟨Btot⟩r for the secondary hub group increases, while
the fraction ⟨B(peri)

tot ⟩r/⟨Btot⟩r for the peripheral group decreases,
because the secondary hub group is much more intensified in
the β-process. Thanks to the effect of β on Lp and Bc , as β is
increased, typical separation between two nodes in the network
becomes shorter and load of communication traffic becomes less
concentrated on the head hub, mainly due to intensified role of the
secondary hub group in the β-process. As a result, with increasing
β , efficiency of global communication between nodes becomes
better, which may lead to increase in the degree of burst and spike
synchronization.

Finally, based on the above change in the in-degree distribution,
we study the effect of the β-process on the MBRs (MSRs) of
individual neurons. Fig. 15(g1)–15(g4) (Fig. 15(h1)–15(h4)) show
the distribution of MBRs (MSRs) of individual neurons versus the
in-degree d(in) for β = 0, 0.1, 0.3, and 0.6, respectively. For the
case of β = 0, pre-synaptic neurons of a peripheral neuron
belong to a small subset of the whole population because its in-
degree is small, while those of a hub neuron with higher degrees
belong to a relatively large sub-population. As a result, MBRs
(MSRs) of peripheral neurons are somewhat broadly distributed
around the ensemble-averaged horizontal gray line, while the
distribution of MBRs (MSRs) of hub neurons is a little reduced.
As β is increased from 0, the ensemble-averaged in-degree ⟨d(in)

⟩r
increases, and then the size of the subset of pre-synaptic neurons
for a typical neuron becomes larger. Consequently, with increasing
β the variation in MBRs (MSRs) of individual neurons decreases.
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Fig. 15. Effect of the β-process on the degree of burst and spike synchronization. Plots of the out-degree d(out) versus the in-degree d(in) for β = (a1) 0, (a2) 0.1, (a3) 0.3,
and (a4) 0.6. (b) Plots of the ensemble-averaged in-degree ⟨d(in)

⟩r in the whole population, the average in-degree ⟨d(in)
peri⟩r in the group of peripheral nodes, and the average

in-degree ⟨d(in)
hub⟩r in the group of secondary hubs versus β . (c) Plot of the average path length ⟨Lp⟩r versus β . (d) Plots of the maximum betweenness centrality ⟨Bmax⟩r , the

average betweenness centrality ⟨⟨B⟩hub⟩r of secondary hubs, and the average betweenness centrality ⟨⟨B⟩peri⟩r of peripheral nodes versus β . (e) Plot of the betweenness
centralization ⟨Bc⟩r versus β . (f) Plots of fractions ⟨Bmax⟩r/⟨Btot ⟩r , ⟨B

(hub)
tot ⟩r/⟨Btot ⟩r , and ⟨B(peri)

tot ⟩r/⟨Btot ⟩r versus β . Here, quantities in (b)–(f) are obtained via 20 realizations.
Plots of MBRs of individual neurons for β = (g1) 0, (g2) 0.1, (g3) 0.3, and (g4) 0.6. Plots of MSRs of individual neurons for β = (h1) 0, (h2) 0.1, (h3) 0.3, and (h4) 0.6. Plots of
(i) the average occupation degrees of bursting onset times ⟨O(on)

b ⟩r and spikings ⟨Os⟩r , (j) the average pacing degrees of bursting onset times ⟨P (on)
b ⟩r and spikings ⟨Ps⟩r , and

(k) the statistical-mechanical bursting measure ⟨M(on)
b ⟩r and spiking measure ⟨Ms⟩r versus β . Data for ⟨O(on)

b ⟩r , ⟨P
(on)
b ⟩r , and ⟨M(on)

b ⟩r are denoted by open circles, while those
for ⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r are represented by solid circles. The vertical dotted line represents the spiking threshold β∗ (≃0.16).
Due to these variations in distributions of MBRs (MSRs), the
ensemble-averagedMBR (MSR) in the whole population decreases
slightly because of a little decrease in the average MBR (MSR) in
the majority group of peripheral nodes. Based on these changes in
MBRs andMSRs,we also discuss their effects on the occupation and
pacing degrees for both cases of burst and spike synchronization.
Fig. 15(i)–(k) show the average occupation degrees of bursting
onset times ⟨O(on)

b ⟩r and spikings ⟨Os⟩r , the average pacing
degrees of bursting onset times ⟨P (on)

b ⟩r and spikings ⟨Ps⟩r , and
the statistical-mechanical bursting measure ⟨M(on)

b ⟩r and spiking
measure ⟨Ms⟩r versus β; open circles denote data for burstings,
while solid circles represent data for spikings. For the case of
burst synchronization, with increasing β the variation in MBRs
decreases, and hence ⟨P (on)

b ⟩r increases. On the other hand, ⟨O(on)
b ⟩r

decreases only a little due to slight decrease in the ensemble-
averaged MBRs. However, ⟨P (on)

b ⟩r increases much more rapidly
than decrease in ⟨O(on)

b ⟩r . As a result, with increase in β , ⟨M(on)
b ⟩r

(given by the product of ⟨O(on)
b ⟩r and ⟨P (on)

b ⟩r ) also increases. For
the case of intraburst spike synchronization, asβ is increased, ⟨Os⟩r
also decreases very little because of slight decrease in ensemble-
averaged MSRs. Since it is less than ⟨O(on)

b ⟩r , only a fraction of
neurons exhibiting bursting activity fire spikings in the intraburst
spiking cycles. On the other hand, with increase in β ⟨Ps⟩r makes
an increase because of decreased variation in MSRs. But, it is much
less than ⟨P (on)

b ⟩r , because both the ensemble-averaged MSR ⟨f (s)
i ⟩

and the variation inMSRs from ⟨f (s)
i ⟩ aremuch larger than those for

the bursting case. As in the bursting case, ⟨Ps⟩r also increases more
rapidly than decrease in ⟨Os⟩r , and hence with increasing β ⟨Ms⟩r
also increases. However, the degree of spike synchronization ⟨Ms⟩r

is much less than the degree of burst synchronization ⟨M(on)
b ⟩r .

4. Summary

Brain networks have been found to exhibit scale-free property
in the rat hippocampal networks and the human cortical functional
network. These kinds of SFNs are inhomogeneous with a few hubs
(with an exceptionally large number of connections), unlike statis-
tically homogeneous networks such as random graphs and small-
world networks. As our SFN,we considered a directed variant of the
Barabási–Albert SFN model, evolved via two independent α- and
β-processes which occur with the probabilities α and β , respec-
tively. In addition to the α-process (i.e., standard Barabási–Albert
SFN model with growth and preferential directed attachment),
the β-process, intensifying the internal connections between pre-
existing nodes without addition of new nodes, is incorporated. In
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this type of extended SFN, we have studied the effect of scale-free
connectivity on burst and spike synchronization of bursting neu-
rons by varying the degree lα of symmetric attachment, the asym-
metric parameter 1lα of asymmetric preferential attachment, and
the occurrence probabilityβ of theβ-process. Particularly, changes
in the degree and the type of population synchronization were
intensively investigated in relation to network topology such as
the average path length Lp, the betweenness centralization Bc , and
the in-degree distribution. Both Lp (denoting typical separation
between nodes) and Bc (representing the relative load of com-
munication traffic concentrated to the head hub) affect the global
communication between nodes, while the in-degree distribution
affects individual neuronal dynamics. From the results of our study,
it follows that just taking into consideration Lp and Bc is not suf-
ficient to understand emergence of population synchronization
in SFNs, but in addition to them, the in-degree distribution must
also be considered to fully understand for the effective population
synchronization. Hence, a harmony between these network fac-
tors (affecting global communication and local dynamics) seems
to be essential for effective population synchronization. In our
work, generation of the SFNby preferential attachment of edges via
α- and β-processes might be associated with the brain plasticity
which refers to the brain’s ability to change its structure and func-
tion by modifying structure and strength of synaptic connections.
Hence,we also expect that ourworkmight be associatedwith brain
plasticity which modifies structure and strength of synaptic con-
nections during the development in humans (Pascual-Leone et al.,
2011) and rats (Song et al., 2005).

Finally, we expect that our results might provide important
insights on emergence of burst and spike synchronization of
bursting neurons, associated with neural information processes
in health and disease, in real brain networks with scale-free
property. As is well known, the real brain is considered as one
of the most complex systems (Sporns, 2011). Particularly, the
mammalian brain (e.g., cat and macaque) has been revealed to
have a modular structure composed of sparsely linked clusters
with spatial localization (Hilgetag, Burns, O’Neill, Scannell, &
Young, 2000; Hilgetag & Kaiser, 2004; Sporns et al., 2004;
Wang, Hilgetag, & Zhou, 2011). The connection structure in each
module of the real brain reveals complex topology which is
neither regular nor random (Bassett & Bullmore, 2006; Bullmore
& Sporns, 2009; Buzsáki et al., 2004; Chklovskii et al., 2004;
Larimer & Strowbridge, 2008; Song et al., 2005; Sporns, 2011;
Sporns & Honey, 2006; Sporns et al., 2000) (e.g., scale-freeness
and small-worldness). Hence, real brain networks are far more
complex than minimal models such as scale-free and small-
world networks. In the clustered network composed of scale-
free sub-networks, we expect that ‘‘modular’’ burst and spike
synchronization (where intra-dynamics of sub-populations make
some mismatching) may also emerge, in addition to the global
burst and spike synchronization (where the population behavior is
globally identical). However, explicit study on the effect ofmodular
structure on burst and spike synchronization in clustered SFNs is
beyond our present subject, and it is left as a future work.
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Appendix A. Methods for characterization of individual and
population states and network topology

In the following subappendices, we explain methods used to
characterize individual and population states of bursting neurons.
Particularly, emergence of burst and spike synchronization and
their degrees are characterized by employing realistic measures,
based on the IPBR and the IPSR, which were introduced in
our recent work (Kim & Lim, 2015a). Furthermore, network
topology such as the average path length and the betweenness
centralization, associated with global communication between
nodes, is also explained for discussion in connection with
population dynamics in Section 3.

A.1. Characterization of individual firing behaviors

Bursting neurons exhibit firing activity with two different
timescales: slow bursting timescale and fast spiking timescale.
The slow bursting behavior is characterized in terms of the
interburst interval (IBI) histogram and the mean bursting rate
(MBR) distribution. On the other hand, the fast spiking behavior is
characterized in terms of the (intraburst) interspike interval (ISI)
histogram and the mean spiking rate (MSR) distribution. The IBI
histogram and the intraburst ISI histogram are made of 103 IBIs
and 5 × 103 ISIs (obtained from all the neurons), respectively. The
bin size for both cases is 0.5ms. Averaging time for theMBR of each
individual neuron is 5 × 104 ms and the bin size for the histogram
is 0.1 Hz. For calculation of the MSR of each neuron, we follow
500 bursting cycles, and get the MSR in each bursting cycle. Then,
through average over all bursting cycles, we obtain the bursting-
averaged MSR.

A.2. Population variables

In computational and theoretical neuroscience, an ensemble-
averaged global potential,

XG(t) =
1
N

N
i=1

xi(t), (A.1)

is often used for describing emergence of population synchro-
nization. However, since it is difficult to directly obtain XG in
real experiments, instead of XG, we employ the IPFR which is
an experimentally-obtainable population quantity used in both
the experimental and the computational neuroscience (Brunel &
Hakim, 2008; Wang, 2010). The IPFR is obtained from the raster
plot of neural spikes which is a collection of spike trains of in-
dividual neurons. These raster plots of spikes, where population
synchronization may be well visualized, are fundamental data in
experimental neuroscience (e.g. epilepsy in human Alvarado-Rojas
et al., 2013; Staba, Wilson, Bragin, Fried, & Engel, 2002; Truccolo
et al., 2014 and rat Bower & Buckmaster, 2008). To obtain a smooth
IPFR from the raster plot of spikes, we employ the kernel den-
sity estimation (kernel smoother) (Shimazaki & Shinomoto, 2010).
Each spike in the raster plot is convoluted (or blurred)with a kernel
function Kh(t) to obtain a smooth estimate of IPFR, R(t):

R(t) =
1
N

N
i=1

ni
s=1

Kh(t − t(i)s ), (A.2)

where t(i)s is the sth spiking time of the ith neuron, ni is the total
number of spikes for the ith neuron, and we use a Gaussian kernel
function of band width h:

Kh(t) =
1

√
2πh

e−t2/2h2 , −∞ < t < ∞. (A.3)

Throughout the paper, the band width of the Gaussian kernel esti-
mate for R(t) is h = 1 ms. This type of IPFR kernel estimate R(t) of
bursting neurons is a population quantity describing the ‘‘whole’’
combined collective behaviors with both slow and fast timescales.
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For more clear investigation of population synchronization, we
separate the slow bursting timescale and the fast spiking timescale
via frequency filtering, and decompose the IPFR kernel estimate
R(t) into the IPBR Rb(t) and the IPSR Rs(t). Specifically, Rb(t) and
Rs(t) are obtained via low-pass and band-pass filtering of R(t), re-
spectively. Then, we can study the bursting and the spiking behav-
iors separately in terms of Rb(t) and Rs(t).

A.3. Thermodynamic bursting and spiking order parameters

We employ realistic bursting and spiking order parameters,
based on the IPBR and the IPSR to characterize the bursting and
the spiking transitions, respectively (Kim & Lim, 2015a). For deter-
mination of the threshold for the bursting transition (i.e., transi-
tion from burst synchronization to desynchronization), we employ
a realistic bursting order parameter Ob, based on the low-pass fil-
tered IPBR Rb(t), which may be applicable in both the computa-
tional and the experimental neuroscience. The mean square devi-
ation of Rb(t),

Ob ≡ (Rb(t) − Rb(t))2, (A.4)

plays the role of a bursting order parameter Ob, where the overbar
represents the time average. The bursting order parameterOb may
be regarded as a thermodynamic measure because it concerns just
the macroscopic IPBR Rb(t) without any consideration between
Rb(t) and microscopic individual burstings. In the thermodynamic
limit ofN → ∞,Ob approaches non-zero (zero) limit values for the
case of burst synchronization (desynchronization). Here, we follow
a trajectory for 3 × 104 ms after a transient time for 2 × 103 ms in
each realization. In the presence of noise, sufficient number of real-
izations (i.e., independent simulations) are necessary for obtaining
reasonable results; for each realization, an independent SFN is also
generated. Hence, we obtain ⟨Ob⟩r by averaging over 20 realiza-
tions. Hereafter, ⟨· · · ⟩r represents an average over realizations.

Similar to the case of Ob, the mean square deviations of IPBRs
R(on)
b (t) and R(off )

b (t) (obtained directly from the raster plots of
bursting onset and offset times without frequency filtering),

O
(on)
b ≡ (R(on)

b (t) − R(on)
b (t))2 and

O
(off )
b ≡ (R(off )

b (t) − R(off )
b (t))2,

(A.5)

also are bursting order parameters, used to determine the
threshold for the bursting transition. As in the case of Ob, we
discard the first time steps of a trajectory as transient time for
2 × 103 ms and then we compute O

(on)
b and O

(off )
b by following

the trajectory for 3 × 104 ms in each realization. Thus, we obtain
⟨O

(on)
b ⟩r and ⟨O

(off )
b ⟩r by averaging over 20 realizations.

Next, we also employ a realistic spiking order parameter Os,
based on the band-passed IPSR Rs(t) for determination of the
threshold for the spiking transition (i.e., transitions from complete
synchronization (including both burst synchronization and intra-
burst spike synchronization) to pure burst synchronization). The
mean square deviation of Rs(t) in the ith global bursting cycle,

O(i)
s ≡ (Rs(t) − Rs(t))2, (A.6)

plays the role of a spiking order parameter O
(i)
s in the ith global

bursting cycle of the IPBR Rb(t) (corresponding to the ith bursting
band in the raster plot of spikes). By averaging O

(i)
s over a

sufficiently large number Nb of global bursting cycles, we obtain
the spiking order parameter:

Os =
1
Nb

Nb
i=1

O(i)
s . (A.7)
Here, we follow 500 global bursting cycles in each realization, and
obtain the spiking order parameter ⟨Os⟩r by averaging over 20
realizations.

A.4. Spatial cross-correlation functions

To further understand the bursting transition, we introduce
a ‘‘microscopic’’ spatial cross-correlation between neuronal pairs
of bursting neurons through extension of the case of spiking
neurons (Kim & Lim, 2015c). For obtaining dynamical pair cross-
correlations, each train of bursting onset times for the ith neuron is
convoluted with the Gaussian kernel function Kh(t) of band width
h (=50 ms) to get a smooth estimate of IIBR r (b,on)

i (t):

r (b,on)
i (t) =

n(b,on)
i
s=1

Kh(t − t(b,on)i (s)), (A.8)

where t(b,on)i (s) is the sth bursting onset time of the ith neuron,
n(b,on)
i is the total number of bursting onset times for the ith neuron,

and Kh(t) is given in Eq. (A.3). Then, the normalized temporal
cross-correlation function C (b,on)

i,j (τ ) between the IIBRs r (b,on)
i (t)

and r (b,on)
j (t) of the (i, j) neuronal pair is given by:

C (b,on)
i,j (τ ) =

1r (b,on)
i (t + τ)1r (b,on)

j (t)
1r (b,on)

i
2
(t)


1r (b,on)

j
2
(t)

, (A.9)

where 1r (b,on)
i (t) = r (b,on)

i (t) − r (b,on)
i (t) and the overline denotes

the time average. Here, the number of data points used for the
calculation of each temporal cross-correlation function C (b,on)

i,j (τ )

is 2 × 104. Since the sampling time for getting each data point is
1 ms, 2 × 104 data points for calculation of the cross-correlation
function may be obtained in each realization of 2 × 104 ms after
a transient time of 2 × 103 ms. Then, the spatial cross-correlation
C (b,on)
L (L = 1, . . . ,N/2) between neuronal pairs separated by a

spatial distance L is given by the average of all the temporal cross-
correlations between r (b,on)

i (t) and r (b,on)
i+L (t) (i = 1, . . . ,N) at the

zero-time lag:

C (b,on)
L =

1
L

N
i=1

C (b,on)
i,i+L (0) for L = 1, . . . ,N/2. (A.10)

Here, if i + L > N in Eq. (A.10), then i + L − N is considered
instead of i+ L because neurons lie on the ring. If the spatial cross-
correlation function C (b,on)

L (L = 1, . . . ,N/2) is non-zero in the
whole range of L, then the spatial correlation length η becomes
N/2 (note that the maximal distance between neurons is N/2
because of the ring architecture on which neurons exist) covering
the whole network. For this case, synchronization appears in the
SFN; otherwise, desynchronization occurs.

A.5. State diagram

Population states change depending on the synaptic coupling
strength J and the noise intensity D, which may be well shown in
the state diagram in the J–D plane. To get the state diagram, we
first divide the J–D plane into the 20 × 10 grids. Then, at each
grid point, we calculate the bursting order parameters Ob for N =

103 and 104 to determine whether or not burst synchronization
occurs at the grid points. If Ob for N = 104 is smaller than
f · Ob for N = 103 (f is some appropriate factor less than unity;
for convenience we set f = 0.3), Ob is expected to decrease
with increasing N . For the case of decrease in Ob with increasing
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N , desynchronization occurs at the grid point; otherwise, burst
synchronization appears. Next, at the grid points where burst
synchronization occurs, we calculate the spiking order parameters
Os for N = 103 and 104 to determine whether or not intraburst
spike synchronization occurs at the grid points. Like the case of the
bursting order parameter, if Os for N = 104 is smaller than f · Os
for N = 103 (f = 0.3), Os is expected to decrease with increasing
N . For the case of decrease in Os with increasing N , only the burst
synchronization occurs at the grid point; otherwise, complete
synchronization (including both the burst and the intraburst
spike synchronization) appears. After determining the population
states (burst or spike synchronization and desynchronization)
at all grid points, we try to obtain the threshold curves
for the burst synchronization–desynchronization transition and
the burst–spike synchronization transition accurately. For this
purpose, we calculate Ob (Os) in the small parameter region
between the burst synchronization and the desynchronization (the
burst and the spike synchronization) grid points by varying J andD.
Moreover, to get more accurate transition curves, we divide a part
of the parameter plane where the transition curves change rapidly
into more minute grids and repeat the above computations.

A.6. Statistical-mechanical bursting and spiking measures

Burst synchronization may be well visualized in the raster plot
of bursting onset times. For the case of burst synchronization,
bursting stripes appear successively in the raster plot.Wemeasure
the degree of burst synchronization in terms of a statistical-
mechanical bursting measure M(on)

b , based on the IPBR kernel
estimates R(on)

b (t), which was introduced by considering the
occupation pattern and the pacing pattern of bursting onset times
in the bursting stripes (Kim & Lim, 2015a). The bursting measure
M(b,on)

i of the ith bursting onset stripe is defined by the product of
the occupation degree O(b,on)

i of bursting onset times (representing
the density of the ith bursting stripe) and the pacing degree P (b,on)

i
of bursting onset times (denoting the smearing of the ith bursting
stripe):

M(b,on)
i = O(b,on)

i · P (b,on)
i . (A.11)

The occupation degree O(b,on)
i of bursting onset times in the ith

bursting stripe is given by the fraction of HR neuronswhich exhibit
burstings:

O(b,on)
i =

N (b,on)
i

N
, (A.12)

where N (b,on)
i is the number of HR neurons which exhibit burstings

in the ith bursting onset stripe. For the full occupation O(b,on)
i = 1,

while for the partial occupation O(b,on)
i < 1. The pacing degree

P (b,on)
i of bursting onset times in the ith bursting onset stripe can

be determined in a statistical-mechanical way by taking into ac-
count their contributions to the macroscopic IPBR kernel estimate
R(on)
b (t). Each global bursting onset cycle of R(on)

b (t) begins from the
left minimum, passes the central maximum, and ends at the right
minimum. We note that the central maxima of R(on)

b (t) between
neighboring left and right minima of R(on)

b (t) coincide with centers
of bursting onset stripes in the raster plot. The left half subregion
of a global bursting onset cycle of R(on)

b (t) is the part between its
left minimum (corresponding to the beginning point of the global
bursting onset cycle) and the central maximum, while its right half
subregion is the part between the central maximum and the right
minimum(corresponding to the ending point of the global bursting
onset cycle). Then, an instantaneous global bursting onset phase
Φ
(on)
b (t) of R(on)

b (t) is introduced via linear interpolation in the left
and right half subregions forming a global bursting onset cycle:
linear interpolation in the left (right) half subregion gives the left
(right) half of the global bursting onset phase Φ

(on)
b (t) in the fol-

lowing way (Kim & Lim, 2015a). The left half of the global bursting
onset phase Φ

(on)
b (t) between the left minimum (corresponding to

the beginning point of the ith global bursting onset cycle) and the
central maximum is given by

Φ
(on)
b (t) = 2π(i − 3/2) + π


t − t(on,min)

i

t(on,max)
i − t(on,min)

i


for t(on,min)

i ≤ t < t(on,max)
i (i = 1, 2, 3, . . .), (A.13)

and the right half of Φ
(on)
b (t) between the central maximum and

the right minimum (corresponding to the beginning point of the
(i + 1)th global bursting onset cycle) is given by

Φ
(on)
b (t) = 2π(i − 1) + π


t − t(on,max)

i

t(on,min)
i+1 − t(on,max)

i


for t(on,max)

i ≤ t < t(on,min)
i+1 (i = 1, 2, 3, . . .), (A.14)

where t(on,min)
i is the beginning time of the ith global bursting on-

set cycle (i.e., the time at which the left minimum of R(on)
b (t) ap-

pears in the ith global bursting onset cycle) and t(on,max)
i is the

time at which the maximum of R(on)
b (t) appears in the ith global

bursting onset cycle. Then, the contribution of the kth microscopic
bursting onset time in the ith bursting onset stripe occurring at
the time t(b,on)k to R(on)

b (t) is given by cosΦ
(b,on)
k , where Φ

(b,on)
k is

the global bursting onset phase at the kth bursting onset time (i.e.,
Φ

(b,on)
k ≡ Φ

(on)
b (t(b,on)k )). A microscopic bursting onset time makes

the most constructive (in-phase) contribution to R(b,on)
b (t) when

the corresponding global phase Φ
(b,on)
k is 2πn (n = 0, 1, 2, . . .),

while it makes the most destructive (anti-phase) contribution to
R(b,on)
b (t) when Φ

(b,on)
k is 2π(n − 1/2). By averaging the contribu-

tions of all microscopic bursting onset times in the ith bursting on-
set stripe to R(on)

b (t), we obtain the pacing degree of bursting onset
times in the ith bursting onset stripe:

P (b,on)
i =

1

B(on)
i

B(on)
i
k=1

cosΦ
(b,on)
k , (A.15)

where B(on)
i is the total number ofmicroscopic bursting onset times

in the ith bursting onset stripe. By averaging M(b,on)
i of Eq. (A.11)

over a sufficiently large number N (on)
b of bursting onset stripes, we

obtain the statistical-mechanical bursting measureM(on)
b :

M(on)
b =

1

N (on)
b

N(on)
b
i=1

M(b,on)
i . (A.16)

Here, we follow 500 global bursting onset cycles (corresponding to
the bursting onset stripes in the raster plot) in each realization and
obtain ⟨O(on)

b ⟩r , ⟨P
(on)
b ⟩r , and ⟨M(on)

b ⟩r by averaging over 20 realiza-
tions.

Next, we consider the intraburst spike synchronization which
may be well visualized in the raster plot of spikes. Spiking
stripes (composed of intraburst spikes and indicating intraburst
spike synchronization) appear within the bursting bands of the
raster plot. Similar to the case of burst synchronization, we also
measure the degree of spike synchronization by employing both a
statistical-mechanical spiking measure Ms, which is explained in
main Section 3.
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A.7. Network topology

We explain the network topology such as the average path
length Lp and the betweenness centralization Bc , associated with
global communication between nodes. The average path length Lp,
representing typical separation between twonodes in the network,
is obtained through the average of the shortest path lengths of all
nodal pairs (Albert & Barabási, 2002):

Lp =
1

N(N − 1)

N
i=1

N
j=1(j≠i)

lij, (A.17)

where lij is the shortest path length from the node i to the node j.
Next,we consider the betweenness centrality Bi of the node iwhich
represents the fraction of all the shortest paths between any two
other nodes that pass through the node i (Freeman, 1977, 1978):

Bi =

N
j=1(j≠i)

N
k=1(k≠j&k≠i)

σjk(i)
σjk

, (A.18)

where σjk(i) is the number of shortest paths from the node j to
the node k passing through the node i and σjk is the total number
of shortest paths from the node j to the node k. To examine
how evenly the betweenness centrality (representing the load of
communication traffic) is distributed among nodes, we consider
the group betweenness centralization Bc , denoting the degree to
which the maximum betweenness centrality Bmax of the head hub
exceeds the betweenness centralities of all the other nodes. We
obtain Bc through the sum of differences between the maximum
betweenness centrality Bmax of the head hub and the betweenness
centrality Bi of other node i, and normalization by dividing the sum
of differences with its maximum possible value (Freeman, 1977,
1978):

Bc =

N
i=1

(Bmax − Bi)

max
N
i=1

(Bmax − Bi)

; (A.19)

max
N
i=1

(Bmax − Bi) =
(N − 1)(N2

− 3N + 2)
2

,

where the maximum sum of differences in the denominator
corresponds to that for the star network. Association of Lp
and Bc with burst and spike synchronization is discussed in
Section 3.2. The global communication between nodes becomes
better for shorter average path length Lp and smaller betweenness
centrality Bc .

Appendix B. Lists of acronyms and variables

In Appendix B, we present lists of acronyms, variables for the
systems and variables for the characterization in Tables B.2–B.4,
respectively.

Table B.2
List of acronyms.

Acronym Description

SFN Scale-free network
HR Hindmarsh–Rose
IBI Interburst interval
MBR Mean bursting rate
ISI Interspike interval
MSR Mean spiking rate
IPFR Instantaneous population firing rate
IPBR Instantaneous population burst rate
IPSR Instantaneous population spike rate
IIBR Instantaneous individual burst rate
Table B.3
List of variables for the systems.

xi Fast membrane potential of the ith neuron
yi Fast recovery current of the ith neuron
zi Slow adaptation current of the ith neuron
t Time
IDC Common DC current injected into the each neuron
D Noise strength
ξ Gaussian white noise
J Synaptic strength
W Connection weight matrix
d(in)
i In-degree of the ith neuron

g Fraction of open synaptic ion channels
τr , τd , τl Synaptic rise, decay, and delay times
Xsyn Synaptic reversal potential
l(in)α Number of incoming (afferent) edges for the α-process
l(out)α Number of outgoing (efferent) edges for the α-process
lα Number of incoming and outgoing edges for the symmetric

preferential attachment
1lα Asymmetry parameter for the asymmetric preferential

attachment
lβ Number of incoming and outgoing edges for the β-process
α Probability for the α-process
β Probability for the β-process (α + β = 1)
N Number of nodes in the network

Table B.4
List of variables for the characterization.

fb Bursting frequency of individual neurons
fs Spiking frequency of individual neurons
R(t) IPFR kernel estimate
Rb(t) IPBR kernel estimate
Rs(t) IPSR kernel estimate
R(on)
b (t), R(off )

b (t) IPBR kernel estimate for bursting onset and offset times
r (b,on)
b (t) IIBR kernel estimate

Ob Bursting order parameter based on Rb(t)
C (b,on)
i,j (τ ) Temporal cross-correlation functions between IIBRs of

the (i, j) neural pair
C (b,on)
L (τ ) Spatial cross-correlation

O(on)
b , P (on)

b ,M(on)
b Occupation and pacing degrees of bursting onset times

and bursting measure
Φ

(on)
b (t) Global bursting onset phase

Os Spiking order parameter based on Rs(t)
Os , Ps ,Ms Occupation and pacing degrees of spiking times and

spiking measure
Lp Average path length
Bi Betweenness centrality of the i node
Bc Betweenness centralization
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