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We consider a biological network of the hippocampal dentate gyrus (DG). Computational models suggest that
the DG would be a preprocessor for pattern separation (i.e., a process transforming a set of similar input patterns
into distinct nonoverlapping output patterns) which could facilitate pattern storage and retrieval in the CA3 area
of the hippocampus. The main encoding cells in the DG are the granule cells (GCs) which receive the input from
the entorhinal cortex (EC) and send their output to the CA3. We note that the activation degree of GCs is very low
(∼5%). This sparsity has been thought to enhance the pattern separation. We investigate the dynamical origin
for winner-take-all (WTA) competition which leads to sparse activation of the GCs. The whole GCs are grouped
into lamellar clusters. In each cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs.
There are three kinds of external inputs into the GCs: the direct excitatory EC input; the indirect feedforward
inhibitory EC input, mediated by the HIPP (hilar perforant path-associated) cells; and the excitatory input from
the hilar mossy cells (MCs). The firing activities of the GCs are determined via competition between the external
E and I inputs. The E-I conductance ratio R(con)

E−I
∗

(given by the time average of the ratio of the external E to I
conductances) may represent well the degree of such external E-I input competition. It is thus found that GCs
become active when their R(con)

E−I
∗

is larger than a threshold R∗
th, and then the mean firing rates of the active GCs

are strongly correlated with R(con)
E−I

∗
. In each cluster, the feedback inhibition from the BC may select the winner

GCs. GCs with larger R(con)
E−I

∗
than the threshold R∗

th survive, and they become winners; all the other GCs with

smaller R(con)
E−I

∗
become silent. In this way, WTA competition occurs via competition between the firing activity

of the GCs and the feedback inhibition from the BC in each cluster. Finally, we also study the effects of MC
death and adult-born immature GCs on the WTA competition.

DOI: 10.1103/PhysRevE.105.014418

I. INTRODUCTION

The hippocampus, consisting of the dentate gyrus (DG)
and the areas CA3 and CA1, is known to play a key role
in memory formation, storage, and retrieval (e.g., episodic
and spatial memory) [1,2]. In this hippocampus, the area
CA3 has been often considered to operate as an autoassoci-
ation network, because there are extensive recurrent collateral
synapses between the pyramidal cells in the CA3. The autoas-
sociation network would store input “patterns” in modifiable
synapses between the pyramidal cells. Then, when a partial
or noisy version of the stored pattern is presented, activ-
ity of pyramidal cells would propagate along the previously
strengthened pathways and reinstate the complete stored pat-
tern, which is called the process of pattern completion. The
idea of hippocampal autoassociation network has originated
in the work of Marr [3,4] and was elaborated later by many
others [5–13].

Storage capacity of autoassociation memory corresponds
to the number of distinct patterns that can be stored and
recalled. It could be increased if the input patterns are sparse
(i.e., there are only a few active elements in each pattern) and
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nonoverlapping (orthogonalized) [i.e., active elements in one
pattern may be likely to be (inactive) silent elements in other
patterns] [3–13]. This process of transforming a set of input
patterns into sparser and orthogonalized patterns is called
pattern separation.

The DG is the gateway to the hippocampus that receives
inputs from the entorhinal cortex (EC) via the perforant paths
(PPs). Many computational models in Refs. [3–19] suggest
that the principal granule cells (GCs) in the DG would per-
form pattern separation on the input patterns coming from
the EC by sparsifying and orthogonalizing them (i.e., the
input patterns from the EC would become sparser and or-
thogonalized via pattern separation of the GCs) which could
facilitate pattern storage and retrieval in the CA3. Then, the
pattern-separated outputs are projected (from the GCs) to the
pyramidal cells in the CA3 via the mossy fibers (MFs). These
sparse, but relatively strong MFs would play a role of “teach-
ing inputs” (to the autoassociation network in the CA3) which
could tend to trigger synaptic plasticity between the pyramidal
cells and also between the pyramidal cells and the EC cells
[11–13,15–17]. Thus, a new pattern could be stored in mod-
ified synapses (i.e., pattern storage could occur via synaptic
plasticity caused by the MFs). In this way, pattern separation
in the DG could facilitate pattern storage in the CA3.

In addition to the indirect inputs from the EC to the CA3
through the DG (i.e., the projections of the outputs from the
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DG onto the CA3 via the MFs would be responsible for
pattern storage), direct weaker inputs from the EC to the CA3
pyramidal cells via PPs represent partial or noisy version of
patterns to be recalled. These direct EC inputs would activate
a subset of pyramidal cells in the CA3 which would in turn
activate other pyramidal cells through the previously strength-
ened synapses until the complete stored pattern is recalled
(i.e., stored patterns would be recalled via pattern completion)
[11–13,15–17]. In this way, the direct EC inputs to the CA3
would play a role of retrieval cue for recalling the previously
stored patterns via pattern completion, in contrast to the indi-
rect EC inputs via the MFs from the DG which could cause
synaptic plasticity leading to pattern storage.

We also note that convergent evidences, attributing pattern
separation to the DG, have been experimentally accumulated
[20,21]. For example, electrophysiological recordings in GCs
in the DG of the rodent [22] and human functional magnetic
resonance imaging in the DG [23] have largely supported the
pattern-separation ideas suggested in computational models.
In addition, lesion studies in rats showed that DG-lesioned rats
were impaired in pattern separation [24–27], which confirmed
that the DG is necessary for pattern separation.

In this paper, we focus on the hippocampal DG, and
consider a biological network of the DG. The principal
GCs in the DG network receive the input patterns from the
EC via the PPs, perform pattern separation on the EC in-
puts, and project their outputs onto the CA3 via MFs. In
this process of pattern separation, the activation degree Da

of the GCs is so low (Da ∼ 5 %) [14]. The GCs exhibit
sparse firing activity via competitive learning [6,11,13,14],
and the sparsity has been considered to enhance the pattern
separation [11–19].

Here, we investigate the dynamical origin of the winner-
take-all (WTA) competition which leads to sparse activation
of the GCs (improving the pattern separation) [28–37]. We
first note that the whole GCs are grouped into the lamellar
clusters [38–41]. In our DG network, there are 20 (nonover-
lapping) clusters. Each cluster consists of 100 excitatory (E)
GCs along with one inhibitory (I) basket cell (BC). Hence, the
total number of BCs (NBC) is 20, corresponding to 1/100 of
the total number of GCs (NGC = 2, 000); the GC to BC ratio
(100 : 1) is consistent with anatomical data [42–46]. Thus,
the GCs and the BC in each cluster form an E-I dynamical
loop where all the GCs are coupled to the single BC; there are
no couplings between the GCs. Hence, all the GCs provide
excitation to the BC which then gives back the feedback
inhibition to all the GCs. Then, competition between the firing
activity of the GCs and the feedback inhibition from the BC
selects which GCs fire. Intuitively, strongly active GCs may
survive under the feedback inhibition of the BC (i.e., they
become winners), while weakly active GCs become silent
in response to the feedback inhibition of the BC. Through
intensive computational work for WTA competition, we get
the quantitative dynamical origin for WTA, consistent with
the intuitive thinking.

The firing activities of the GCs are determined via compe-
tition between the external E and I inputs to the GCs. The EC
is the main external input source for the GCs. There are di-
rect excitatory EC input via the PPs and indirect feedforward
inhibitory EC input, mediated by the HIPP (hilar perforant

path-associated) cells in the hilus of the DG [14–17,19] (e.g.,
see Fig. 1 in Ref. [14]); random connections for EC → GC
and EC → HIPP cell → GC [see Fig. 1(b)].

In the DG, the hilus, consisting of the excitatory mossy
cells (MCs) and the inhibitory HIPP cells, underlies the GC
layer (composed of GCs and BCs) [14–19,47–53]. Here,
lamellar cluster organization for the MCs is also considered,
like the case of the GCs and the BCs [15–17]. In each cluster,
there are 4 MCs; each MC receives excitatory inputs from
all the GCs in the same cluster [i.e., lamellar connection in
Fig. 1(b)]. However, each MC in a cluster makes excitatory
projection randomly to the GCs and the BCs in other clusters
[i.e., cross-lamellar connections in Fig. 1(b)] [15–17,52].

Thus, there are two types of excitatory cells (i.e., GCs and
MCs) in the DG rather than one kind of pyramidal cells in
the CA3 and the CA1. The MCs in a cluster controls the firing
activity of the GC-BC loop in other clusters via cross-lamellar
connections by providing excitation to both the GCs and the
BCs. Thus, there appears a third type of excitatory input from
the hilar MCs into the GCs, in addition to the two kinds of
external EC inputs (i.e., the direct excitatory EC input and
the indirect feedforward inhibitory EC input, mediated by the
HIPP cells). Consequently, there are three kinds of external
inputs into the GCs; two types of excitatory inputs from the
EC via PPs and from the MCs and one kind of inhibitory input
from the HIPP cells.

For characterization of the degree of the external E-I input
competition, we introduce the E-I conductance ratio R(con)

E−I
∗
,

given by the time average of the ratio of the external E to
I conductances, gE(t )/gI(t ) (the overline denotes time av-
erage); the excitatory conductance gE(t ) = gEC(t ) + gMC(t )
[gEC(t ): conductance of the excitatory EC input and gMC(t ):
conductance of the excitatory MC input] and the inhibitory
conductance gI(t ) = gHIPP(t ) (conductance of the inhibitory
HIPP input). When their R(con)

E−I
∗

is greater than a threshold
R∗

th, GCs become active; otherwise, they become silent. The
mean firing rates (MFRs) of the active GCs are also found
to be strongly correlated with R(con)

E−I
∗

(i.e., with increasing

R(con)
E−I

∗
, their MFRs also increase linearly). In this way, the

degree of the firing activity of the GCs may be well character-
ized in terms of their R(con)

E−I
∗
.

Then, the feedback inhibition from the BC selects the
winner GCs in each cluster. GCs with larger R(con)

E−I
∗

than
the threshold R∗

th are found to survive under the feedback
inhibition, and they become winners, while all the other GCs
with smaller R(con)

E−I
∗

become silent in response to the feedback
inhibition. Thus, WTA competition occurs through competi-
tion between the firing activity of the GCs and the feedback
inhibition from the BC.

During epileptogenesis MF sprouting and hilar cell (MC
and HIPP cell) death occur [54,55]. Here, we are concerned
about the MC loss. In contrast to MC death, young immature
GCs (imGCs) appear via adult neurogenesis [16,56–61]. Fi-
nally, we also study the effects of MC death and adult-born
imGCs on the WTA competition.

This paper is organized as follows. In Sec. II, we describe a
biological network of the hippocampal DG. Then, in the main
Sec. III, we investigate dynamical origin for the WTA compe-
tition and effects of MC death and adult-born imGCs on the
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FIG. 1. Hippocampal dentate gyrus (DG) spiking neural network. (a) Schematic representation of major cells and synaptic connections
included in our DG network. The DG consists of the granule layer (GL), the hilus, and the molecular layer (ML). GC, BC, MC, and HIPP
represent granule cell, basket cell, mossy cell, and hilar perforant-path associated cell, respectively. Dendrites are denoted by thick lines.
External input from the entorhinal cortex (EC) is provided via perforant path (PP). Lines with triangles and circles denote excitatory and
inhibitory synapses, respectively. (b) Box diagram for our DG network with three types of synaptic connections. Blue, red, and black lines
represent lamellar, cross-lamellar, and random connections, respectively.

WTA competition. Finally, we give summary and discussion
in Sec. IV.

II. BIOLOGICAL NETWORK OF THE HIPPOCAMPAL
DENTATE GYRUS

In this section, we describe our biological network of
the hippocampal DG, and briefly present the governing
equations for the population dynamics; for details, refer to
Appendices A and B. Hyperexcitability of the GCs via sprout-
ing of the MFs has been studied in biological networks of
the DG with a high degree of anatomical and physiological
realism [54,55]. These realistic biological networks consist
of the hilar cells (e.g., MCs and HIPP cells) as well as the
GCs, in contrast to the prior abstract computational models
which focused primarily on the GCs (without considering the
hilar cells) and performed pattern separation and completion
[3–13]. However, the above works in the biological networks
did not address specifically the pattern separation, although
hyperexcitability of the GCs would decrease sparsity of the
GC activity, leading to increase in overlap and then to decrease
in pattern separation.

To bridge the gap between the abstract computational
models and the realistic biological networks, a relatively
small-scale simplified network, based on the prior ideas of the
abstract models and including not only the GCs, but also the
hilar cells, was developed to investigate the pattern separation
[14,15]. Recently, the effects of hilar ectopic GCs, hyperex-
citability, and GC dendrites on the pattern separation have also
been investigated in the biological spiking neural networks
[16–19].

Here, we develop a spiking neural network for the hip-
pocampal DG, based on the anatomical and the physiological
properties described in Refs. [14,15,19]. Obviously, our spik-
ing neural network will not capture all the detailed anatomical

and physiological complexity of the DG. However, with lim-
ited, but key elements and synaptic connections in our DG
network, dynamical origin for the WTA could be successfully
studied. Hence, our DG network model would build a foun-
dation upon which additional complexity can be added and
guide further research.

A. Architecture of the spiking neural network
of hippocampal dentate gyrus

Figure 1(a) shows schematic representation of major cells
and synaptic connections included in our hippocampal DG
network and Fig. 1(b) shows the box diagram for our DG
network with three types of lamellar (blue), cross-lamellar
(red), and random (black) synaptic connections. In the DG, we
consider the granular layer (GL), consisting of the excitatory
GCs and the inhibitory BCs, the underlying hilus, composed
of the excitatory MCs and the inhibitory HIPP cells, and the
upper molecular layer (ML). We note that there are two types
of excitatory cells, GCs and MCs, in contrast to the case of
the CA3 and CA1 with only one type of excitatory pyramidal
cells.

From the outside of the DG, the EC provides the external
excitatory inputs randomly to the GCs and the HIPP cells (that
provide inhibition to the GCs) via PPs [14–17,19], as shown in
Fig. 1 in Ref. [14]. The HIPP cells have dendrites extending
to the outer ML, where they are targeted by the PPs, along
with axons projecting to the outer ML (primarily to the GCs)
[14,62–66].

Thus, the GCs receive direct excitatory EC input via PPs
(EC → GC) and indirect feedforward inhibitory EC input,
mediated by the hilar HIPP cells (EC → HIPP → GC).
The GCs are grouped into lamellar clusters [38–41], and one
inhibitory BC exists in each cluster [14]. Thus, a dynamical
GC-BC loop is formed, and the BC (receiving the excitation
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from all the GCs) provides the feedback inhibition to all the
GCs [i.e., lamellar connection in Fig. 1(b)]. In a cluster, there
are no synaptic couplings between the GCs. Also, there are no
intercluster interactions for the GCs and the BCs.

We also consider lamellar organization for the hilar MCs
[15–17,52] (i.e., all the MCs also are grouped into lamellar
clusters). Each MC in a cluster receives excitation from all
the GCs in the same cluster (lamellar connection), while it
makes excitatory projection randomly to GCs and BCs in
other clusters with the probability 20% [cross-lamellar con-
nection in Fig. 1(b)] [52]. These MCs control the activity of
the GC-BC loop in each cluster via cross-lamellar connections
by providing excitation to the GCs and the BC.

Thus, the GCs receive the direct excitatory MC input
(MC → GC) and the indirect disynaptic inhibitory MC input,
mediated by the BC (MC → BC → GC). In this way, from the
outside of the cluster, the GCs receive two types of excitatory
inputs from the EC and the MCs and one kind of inhibitory
input from the HIPP cells, and within the cluster they receive
the feedback inhibition from the BC (receiving the excitation
from the GCs and the MCs).

We develop a one-dimensional ring network for the hip-
pocampal DG. Due to the ring structure, the network has
advantage for computational efficiency, and its visual repre-
sentation may also be easily made. Based on the anatomical
data given in Refs. [14,15,19], we choose the numbers of the
constituent cells (GCs, BCs, MCs, and HIPP cells) and the
EC cells in our DG network and the connection probabilities
between them.

Here, we consider a scaled-down spiking neural network
where the total number of excitatory GCs is NGC (=2000),
corresponding to 1

500 of the 106 GCs found in rats [67]. These
GCs are grouped into the Nc (=20) lamellar clusters [38–41].
Then, in each cluster, there exist n(c)

GC (=100) GCs and one
inhibitory BC [15–17,55]. Thus, the number of BCs in the
whole DG network becomes NBC (=20), corresponding to
1/100 of NGC; the GC to BC ratio (100 : 1) is consistent
with anatomical data [42–46]. In this way, in each cluster, a
dynamical GC-BC loop is formed, and the BC (receiving the
excitation from all the GCs) provides the feedback inhibition
to all the GCs via lamellar connections.

In addition to the GCs and the BCs in the GL, the hilus
consists of the excitatory MCs and the inhibitory HIPP cells.
In rats, the number of MCs, NMC, varies from 30 000 to
50 000, which correspond to 3–5 MCs per 100 GCs [43,67].
Hence, we choose NMC = 80 in our DG network. Also, the
estimated number of HIPP cells, NHIPP, is about 12 000 in rats
[43], corresponding to about 2 HIPP cells per 100 GCs. In
our DG network, the number of the HIPP cells is chosen as
NHIPP = 40.

We also consider lamellar organization for the MCs, as in
Refs. [15–17,52]; for simplicity, lamellar organization for the
HIPP cells is not considered [15]. Like the case of the GCs and
the BCs, the whole MCs (NMC = 80) are grouped into the 20
lamellar clusters. Hence, in each cluster, there are four MCs.
Each MC in a cluster receives excitation from all the GCs in
the same cluster via lamellar connections, while it provides
excitation randomly to the GCs and the BCs in other clusters
via cross-lamellar connections with the connection probability
p(GC,MC) (p(BC,MC)) = 20% [52]. In this way, the MCs control

the activity of the GC-BC loop in each cluster by providing
excitation to the GCs and the BC through cross-lamellar con-
nections.

The EC layer II is the external source providing the exci-
tatory inputs randomly to the GCs and the HIPP cells via the
PPs [14,19]. The estimated number of the EC layer II cells,
NEC, is about 200 000 in rats, which corresponds to 20 EC
cells per 100 GCs [68]. Hence, NEC = 400 in our network.
The activation degree Da of the EC cells is chosen as 10%
[69]. We randomly choose 40 active ones among the 400 EC
(layer II) cells. Each active EC cell is modeled in terms of the
Poisson spike train with frequency of 40 Hz [70]. Here, the
random-connection probability p(GC,EC) (p(HIPP,EC)) from the
presynaptic EC cells to a postsynaptic GC (HIPP cell) is 20%
[14,19]. Hence, each GC or HIPP cell is randomly connected
with the average number of 80 EC cells (among which the
average number of active EC cells is just 8).

Each GC in the cluster receives inhibition from the ran-
domly connected HIPP cells with the connection probability
p(GC,HIPP) = 20 % [14,19]. Then, the firing activity of the
GCs is determined via competition between the two types of
excitatory inputs from the EC cells and from the MCs and the
inhibitory input from the HIPP cells. Eventually, winner GCs
in each cluster are selected through competition between the
firing activity of the GCs and the feedback inhibition from
the BC; strongly active GCs may survive under the feedback
inhibition from the BC.

B. Single neuron models and synaptic currents in the DG
spiking neural network

As elements of the hippocampal DG spiking neural net-
work, we choose leaky integrate-and-fire (LIF) spiking neuron
models with additional afterhyperpolarization (AHP) cur-
rents, determining refractory periods, as in our prior study
of cerebellar ring network [71,72]. This LIF spiking neuron
model is one of the simplest spiking neuron models [73]. Be-
cause of its simplicity, it can be easily analyzed and simulated.
Hence, it has been very popularly used as a spiking neuron
model.

Our DG network is composed of four populations of GCs,
BCs, MCs, and HIPP cells. The state of a neuron in each
population is characterized by its membrane potential. Then,
time evolution of the membrane potential is governed by four
types of currents into the neuron; the leakage current, the AHP
current, the external constant current, and the synaptic current.

We note that the equation for a single LIF neuron model
(without the AHP current and the synaptic current) describes
a simple parallel resistor-capacitor (RC) circuit. Here, the first
type of leakage current is due to the resistor and the integration
of the external current is due to the capacitor which is in
parallel to the resistor. When its membrane potential reaches
a threshold, a neuron fires a spike, and then the second type of
AHP current follows. As the decay time of the AHP current
is increased, the refractory period becomes longer. Here, we
consider a subthreshold case where the third type of external
constant current is zero [19].

Detailed explanations on the leakage current and the AHP
current, associated with each type of single neuron (GC,
BC, MC, and HIPP cell), are presented in Appendix A. The
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parameter values for the capacitance, the leakage current, and
the AHP current for the GC, BC, MC, and HIPP cell are
shown in Table I in Appendix A. These values are based on
physiological properties of the GC, BC, MC, and HIPP cell
[19,49].

Next, we consider the fourth type of synaptic current.
Detailed explanations on the synaptic current are given in
Appendix B; here, we present just a brief and clear expla-
nation on it. There are three kinds of synaptic currents from
a presynaptic source population to a postsynaptic neuron in
the target population, two kinds of excitatory AMPA and
NMDA receptor-mediated synaptic currents, and one type of
inhibitory GABA receptor-mediated synaptic current. In each
R (AMPA, NMDA, and GABA) receptor-mediated synaptic
current, the synaptic conductance is given by the product
of the synaptic strength per synapse, the average number of
afferent synapses (connected to a postsynaptic neuron), and
the fraction of open ion channels.

The postsynaptic ion channels are opened due to the bind-
ing of neurotransmitters (emitted from the source population)
to receptors in the target population. The time course of
the fraction of open ion channels is given by a sum of
“double-exponential” functions over presynaptic spikes. The
double-exponential function, corresponding to contribution of
a presynaptic spike, is controlled by the synaptic rising time
constant, the synaptic decay time constant, and the synaptic
latency time constant; for details, refer to Eq. (B4) in Ap-
pendix B.

As in our prior works in the cerebellum [71,72], the frac-
tion of open ion channels (i.e., contributions of summed
effects of presynaptic spikes) may be well approximated by
the bin-averaged spike rate of presynaptic neurons. Then, the
synaptic conductance may be approximately obtained in terms
of the product of the synaptic strength per synapse, the aver-
age number of afferent synapses, and the bin-averaged spike
rate of presynaptic neurons.

The parameter values for the synaptic strength per synapse,
the synaptic rising time constant, the synaptic decay time
constant, the synaptic latency time constant, and the synaptic
reversal potential for the synaptic currents into the GCs and
for the synaptic currents into the HIPP cell, the MC, and the
BC are given in Tables II and III, respectively, in Appendix B.
These parameter values are also based on the physiological
properties of the relevant cells [19,74–81].

All of our source codes for computational works were
written in C programming language. Numerical integration
of the governing equation for the time evolution of states of
individual spiking neurons is done by employing the second-
order Runge-Kutta method with the time step 0.1 ms. We
will release our source codes at the public databases such as
ModelDB.

III. DYNAMICAL ORIGIN FOR THE WINNER-TAKE-ALL
COMPETITION

As a preprocessor for the CA3, the GCs in the DG would
perform the pattern separation, facilitating the pattern stor-
age and completion in the CA3. The GCs exhibit sparse
firing activity through competitive learning, which has been
thought to improve the pattern separation. In this section, we

investigate the dynamical origin of the WTA competition,
leading to the sparse activation of the GCs. The firing activ-
ity of the GCs may be well determined in terms of the E-I
conductance ratio R(con)

E−I
∗

(given by the time average of the
ratio of the external E to I conductances). GCs become active
(i.e., they become winners) only when their R(con)

E−I
∗

is larger
than a threshold R∗

th. WTA competition is thus found to occur
via competition between the firing activity of the GCs and the
feedback inhibition from the BC in each cluster. We also study
the effects of the MC death and the adult-born imGCs on the
WTA competition.

A. Firing activity of GCs in the presence of the external
excitatory EC and the inhibitory HIPP inputs

In this subsection, we study firing activity of the GCs
under the external excitatory input from the EC cells and the
inhibitory input from the HIPP cells. The firing activity of the
GCs is found to be determined via competition between the
excitatory EC input and the inhibitory HIPP input. Particu-
larly, such competition may be well represented in terms of
the E-I synapse ratio R(syn)

E−I , given by the ratio of the number
of the presynaptic EC cells (M (GC,EC)

syn ) to the number of the
presynaptic HIPP cells (M (GC,HIPP)

syn ).
Figure 2 shows the external input from the EC. There are

direct excitatory input from the EC cells and indirect feedfor-
ward inhibitory EC input, mediated by the hilar HIPP cells
[see Fig. 1]. Among the 400 EC cells, randomly chosen 40
active cells make spikings (i.e., activation degree Da = 10%).
Each active EC cell is modeled in terms of the Poisson spike
train with frequency of 40 Hz. After a break stage (t = 0–300
ms), Poisson spike train of each active EC cell follows during
the stimulus stage (t = 300–30, 300 ms; the stimulus period
Ts is 3 × 104 ms).

Population firing activity of the active EC cells may be well
visualized in the raster plot of spikes in Fig. 2(a1) which is
a collection of spike trains of individual active EC cells; for
convenience, only a part from t = 300 to 1300 ms is shown
in the raster plot of spikes. Spikes of the active EC cells
are completely scattered without forming any synchronized
“spiking stripes,” and hence the population state of the ac-
tive ECs becomes desynchronized. As a population quantity
showing collective firing behaviors, we use an instantaneous
population spike rate (IPSR) which may be obtained from the
raster plots of spikes [82–87]; for details, refer to Appendix C.
The IPSR REC(t ) of the active EC cells is shown in Fig. 2(a2),
and it shows relatively small noisy fluctuations around its time
average (i.e., REC(t ) = 40 Hz) without distinct synchronous
oscillations.

The active EC cells provide direct excitatory input and
indirect feedforward inhibitory input, mediated by the HIPP
cells, to the GCs. Thus, the EC cells and the HIPP cells
become the excitatory and the inhibitory input sources to the
GCs, respectively. We note that each HIPP cell is randomly
connected to the average number of 80 EC cells with the
connection probability p(HIPP,EC) = 20%, among which the
average number of active EC cells is 8. Figures 2(b1) and
2(b2) show the raster plot of spikes of the active HIPP cells
and the corresponding IPSR RHIPP(t ). Among the 40 HIPP
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FIG. 2. External inputs from the EC. Direct excitatory (E) EC
input via PP: (a1) Raster plot of spikes of 40 active EC cells. (a2)
Instantaneous population spike rate REC(t ) of active EC cells. Band
width for REC(t ): h = 20 ms. Indirect disynaptic inhibitory (I) EC
input, mediated by the hilar HIPP cells: (b1) Raster plot of spikes
of 37 active HIPP cells. (b2) Instantaneous population spike rate
RHIPP(t ) of active HIPP cells. Band width for RHIPP(t ): h = 20 ms.
(c1) Normalized histogram of M (HIPP,EC)

syn (number of presynaptic
active EC cells onto the postsynaptic active HIPP cells). Bin size
for the histogram is 1. (c2) Normalized histogram of f (HIPP) [mean
firing rate (MFR) of active HIPP cells]. Bin size for the histogram is
2 Hz. (d) Plot of f (HIPP) versus M (HIPP,EC)

syn .

cells, 37 HIPP cells are active, while the remaining 3 HIPP
cells (without receiving excitatory input from the active EC
cells) are silent; the activation degree of the HIPP cells is
92.5%. Also, the spiking of the active HIPP cells begins from
t � 320 ms [i.e. about 20 ms delay for the firing onset of the
HIPP cells with respect to the firing onset (t = 300 ms) of the
active EC cells].

As in the case of the active EC cells, no synchronized
spiking stripes are shown in the raster plot of spikes of the
active HIPP cells. However, unlike the case of the active EC
cells (showing stochastic firing activity), the spike train of
each active HIPP cell seems to be quasi-regular with its own
MFR (i.e., each active HIPP cell seems to exhibit a quasi-
regular firing activity). However, their MFRs seem to vary
very differently depending on the active HIPP cells. Due to
such diverse MFRs, no synchronized spiking stripes appear
in the raster plot of spikes of the active HIPP cells. Hence,
their IPSR RHIPP(t ) also shows noisy fluctuations around its
time average (i.e., RHIPP(t ) = 23 Hz) without synchronous
oscillations.

FIG. 3. Firing activity of GCs in the presence of only the external
direct excitatory EC input and indirect feedforward inhibitory EC
input, mediated by the HIPP cells. (a) Diagram for the external
direct excitatory input from the EC cells (green line) and indirect
feedforward inhibitory input from the EC cells, mediated by the
HIPP cells (violet line) into the GCs. (b) Plot of number of active
GCs versus I (cluster index).

In Figs. 2(c1) and 2(c2), we discuss how MFRs of the
active HIPP cells become diverse. The number of presynaptic
active EC cells M (HIPP,EC)

syn for the postsynaptic active HIPP
cells is broadly distributed in Fig. 2(c1). Its range is [1, 15],
the mean is 7.8, and the standard deviation from the mean
is 4.5; three silent HIPP cells have no active presynaptic EC
cells. The MFR f (HIPP) of each active HIPP cell is obtained
by dividing the total number of spikes by the stimulus period
Ts (=3 × 104 ms). Figure 2(c2) shows broad distribution of
the MFRs. Its range is [2.6, 47.8] Hz, the population-averaged
MFR 〈 f (HIPP)〉 = 22.9 Hz, and the standard deviation from
〈 f (HIPP)〉 is 14.1 Hz. Because of these diverse MFRs, the active
HIPP cells exhibit no collective synchronized firing activity.
We also note that there exists a strong positive correlation
(with the Pearson’s correlation coefficient r = 0.9999) be-
tween M (HIPP,EC)

syn (number of presynaptic active EC cells) and
f (HIPP) (MFRs of the postsynaptic HIPP cells) [see Fig. 2(d)]
[88]; the larger the number of presynaptic active EC cells, the
higher the MFR of the (postsynaptic) active HIPP cell.

Then, we first investigate firing activity of GCs in the
presence of only the external direct excitatory EC input and
indirect feedforward inhibitory EC input, mediated by the
HIPP cells. Figure 3(a) shows a diagram for the external direct
excitatory input from the EC cells (green line) and indirect
feedforward inhibitory inputs from the EC cells, mediated by
the HIPP cells (violet line) into the GCs. In this case, the
number of active GCs in each cluster (I = 1, . . . , 20) is shown
in Fig. 3(b). A GC with at least one spike during the stimulus
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FIG. 4. Firing activity of GCs via competition between the num-
bers of presynaptic EC and HIPP cells. Plots of f (GC) (MFR of
GCs) versus (a) M (GC,HIPP)

syn (number of presynaptic HIPP cells) and
(b) M (GC,EC)

syn (number of presynaptic EC cells). GCs are decomposed
into groups Gn (n = 1, . . . , 6) with different number of presynap-
tic HIPP cells M (GC,HIPP)

syn : G1 (red color online) [M (GC,HIPP)
syn = 2],

G2 (green) [M (GC,HIPP)
syn = 3], G3 (blue) [M (GC,HIPP)

syn = 4], G4 (or-
ange) [M (GC,HIPP)

syn = 5], G5 (violet) [M (GC,HIPP)
syn = 6], and G6 (black)

[M (GC,HIPP)
syn � 7]. (c) Plot of f (GC) versus the E-I synapse ratio

R(syn)
E−I (=M (GC,EC)

syn / M (GC,HIPP)
syn ); a fitted dashed line is given.

period Ts (= 3 × 104 ms) is active; otherwise, silent. In this
case, the total number of active GCs is 652, and hence the
activation degree is Da = 32.6%. For the distribution of the
number of active GCs in each cluster, its range is [29, 37],
the mean is 32.6, and the standard deviation from the mean is
2.35.

In the case of Fig. 3(a), firing activity of the GCs is deter-
mined via competition between the direct excitatory EC input
and the indirect feedforward inhibitory EC input, mediated by
the HIPP Cells. The strength of direct excitatory EC input
may be represented by the number of presynaptic EC cells,
M (GC,EC)

syn and the strength of indirect inhibitory EC input, me-
diated by the HIPP cells, can also be denoted by the number
of presynaptic HIPP cells, M (GC,HIPP)

syn . Then, the E-I synapse

ratio R(syn)
E−I , defined by

R(syn)
E−I = M (GC,EC)

syn

M (GC,HIPP)
syn

, (1)

represents well the competition between the excitatory input
from the EC cells and the inhibitory input from the HIPP cells.

Figure 4(a) shows a plot of f (GC) (MFR of the GCs) versus
M (GC,HIPP)

syn (number of the presynaptic HIPP cells). For the
distribution of M (GC,HIPP)

syn , its range is [2, 13], the mean is 7.9,
and the standard deviation from the mean is 3.5. Depending on

M (GC,HIPP)
syn , the whole GCs are decomposed into the 6 groups

Gn (n = 1, . . . , 6) with different values of M (GC,HIPP)
syn . In the

group G1 (red color online) with M (GC,HIPP)
syn = 2, G2 (green)

with M (GC,HIPP)
syn = 3, G3 (blue) with M (GC,HIPP)

syn = 4, G4 (or-
ange) with M (GC,HIPP)

syn = 5, G5 (violet) with M (GC,HIPP)
syn = 6,

and G6 (black) with M (GC,HIPP)
syn � 7, the number of GCs (frac-

tion) is 156 (7.8%), 169 (8.45%), 173 (8.65%), 170 (8.50%),
152 (7.6%), and 1180 (59%), respectively. With increasing
M (GC,HIPP)

syn , f (GC) (MFRs of the GCs) tend to decrease due
to increase in the inhibitory input from the HIPP cells. In the
groups G1, G2, and G3, only active GCs appear. However,
from the group G4, silent GCs also appear along with active
GCs, and eventually in the group G6, all the GCs are silent.

Figure 4(b) shows a plot of f (GC) versus M (GC,EC)
syn (number

of the presynaptic EC cells). For the distribution of M (GC,EC)
syn ,

its range is [68, 91], the mean is 79.4, and the standard de-
viation from the mean is 6.8. In each Gn (n = 1, 2, 3) group,
all the GCs are active, and their MFRs f (GC) increase with
M (GC,EC)

syn due to increase in excitation from the EC cells.
However, in the G4 and G5 groups, when M (GC,EC)

syn passes
a threshold M∗

th, active GCs begin to appear and then their
MFRs f (GC) also increase with M (GC,EC)

syn ; M∗
th = 74 and 89 for

G4 and G5, respectively. In the group G6 with M (GC,HIPP)
syn � 7,

only silent GCs exist, independently of M (GC,EC)
syn .

Figure 4(c) shows a plot of f (GC) (MFR of the GCs) versus
R(syn)

E−I (E-I synapse ratio). R(syn)
E−I denotes well the competi-

tion between the excitatory EC input and the inhibitory HIPP
input. We note that there exists a threshold R(syn),∗

E−I (=14.8),

above which active GCs appear. With increasing R(syn)
E−I from

the threshold R(syn),∗
E−I , MFRs f (GC) increase. In the active

region, f (GC) shows a strong correlation with R(syn)
E−I with the

Pearson’s correlation coefficient r = 0.9389.

B. WTA competition in the whole DG network

In this subsection, we investigate the WTA competition in
the whole DG network, composed of the hilar MCs and the
BCs, in addition to the EC cells, the HIPP cells, and the GCs in
Fig. 3(a). Figure 5(a) shows a schematic representation in the
three clusters, consisting of the excitatory GC, the inhibitory
BC, and the MC. In each cluster, a GC-BC feedback loop
is formed. BC receives excitation from all the GCs in the
same cluster, and it provides feedback inhibition to all the
GCs [lamellar connection (blue line)]. However, MC in a
cluster receives excitation from all the GCs in the same cluster
(lamellar connection), while they project excitation to the
GCs and the BCs in other clusters [cross-lamellar connection
(red)]. Thus, in the whole DG network, there are three kinds
of external inputs to the GCs: two types of excitatory inputs
from the EC cells via random connections and the MCs via
cross-lamellar connections and one kind of inhibitory inputs
from the HIPP cells via random connections. In comparison to
the case in Fig. 3(a), one more excitatory input from the MCs
occurs through cross-lamellar connections. These MCs tend
to control firing activity of the GC-BC loop in the cluster by
providing the excitatory inputs to both the GCs and the BC.
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FIG. 5. WTA competition in the whole DG network.
(a) Schematic representation for the three clusters, composed
of the excitatory GC, the inhibitory BC, and the excitatory MC.
Here, blue lines represents lamellar connections in the same
clusters,while red lines denote cross-lamellar connections. (b) Plot
of k (number of active GCs) versus I (cluster index).

In the whole DG network, firing activity of the GCs is
determined via competition between the two excitatory EC
and MC inputs and the one inhibitory HIPP input. Then,
within the cluster, interaction of excitation of the GCs with
feedback inhibition from the BC leads to WTA competition.
Figure 5(b) shows the plot of k (number of active GCs) versus
I (cluster index). Six active winner GCs appear in each cluster
(i.e., k = 6 WTA competition occurs). Consequently, the total
number of active GCs is 120, corresponding to Da = 6.0 %
(activation degree of the GCs). In comparison to Da = 32.6%
in the presence of only the excitatory EC input and the in-
hibitory HIPP input (Fig. 3), sparse firing activity of the GCs
results from the excitation from the MCs to the GCs and the
BCs (facilitating firing activity of the GC-BC loop) and the
feedback inhibition from the BC. Without the MCs, the acti-
vation degree of the GCs becomes increased to Da = 25.9%
only due to the feedback inhibitory BC input, which will be
discussed in details in Fig. 9. Consequently, the MCs tend
to enhance the WTA competition through facilitating firing
activity of the GC-BC loop.

During the WTA competition, synchronized rhythms are
found to emerge in each population of the GCs and the BCs
via interaction of excitation from the GCs and inhibition from
the BCs in the GC-BC loop. Figures 6(a1) and 6(a2) show
raster plots of spikes of the active GCs and the BCs, respec-
tively. We note that synchronized spiking stripes (composed
of spikes and indicating population synchronization) appear
successively. The corresponding IPSRs RGC(t ) and RBC(t )

exhibit synchronous oscillations with the same population
frequency fp (=13.2 Hz). In this case, the MCs control the
firing activity of the GC-BC loop by providing excitation to
both the GCs and the BCs via cross-lamellar connections.
Thus, synchronized rhythm with fp= 13.2 Hz is also found
to appear in the population of MCs via interaction with the
GCs, as shown in the raster plot of spikes and the IPSR fMC(t )
in Fig. 6(a3). Thus, in the whole DG network, synchronized
rhythms with fp= 13.2 Hz appear in the populations of the
GCs, the BCs, and the MCs, together with occurrence of the
WTA competition [89].

In addition to the population firing behavior, we also study
the individual firing activities in terms of MFRs of active GCs,
BCs, and MCs. Figures 6(b1)–6(b3) show plots of MFRs f (X)

i
of the 120 active GCs (X = GC), the 20 BCs (X = BC), and
the 80 MCs (X = MC), respectively. The population-averaged
MFR 〈 f (X)

i 〉 over all active cells is 2.03, 53.9, and 40.7 Hz for
X = GC, BC, and MC, respectively. We note that 〈 f (GC)

i 〉 of
the active GCs is much lower than 〈 f (BC)

i 〉 and 〈 f (MC)
i 〉, the

reason of which is studied below.
Active GCs exhibit intermittent spikings phase-locked to

the IPSR RGC(t ) at random multiples of the global period
TG (=75.8 ms) of RGC(t ). This random phase-locking results
in random spike skipping, which is well shown in the inter-
spike-interval (ISI) histogram with multiple peaks appearing
at integer multiples of TG in Fig. 6(c1). Spiking may occur
most probably after five- and six-times spike skipping because
the middle sixth- and seventh-order peaks are the highest ones,
in contrast to the case of fully synchronized rhythm with only
one peak at TG (i.e., all cells fire regularly at each global
cycle without skipping). In this case, the average ISI (〈ISI〉) is
492.61 ms, and hence the corresponding population-averaged
MFR 〈 f (GC)

i 〉 (=1 / 〈ISI〉 = 2.03 Hz) becomes much less than
the population frequency fp (=13.2 Hz), due to random spike
skipping [89].

In contrast to the GCs, both BCs and MCs exhibit “in-
trastripe burstings” (corresponding to repeatedly firing bursts
of spikes) within stripes, along with random spike skip-
ping [89]. Hence, each ISI histogram becomes composed of
the dominant bursting peak and the multiple random-spike-
skipping peaks, as shown in Figs. 6(c2) and 6(c3); 2 (3)
random-spike-skipping peaks appear for the BCs (MCs). In
this way, the structure of the ISI histograms for the BCs and
the MCs is distinctly different from that for the GCs, because
of the occurrence of intrastripe burstings. As a result, for
the BCs (MCs), the average ISI (〈ISI〉) is 18.55 (24.57) ms,
and hence the population-averaged MFR 〈 f (BC)

i 〉 (〈 f (MC)
i 〉)

(=1 / 〈ISI〉) is 53.9 (40.7) Hz, which is much higher than
the population frequency fp (=13.2 Hz) due to intrastripe
burstings, in contrast to the case of the GCs with 〈 f (GC)

i 〉
(=2.03 Hz) (much lower than fp).

From now on, we make an intensive investigation on the
k = 6 WTA competition [shown in Fig. 5(b)] in the 1st (I = 1)
cluster. Firing activity of the GCs is determined via compe-
tition between the external excitatory and inhibitory inputs
into the GCs. Then, feedback inhibition from the BC selects
which GCs fire. Only strongly active GCs may survive un-
der the feedback inhibition. Figure 7(a) shows the plot of
f (GC) (MFR of the GCs) versus R(syn)

E−I [E-I synapse ratio in
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FIG. 6. Emergence of synchronized rhythms of GCs, BCs, and MCs. Raster plots of spikes and instantaneous population spike rates
(IPSRs) of (a1) 120 active GCs, (a2) 20 BCs, and (a3) 80 MCs. Plots of mean firing rates (MFRs) f (X)

i of (b1) 120 active GCs (X = GC), (b2)
20 BCs (X = BC), and (b3) 80 MCs (X = MC). Population-averaged inter-spike-interval (ISI) histograms of (c1) 120 active GCs, (c2) 20 BCs,
and (c3) 80 MCs. Vertical dotted lines in the ISI histograms represent the integer multiples of global period TG (=75.8 ms) of the IPSR. Insets
for bursting peaks are given in panels (c2) and (c3).

Eq. (1)]. There are 34 active GCs in the presence of only the
external excitatory EC cells and inhibitory HIPP cells [shown
in Fig. 3(a)]; for details, refer to the caption of Fig. 7(a).
Among the 34 active GCs, only 6 GCs [ j (GC index)= 43,
23, 36, 4, 83, and 51 with the top six highest R(syn)

E−I ] in the G1
group (denoted by solid red circles) persist under the feedback
inhibition from the BCs in the whole DG network (containing
the MCs and the BCs) [shown in Fig. 5(a)], and they become
winner GCs (denoted by red crosses); all the other 28 GCs
with lower R(syn)

E−I become silent. Figure 7(b) shows the raster
plot of spikes of the 6 winner GCs in the first (I = 1) cluster.

We investigate the dynamical origin of the k = 6 WTA
competition in the I = 1 cluster. WTA competition occurs
via competition between the firing activity of the GCs and
the feedback inhibition from the BC. Then, only strongly
active GCs may survive under the feedback inhibition. In this
case, the firing activity of the GCs is determined through
competition between the external excitatory inputs from the
EC cells and the MCs and the external inhibitory input from
the HIPP cells. When the magnitude of the external excitatory
synaptic currents is sufficiently larger than that of the exter-
nal inhibitory synaptic current, the firing activity of the GCs
becomes strong.

As in Eq. (B2) in Appendix B, synaptic current is given
by the product of synaptic conductance g and potential differ-
ence. In this case, synaptic conductance determines the time

course of the synaptic current. Hence, it is sufficient to con-
sider the time-course of synaptic conductance. The synaptic
conductance g is given by the product of synaptic strength per
synapse (K), the number of synapses (Msyn ), and the fraction
s of open (postsynaptic) ion channels [see Eq. (B3)].

As in Eq. (B4), time course of s(t ) is given by the summa-
tion for double-exponential functions over presynaptic spikes.
Here, we make an approximation of the fraction s(t ) of
open ion channels (i.e., contributions of summed effects of
presynaptic spikes) by the bin-averaged spike rate f (I, j)

X (t ) of
presynaptic neurons in the X population innervating the (I, j)
GC (i.e., jth GC in the Ith cluster), as in our prior studies
in the cerebellum [71,72]. Then, the excitatory conductance
g(I, j)

EC for the synaptic current I (I, j)
syn from the presynaptic EC

cells into the (I, j) GC is given by

g(I, j)
EC (t ) = g(I, j)

EC,AMPA(t ) + g(I, j)
EC,NMDA(t )

� (
K (GC,EC)

AMPA + K (GC,EC)
NMDA

)
M (GC,EC)

syn f (I, j)
EC (t ). (2)

Here, the values of K (GC,EC)
AMPA and K (GC,EC)

NMDA are given in Table II
and the bin-averaged spike rate f (I, j)

EC (t ) of presynaptic EC
cells in the ith bin is given by

f (I, j)
EC (t ) = N (s)

i (t )

N (I, j,EC)
pre �t

, (3)
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FIG. 7. Competition between the external excitatory and in-
hibitory inputs into the GCs, leading to k = 6 WTA com-
petition. (a) Plot of f (GC) (MFRs of GCs) versus R(syn)

E−I [=
M (GC,EC)

syn /M (GC,HIPP)
syn : E-I synapse ratio in Eq. (1)] in the 1st (I = 1)

cluster. There are 34 active GCs (denoted by circles) [10 GCs in G1
group (red), 11 GCs in G2 group (green), 7 GCs in G3 group (blue),
5 GCs in G4 group (orange), and 1 GC in G5 group (violet)] in the
presence of only the external excitatory EC cells and inhibitory HIPP
cells. Among the 34 active GCs, only 6 GCs in the G1 group (rep-
resented by solid red circles) persist under the feedback inhibition
from the BCs in the whole DG network (including the MCs and the
BCs), and they become winner GCs (represented by red crosses).
(b) Raster plot of spikes of the 6 winner GCs in the 1st (I = 1)
cluster. Plots of (c1) R(con)

E−I [E-I conductance ratio of Eq. (7) in the
presence of only the external excitatory EC cells and inhibitory HIPP
cells] and (c2) R(con)

E−I
∗

[E-I conductance ratio of Eq. (11) in the whole
network] of the 10 GCs in the 1st G1 group in the 1st (I = 1) cluster;
j (x-axis label) represents GC index. Among the 10 GCs, 6 winner
GCs are represented in red color, while the remaining 4 silent GCs
are denoted in blue color. (d) Time courses of g(1, j)

EC (t ), g(1, j)
HIPP(t ), and

R(con)
E−I (t ) of two winner GCs [ j = 43 (red) and j = 51 (green)] and

one silent GC [ j = 64 (blue)] in the 1st (I = 1) cluster. (e) Time
courses of g(1, j)

E (t ) [= g(1, j)
EC (t ) + g(1, j)

MC (t )] and R(con)
E−I

∗
(t ) of the two

winner GCs [ j = 43 (red) and 51 (green)] and one silent GC [ j = 64
(blue)] in the first (I = 1) cluster.

where N (s)
i (t ) is the number of spikes of the presynaptic EC

cells in the ith bin, N (I, j,EC)
pre is the number of the presynaptic

EC cells innervating the (I, j) GC neuron, and �t (=75.8 ms)
is the bin size. Thus, we obtain the excitatory conductance

g(I, j)
EC :

g(I, j)
EC (t ) � 1.04 M (GC,EC)

syn f (I, j)
EC (t ). (4)

Similarly, we also get the inhibitory conductance g(I, j)
HIPP for the

synaptic current I (I, j)
syn from the presynaptic HIPP cells into the

(I, j) GC:

g(I, j)
HIPP(t ) = g(I, j)

HIPP,GABA(t ) � 0.12 M (GC,HIPP)
syn f (I, j)

HIPP(t ). (5)

In Figs. 4 and 7(a), we consider only Msyn (number of
synapses) as a “simplified” version of the synaptic input. In
contrast, we now consider the “full” version of the synaptic
conductance g by taking into consideration additional synaptic
strength K and bin-averaged spike rate f together with Msyn.
Then, the ratio of the external excitatory to inhibitory conduc-
tance is given by

R(con)
E−I (t ) = g(I, j)

EC (t )

g(I, j)
HIPP(t )

. (6)

In this case, we introduce the E-I conductance ratio R(con)
E−I ,

defined by the time average of R(con)
E−I (t ):

R(con)
E−I = R(con)

E−I (t ) = g(I, j)
EC (t )

g(I, j)
HIPP(t )

, (7)

where the overline denotes time average.
The E-I conductance ratio R(con)

E−I , representing the time-
averaged ratio of the excitatory EC to the inhibitory HIPP
conductances, corresponds to a refined version in comparison
to the E-I synapse ratio R(syn)

E−I in Eq. (1). Figure 7(c1) shows
the histogram of the E-I conductance ratio R(con)

E−I versus the 10
GCs in the G1 group [denoted by red circles with GC indices
in Fig. 7(a)] in the I = 1 cluster; 6 active GCs and 4 silent
GCs are represented in red and blue color, respectively. We
note that the order of magnitude of R(con)

E−I is the same as that

for R(syn)
E−I .

We next include the external excitatory MC input whose
conductance is given by

g(I, j)
MC (t ) = g(I, j)

MC,AMPA(t ) + g(I, j)
MC,NMDA(t )

� 0.06 M (GC,MC)
syn f (I, j)

MC (t ). (8)

Then, we get the total excitatory input g(I, j)
E (t ) via adding

g(I, j)
EC (t ) and g(I, j)

MC (t ):

g(I, j)
E (t ) = g(I, j)

EC (t ) + g(I, j)
MC (t ). (9)

In this case, the ratio of the total external excitatory to in-
hibitory conductance is given by

R(con)
E−I

∗
(t ) = g(I, j)

E (t )

g(I, j)
HIPP(t )

. (10)

Then, in the whole network (including the MCs), we introduce
the E-I conductance ratio R(con)

E−I
∗
, given by the time average

of R(con)
E−I

∗
(t ):

R(con)
E−I

∗ = R(con)
E−I

∗
(t ) = g(I, j)

E (t )

g(I, j)
HIPP(t )

. (11)
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The E-I conductance ratio R(con)
E−I

∗
(considering the MC effect)

represents the ratio of the external excitatory to the inhibitory
inputs better than the E-I conductance ratio R(con)

E−I (in the
presence of only the excitatory EC and the inhibitory HIPP
inputs). Hence, R(con)

E−I
∗

becomes a more refined version in
comparison to R(con)

E−I (which does not consider the effect of
the MCs).

Figure 7(c2) shows the histogram of the (refined) E-I con-
ductance ratio R(con)

E−I
∗

(considering the MC effect) versus the
10 GCs in the I = 1 cluster. The order of the magnitude of
R(con)

E−I
∗

is the same as that of R(con)
E−I , and hence the 6 GCs,

denoted in red color, ( j = 43, 23, 36, 4, 83, and 51) continue
to become the winners.

Figure 7(d) shows the time evolutions of g(1, j)
EC (t ), g(1, j)

HIPP(t ),
and R(con)

E−I (t ) for the top winner GC of j = 43, the last winner
GC of j = 51, and the silent GC of j = 64 with the seventh
highest R(con)

E−I
∗

in the I = 1 cluster. The order of magnitude

of the EC excitatory conductance g(1, j)
EC (t ) is j = 43 > j =

51 > j = 64, while the order of magnitude of the HIPP in-
hibitory conductance g(1, j)

HIPP(t ) becomes reverse (i.e., j = 43 <

j = 51 < j = 64). Consequently, the order of magnitude of
the ratio R(con)

E−I (t ) is j = 43 > j = 51 > j = 64.
By including the excitatory input from the MCs, we also

consider the total excitatory conductance g(I, j)
E (t ) of Eq. (9)

and the E-I conductance ratio R(con)
E−I

∗
(considering the MC

effect) of Eq. (11). Figure 7(e) shows the time evolutions of
g(1, j)

E (t ) and R(con)
E−I

∗
(t ) for for the top winner GC of j = 43,

the last winner GC of j = 51, and the silent GC of j = 64.
The order of magnitude of the total excitatory conductance
g(1, j)

E (t ) is the same as that of g(1, j)
EC (t ) (i.e., j = 43 > j =

51 > j = 64). Hence, the order of magnitude of the ratio
R(con)

E−I
∗
(t ) remains unchanged (i.e., j = 43 > j = 51 > j =

64). Consequently, the GCs (denoted in red color) with the
top 6 highest R(con)

E−I
∗
(t ) in Fig. 7(c2) become the winner GCs

in the whole DG network.
Figure 8(a) shows the plot of f (GC) (MFRs of all the

GCs) versus R(con)
E−I

∗
(E-I conductance ratio). We determine

the threshold R∗
th for the E-I conductance ratio R(con)

E−I
∗

(con-

sidering the MC effect). When R(con)
E−I

∗
passes a threshold

R∗
th (= 320.14), a discontinuous transition to an active state

with nonzero f (GC) occurs (i.e., active winner GCs with
f (GC) > 0 appear). With increasing R(con)

E−I
∗

from the threshold
R∗

th, MFRs f (GC) increase monotonically. In the active region,
f (GC) exhibits a strong correlation with R(con)

E−I
∗

with the Pear-
son’s correlation coefficient r = 0.9787. Figure 8(b) shows a
plot of R(con)

E−I
∗

versus 120 winner GCs. The range of R(con)
E−I

∗

is [R(con)
E−I

∗
(min), R(con)

E−I
∗
(max)]; R(con)

E−I
∗
(min) = 320.14 and

R(con)
E−I

∗
(max) = 380.82. Then, we get the winner threshold

percentage Wth% (= 15.9%):

Wth% =
[
R(con)

E−I
∗
(max) − R(con)

E−I
∗
(min)

]

R(con)
E−I

∗
(max)

× 100. (12)

Thus, active winner GCs have their R(con)
E−I

∗
within Wth% of

the maximum R(con)
E−I

∗
(max) of the GC with the strongest

FIG. 8. Determination of the thresholds R∗
th and I∗

th for the win-
ner GCs. (a) Plot of f (GC) (MFR of all the GCs) versus R(con)

E−I
∗

(E-I
conductance ratio which considers the effect of the MCs). (b) Plot
of R(con)

E−I
∗

versus i (index of the 120 winner GCs). Horizontal dotted
line denotes the threshold R∗

th (= 320.14) for the winner. (c) Plot of
f (GC) versus I (GC)

syn
∗ [external synaptic input in Eq. (14)]. (d) Plot of

I (GC)
syn

∗ versus R(con)
E-I

∗
. Dashed fitted lines are given in panels (a), (c),

and (d).

activity [i.e., GCs become active winners when their R(con)
E−I

∗

lies within Wth% of the maximum R(con)
E−I

∗
(max)].

In addition to the external (excitatory and inhibitory)
conductances, we directly consider the “external” synaptic
current I (GC,ext)

syn, j into the jth GC (determining the firing activity
of the GC):

I (GC,ext)
syn, j (t ) = I (GC,EC)

syn, j (t ) + I (GC,HIPP)
syn, j (t ) + I (GC,MC)

syn, j (t ), (13)

where I (GC,EC)
syn, j (t ), I (GC,HIPP)

syn, j (t ), and I (GC,MC)
syn, j (t ) are the synap-

tic currents into the jth GC from the EC cells, the HIPP cells,
and the MCs, respectively. Then, we introduce the external
synaptic input (I (GC)

syn
∗) into the GC, defined by the magnitude

of time-average of I (GC,ext)
syn, j (t ):

I (GC)
syn

∗ = ∣∣I (GC,ext)
syn, j (t )

∣∣. (14)

Figure 8(c) shows the plot of f (GC) (MFRs of all the GCs)
versus I (GC)

syn
∗. When I (GC)

syn
∗ passes a threshold I∗

th (=87.3
pA), a discontinuous transition to an active state with nonzero
f (GC) takes place (i.e., active winner GCs with f (GC) > 0
emerge). As I (GC)

syn
∗ is increased from the threshold I∗

th, MFRs
f (GC) increase monotonically. In the active region, f (GC)

shows a strong correlation with I (GC)
syn

∗ with the Pearson’s
correlation coefficient r = 0.9731. We also note that the ex-
ternal synaptic input I (GC)

syn
∗ is strongly correlated with the

E-I conductance ratio R(con)
E−I

∗
with the Pearson’s correlation

coefficient r = 0.9878, as shown in the plot of I (GC)
syn

∗ versus
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R(con)
E−I

∗
in Fig. 8(d). Thus, the E-I conductance ratio R(con)

E−I
∗

would determine the external synaptic input I (GC)
syn

∗ and the
MFR f (GC).

Finally, we summarize the main results for the k = 6 WTA
competition, obtained in this Sec. III B. We made an inten-
sive investigation on the quantitative dynamical origin for
the WTA competition. The EC and the hilar MCs are the
external input sources to the GCs. Thus, there are three types
of external inputs into the GCs; the direct excitatory EC in-
put, the indirect feedforward inhibitory EC input, mediated
by the HIPP cells, and the excitatory input from the MCs.
Then, the firing activities of the GCs are determined through
competition between the external E and I inputs to the GCs;
two excitatory inputs from the EC via the PPs and from the
MCs and one inhibitory input from the HIPP cells. It has been
shown that the degree of the external E-I input competition
may be well represented by the E-I conductance ratio R(con)

E−I
∗

(given by the time average of the ratio of the external E to
I conductances). We note that the WTA competition occurs
through interaction of the firing activity of the GCs with the
feedback inhibition from the BC. GCs with larger R(con)

E−I
∗

than the threshold R∗
th have been found to survive under the

feedback inhibition, and they became winners. However, all
the other GCs with smaller R(con)

E−I
∗

became silent in response
to the feedback inhibition. In this way, we have well charac-
terized the degree of the firing activity of the GCs in terms
of R(con)

E−I
∗
. Consequently, each of the 20 clusters has been

found to have six GC winners (i.e., k = 6 WTA competition
occurs in each cluster). Thus, in the whole DG network 120
active GCs became the winners among the 2000 GCs, which
corresponded to the activation degree Da = 6.0% (i.e., sparse
activation).

C. Effect of the MC death on the WTA competition

We are concerned about the effect of the hilar MCs on
the WTA competition. The MCs control firing activity of the
GC-BC loop via monosynaptic excitation of the GCs (MC →
GC) and disynaptic inhibition of the GCs, mediated by the
BCs, (MC → BC → GC), as shown in Fig. 9(a). In our DG
network, disynaptic strengths are stronger than monosynaptic
strength (see Tables II and III). Thus, the MCs have a net
inhibitory effect on the GCs via activation of the BCs [51,52].
As a result of stronger disynaptic inhibition, k = 6 WTA com-
petition occurs in each cluster [see Fig. 5(b)]. However, MC
loss may occur during epileptogenesis [54,55], which would
be a cause of impaired pattern separation leading to memory
interference. We investigate the effect of the MC death on the
WTA competition through their ablation.

We first consider the case of complete MC loss. Fig-
ures 9(b1)–9(e) show the WTA competition in the DG
network without the MCs. In this case, the BC activity be-
comes weakened, which leads to decrease in the feedback
inhibition to the GCs. Then, the GC activity becomes strength-
ened. Thus, more winner GCs appear, as shown in Fig. 9(b1)
showing the plot of k (number of winner GCs) versus I (clus-
ter index). The range of k is [24, 28], which is much widened
in comparison to the original case [see Fig. 5(b)] in the whole
network with the MCs. The total number of active GCs is 518,

FIG. 9. Effect of MC death on the WTA competition. (a) Di-
agram for the monosynaptic input from the MCs (green) and the
disynaptic input from the MCs, mediated by the BCs (violet) into
the GCs. WTA competition in the case of FMC (fraction of MCs) = 0
(i.e., complete loss of MCs) (b1–e). (b1) Plot of k (number of winner
GCs) versus I (cluster index). (b2) Plot of the number of clusters
versus k (number of winner GCs). First (I = 1) cluster in (c, d).
(c) Plot of f (GC) (MFR of GCs) versus R(syn)

E−I (E-I synapse ratio).
There are 34 active cells (represented by circles) in the presence of
only the external excitatory EC cells and inhibitory HIPP cells); refer
to Fig. 7. Among the 34 active cells, 24 GCs [10 GCs in the G1
group (red), 11 GCs in the G2 group (green), and 3 GCs in the G3
group (blue)] become winner GCs (denoted by the crosses) under the
feedback inhibition of the BCs in the whole DG network. (d) Raster
plot of spikes of the 24 winner GCs. (e) Plot of f (GC) (MFR of all the
GCs) versus R(con)

E−I
∗

(E-I conductance ratio); a dashed fitted line is
given. (f1) Plot of Da (activation degree) of GCs versus FMC (fraction
of MCs). (f2) Plot of the winner threshold percentage Wth % versus
FMC. (f3) Plot of Wth% versus Da of GCs.

and hence the activation degree Da is 25.9 %, which is much
larger than Da = 6.0 % in the whole network with the MCs.
Figure 9(b2) also shows the plot of the number of the clusters
versus k. The k = 26 corresponds to the most probable case
where the number of the corresponding clusters is 6, and the
mean value of k is also 25.9.

As an example, we consider the I = 1 cluster. Figure 9(c)
shows the plot of f (GC) (MFR of the GCs) versus the
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E-I synapse ratio R(syn)
E−I . We note that 24 active winner GCs

(denoted by the crosses) persist under the weakened feedback
inhibition from the BC in the case of complete MC loss; for
details refer to the caption of Fig. 9(c). This is in contrast
to the case of the whole network (including all the MCs) in
Fig. 7(a) with only 6 winner GCs. A raster plot of spikes of
the 24 winner GCs is shown in Fig. 9(d).

Figure 9(e) shows the plot of f (GC) (MFR of all the GCs)
versus R(con)

E−I
∗

(E-I conductance ratio). When R(con)
E−I

∗
passes

a threshold R∗
th (=131.22), a discontinuous transition to an

active state with nonzero f (GC) occurs; 512 winner GCs
with f (GC) > 0 appear [156 winner GCs in the G1 group
(red), 169 winner GCs in the G2 group (green), 116 winner
GCs in the G3 group (blue), and 77 winner GCs in the G4
group (orange)]. The range of R(con)

E−I
∗

for the active GCs
is [131.22, 298.41]. Hence, in the case of complete loss of
MCs, the winner threshold percentage Wth% in Eq. (12) be-
comes 56.0 %, which is much larger than W ∗

th (=15.9 %) in
the whole network with MCs (see Fig. 8). Thus, active winner
GCs have their R(con)

E−I
∗

within Wth% (=56%) of the maximum

R(con)
E−I

∗
(max) of the GC with the strongest activity. As a result,

the WTA competition becomes so much weakened in the case
of complete MC loss.

We also decrease NMC (number of MCs) from 80 (in the
original whole network) to 0 (complete loss). In this case, the
fraction of MCs (FMC) is given by NMC/80. We study the effect
of MC death on the WTA competition through their ablation
by varying FMC from 1 to 0. The MCs provide direct excitation
and indirect disynaptic inhibition (mediated by the BCs) to
the GCs. In our DG network, disynaptic strengths are stronger
than monosynaptic strength (i.e., the net effect of the MCs
on the GCs is inhibitory [51,52]). Hence, through ablation
of the MCs, their disynaptic-inhibition effect is more reduced
than their monosynaptic-excitation effect, which could lead to
increased activation of the GCs, supporting the dormant BC
hypothesis [90,91].

Figure 9(f1) shows the plot of the activation degree Da

of the GCs versus FMC. As FMC is decreased from 1 to 0,
the activity of the BCs becomes weakened, which results in
decrease in the feedback inhibition to the GCs. Then, the
activity of the GCs becomes strengthened (i.e., Da increases
monotonically from 6.0% to 25.9%), mainly due to decrease
in the disynaptic-inhibition effect of the MCs. In this case,
the winner threshold percentage Wth% also increases from
15.9% to 56.0% with decreasing FMC from 1 to 0, as shown
in Fig. 9(f2). Due to the increased Wth%, more active GCs
appear. Thus, WTA competition becomes more and more
weakened with decreasing FMC. Thus, the WTA competition
becomes the strongest in the case of FMC = 1 where the firing
activity of the GCs is the most sparse. In this way, the MCs
play an important role to control the WTA competition in the
GC-BC loop by providing excitation to the GCs and the BCs
through cross-lamellar connections. Finally, Fig. 9(f3) shows
the plot of Wth% versus Da. There exists a positive correla-
tion (with the Pearson’s correlation coefficient r = 0.9889)
between Wth% and Da; a fitted dashed line is given. The
larger the activation degree Da of the GCs is, the higher the
winner threshold percentage Wth% becomes (i.e., the WTA
competition becomes weaker).

Finally, we give a summary on the main results, obtained in
this Sec. III C. We have investigated the effect of MC death on
the WTA competition through their ablation by varying FMC

(fraction of MCs). The MCs make monosynaptic excitation
of the GCs and disynaptic inhibition of the GCs, mediated by
the BCs. In our DG network, disynaptic strengths are stronger
than monosynaptic strength (i.e., the net effect of the MCs
on the GCs is inhibitory [51,52]). Hence, through ablation of
the MCs, their disynaptic-inhibition effect was more reduced
than their monosynaptic-excitation effect. Consequently, with
decreasing FMC, both the activation degree Da of the GCs
and the winner threshold percentage Wth% have been found
to increase, and they were strongly correlated. We note that
GCs become winners if their R(con)

E−I
∗

lies within Wth% of the

maximum R(con)∗
E−I,max of the GC with the strongest activity. Due

to increased Wth%, the number k of the winner GCs was found
to increase. Thus, with decreasing FMC, the WTA competition
became weakened. In this way, the hilar MCs play an impor-
tant role to control the WTA competition in the GC-BC loop
by providing excitation to both the GCs and the BC through
cross-lamellar connections.

D. Effect of the adult-born imGCs on the WTA competition

In contrast to the MC death, adult neurogenesis occurs
in the DG throughout life [16,56–61]. Thus, young imGCs
appear in adulthood. In comparison to mature GCs (mGCs)
(born during development), young adult-born imGCs exhibit
distinct properties in physiology and connectivity such as
high intrinsic excitability, low inhibition, and low excitatory
innervation [56–61]. In Fig. 10(a), we consider a DG network
incorporating imGCs [added in Fig. 1(a)]. For simplicity, in-
hibitory inputs into imGCs are neglected due to their weak
sensitivity to GABAergic inhibition [56]. Figure 10(b) shows
the f -I curves for the mGC (red curve) and the imGC (blue
curve). The mGC with leakage reversal potential VL = −75
mV (see Table I) exhibits a spiking transition when passing
a threshold I∗ = 80 mV. Here, we consider a case that the
imGC has an increased leakage reversal potential VL = −72
mV, which could lead to intrinsic high excitability. Then, it
shows a firing transition when passing I∗ = 69.7 pA. In this
way, the imGC may have a lower firing threshold [56]. We
also consider a case that the fraction of the imGCs is 10% in
the whole population of GCs; the remaining 90% of the whole
GCs are mGCs [16].

Similar to the case of MC death, we have studied the effect
of adult-born imGCs on the WTA competition by chang-
ing the “synaptic connectivity fraction” x (corresponding to
the fraction for the connection probability of the afferent
excitatory synapses). In the case of mGCs, the connection
probability p(mGC,X) (X = EC or MC) for the afferent excita-
tory synapses (EC → mGC and MC → mGC) is 20%. Due
to their low synaptic connectivity, we change the connection
probability p(imGC,X) for the imGCs as 20 x % (0 � x � 1)
[57]. Figure 10(c) shows plots of activation degree D(X)

a versus
x (synaptic connectivity fraction) in the subpopulations of
mGCs (X = m; red open circle) and imGCs (X = im; blue
solid circle) and the whole population of all the GCs (X=w;
green cross). Plots of the number of active GCs, N (X)

a [X = im;
imGCs (solid blue circles) and X = m; mGCs (red open
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FIG. 10. Effect of adult-born immature GCs (imGCs) on the
WTA competition. (a) Schematic representation of our DG network
incorporating adult-born imGCs [added in Fig. 1(a)]. Fraction of the
imGCs is 10% in the whole population of the GCs; fraction of mature
GCs (mGCs) is 90%. Note that there are no inhibitory inputs into the
imGCs, in contrast to the case of mGCs. (b) f -I curve for the mGC
(red line) and the imGC (blue line). (c) Plots of activation degree
D(X)

a (X = m, im, and w) versus x (synaptic connectivity fraction)
in the subpopulations of mGCs (X = m) and imGCs (X = im) and
in the whole population of all the GCs (X = w). Plots of number of
active imGCs (blue solid circles) and mGCs (red open circles) versus
I (cluster index) for x = (d1) 1, (d2) 0.75, and (d3) 0.25.

circle)] versus I (cluster) are also shown in Figs. 10(d1)–
10(d3) for x = 1.0, 0.7 and 0.2, respectively.

For x = 1 [i.e., same afferent excitatory connection prob-
ability (20%) in both cases of imGCs and mGCs], imGCs
exhibit very high activation degree of D(im)

a = 45%, due to
their lower firing threshold, in comparison to the case of
Da = 6% without imGCs. In this case, N (im)

a (number of active
imGCs) = 4 in 10 clusters and 5 in other 10 clusters [see
Fig. 10(d1)]. Thus, nearly half of the 10 imGCs become active
in each cluster, which results in very weakened WTA compe-
tition in the (minor) subpopulation of imGCs. These highly
active imGCs in a cluster project their excitation to the BC and
the MCs in the same cluster via lamellar connection. Then,
the BC provides strongly increased feedback inhibition to the
mGCs in the same cluster. We note that imGCs receives no

feedback inhibition from the BC, and the MCs give excitation
to the mGCs, imGCs, and the BCs in other clusters via cross-
lamellar connections.

Thus, mGCs show sparser firing activity with much de-
creased activation degree D(m)

a of 1.0% due to strong feedback
inhibition from the BCs. In this case, N (m)

a (number of active
GCs) = 1 in 18 clusters and 0 in the remaining 2 clusters [see
Fig. 10(d2)], which leads to very strengthened WTA compe-
tition in the (major) subpopulation of mGCs. In this way, the
whole population of all the GCs becomes a “heterogeneous”
one, composed of a (major) subpopulation of mGCs with
D(m)

a of 1.0% (exhibiting strengthened WTA competition)
and a (minor) subpopulation of imGCs with D(im)

a = 45%
(showing weakened WTA competition); most of active cells
congregate in the minor subpopulation of imGCs. Overall
in the whole population, the average activation degree D(w)

a
of all the GCs becomes 5.40% (less than Da = 6.0% in the
absence of imGCs). Thus, on average, WTA competition in
the whole heterogeneous population of all the GCs becomes
a little strengthened, mainly due to the effect of the major
subpopulation of mGCs.

In addition to the high excitability (causing high activa-
tion), we also consider the low excitatory innervation of the
imGCs (leading to sparse firing), which may counteract the
effect of low firing threshold [57]. As shown in Fig. 10(c),
with decreasing x from 1, D(im)

a (i.e., the activation degree
of imGCs; blue solid circles) decreases so rapidly (leading
to increase in WTA competition); for sufficiently small x,
imGCs are nearly silent. As a result, the feedback inhibition
from the BC to the mGCs also becomes reduced, and hence
D(m)

a (i.e., the activation degree of mGCs; red open circles)
increases (resulting in decrease in WTA competition). In this
way, as x is decreased, the effect of imGCs on the mGCs
becomes weakened, and thus the heterogeneity degree in the
whole population also becomes reduced. Due to the effect of
the major mGCs, the average activation degree D(w)

a (green
crosses) in the whole population also shows a slow increasing
tendency (leading to slow decrease in WTA competition), and
for x < 0.4, D(w)

a is nearly the same as D(m)
a (i.e., for x < 0.4,

the effect of imGCs on the whole population becomes small).
As specific examples, we consider two cases of x = 0.7

and 0.2. For x = 0.7, the activation degree of the imGCs
(D(im)

a = 22%) is so much decreased. As shown in Fig. 10(d2),
the number of active imGCs in each cluster is decreased;
N (im)

a = 2 in 16 clusters and 3 in 4 clusters. In contrast, the
activation degree of mGCs (D(im)

a = 4.28%) is increased. The
number of active mGCs in each cluster is increased; N (m)

a = 3
in 3 clusters and 4 in 17 clusters. Thus, the WTA competition
is strengthened (weakened) for the imGCs (mGCs). In this
case, the activation degree in the whole population (D(w)

a =
6.05) becomes larger than Da (= 6%; activation degree of the
GCs without imGCs).

As x is further decreased, D(im)
a of the imGCs (D(m)

a of
the mGCs) continues to decrease (increase). Eventually, they
cross at x � 0.29. For x = 0.2, D(im)

a = 5%, while D(m)
a =

7.33%. The imGCs exhibit sparser activation than mGCs due
to very low synaptic connectivity (i.e., the imGCs show more
WTA competition than the mGCs). In this case, D(w)

a = 7.1%
in the whole population of all the Gcs. Figure 10(d3) shows
the number of active GCs in each cluster. For the imGCs,
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N (im)
a = 1 in 10 clusters and 0 in 10 clusters, while for the

mGCs, N (m)
a = 6 in 8 clusters and 7 in 12 clusters. In this way.

for sufficiently small x, most of active cells congregate in the
major subpopulation of mGCs, in contrast to the case of x = 1
where the minor subpopulation of imGCs has most of active
cells. Thus, low excitatory innervation counteracts the effect
of high excitability on the WTA competition.

Finally, we present a summary on the main results, ob-
tained in this Sec. III D. We considered a DG network
incorporating the imGCs with lower firing threshold and with-
out receiving inhibition, and studied the effect of imGCs on
the WTA competition by changing the synaptic connectiv-
ity fraction x (representing the low synaptic connectivity).
When considering only the high excitability of the imGCs
(i.e., x = 1), they became very highly active, leading to
weakened WTA competition. However, mGCs (born during
development) showed sparser firing activity due to strongly
increased feedback inhibition from the BC (caused by the
high activation of the imGCs), which resulted in strengthened
WTA competition. Thus, the whole population of all the GCs
became a heterogeneous one, consisting of a (major) subpop-
ulation of mGCs (showing strengthened WTA competition)
and a (minor) subpopulation of imGCs (exhibiting weakened
WTA competition); most of active cells congregated in the
minor subpopulation of imGCs. In addition to the high ex-
citability (causing high activation), we also considered the
low excitatory innervation of the imGCs (resulting in sparse
firing), which could counteract the effect of low firing thresh-
old [57]. With decreasing the synaptic connectivity fraction
x from 1, the activation degree of imGCs D(im)

a was found
to decrease so rapidly (resulting in increase in WTA com-
petition). Consequently, the feedback inhibition from the BC
to the mGCs also became reduced, and hence the activation
degree of mGCs D(m)

a increased (leading to decrease in WTA
competition). Thus, as x was decreased, the effect of imGCs
on the mGCs became decreased (i.e., the heterogeneity de-
gree in the whole population became reduced), and then the
average activation degree of all the GCs D(w)

a in the whole
population slowly increased (resulting in slow decrease in
WTA competition) and became close to D(m)

a .

IV. SUMMARY AND DISCUSSION

We considered the WTA competition leading to sparse
activation of the GCs in a spiking neural network of the
hippocampal DG. Such sparsity has been known to improve
the pattern separation (preprocessed in the DG) to facili-
tate the pattern storage and retrieval in the CA3 [11–19]. In
each lamellar cluster, a dynamical GC-BC loop is formed;
all the excitatory GCs are mutually coupled with the single
inhibitory BC via lamellar connections. Active GC winners
are selected via competition between the firing activity of the
GCs and the feedback inhibition from the BC. Intuitively,
only strongly active GCs may survive under the feedback
inhibition from the BC (i.e., they become winners). Through
intensive computational work for WTA competition, we got
the quantitative dynamical origin for the WTA competition,
consistent with the intuitive thinking. Firing activities of the
GCs are determined via competition between the external E
and I inputs. To represent the degree of such external E-I

input competition, we introduced the E-I conductance ratio
R(con)

E−I
∗

(given by the time average of the ratio of the external

E to I conductances). Only the GCs with larger R(con)
E−I

∗
than

a threshold R∗
th have thus been found to survive under the

feedback inhibition from the BC, and they became winners.
However, all the other GCs with smaller R(con)

E−I
∗

became silent
in response to the feedback inhibition. In this way, we have
well characterized the degree of the firing activity of the GCs
in terms of R(con)

E−I
∗
. Consequently, in the whole DG network

120 active GCs became the winners among the 2000 GCs,
corresponding to the activation degree Da = 6.0% (i.e., sparse
activation via k = 6 WTA competition).

Particularly, we focused on the effect of the hilar MCs on
the WTA competition. We note that the MCs control firing
activity of the GC-BC loop via monosynaptic excitation of
the GCs and disynaptic inhibition of the GCs, mediated by
the BCs. In our DG network, disynaptic strengths are stronger
than monosynaptic strength. Thus, the MCs have a net in-
hibitory effect on the GCs via activation of the BCs. First,
we considered the effect of MC loss which may occur during
epileptogenesis [54,55]. We have investigated the effect of
MC death on the WTA competition through their ablation
by varying FMC (fraction of MCs). As FMC was decreased,
the activation degree Da of the GCs has been found to in-
crease (i.e., the number k of the winner GCs was found
to increase), because the disynaptic-inhibition effect of the
MCs was reduced. Consequently, with decreasing FMC, the
WTA competition became weakened. In contrast to MC death,
young imGCs appear via adult neurogenesis [16,56–61]. We
note that, the adult-born imGCs have marked properties in
physiology and connectivity such as high intrinsic excitability,
weak inhibition, and low excitatory innervation. We consid-
ered these distinct properties of the imGCs, and investigated
their effect on the WTA competition. When considering the
high excitability of imGCs, the imGCs became very highly
active, while mGCs (born during development) exhibited very
sparse firing activity because of strongly increased feedback
inhibition from the BCs (caused by the high activation of the
imGCs). Thus, the whole population of all the GCs became a
very heterogeneous one, composed of a (major) subpopulation
of mGCs (exhibiting strengthened WTA competition) and a
(minor) subpopulation of imGCs (showing weakened WTA
competition). Next, we considered the low excitatory inner-
vation of the imGCs (resulting in sparse firing), which could
counteract the effect of high excitability. As excitatory inner-
vation of the imGCs was decreased, the activation degree of
the imGCs decreased so rapidly (i.e., their WTA competition
increased), while the activation degree of the mGCs increased
(i.e., their WTA competition decreased). As the effect of the
imGCs was decreased, the heterogeneity degree in the whole
population became reduced.

Finally, we discuss limitations of our present work and
future works. In our work, the degree of the firing activity
of the GCs was characterized in terms of the E-I conductance
ratio R(con)

E−I
∗
, and their MFRs f (GC) were found to be strongly

correlated with R(con)
E−I

∗
. In addition, we directly considered the

external synaptic currents into the GCs from the EC cells,
the HIPP cells, and the MCs. The MFRs f (GC) were also
found to be strongly associated with I (GC)

syn
∗ (external synaptic
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input, corresponding to the magnitude of time average of the
external synaptic current). Obviously, I (GC)

syn
∗ was correlated

with R(con)
E−I

∗
. Thus, the E-I conductance ratio R(con)

E−I
∗

would
determine the external synaptic input I (GC)

syn
∗ and the MFR

f (GC). Moreover, f (GC) was shown to exhibit a jump from 0
to a finite MFR (i.e., discontinuous transition) when passing
a threshold R∗

th or I∗
th, in contrast to the case of the sin-

gle LIF neuron model with a continuous response function
(i.e., continuous rectifier f -I curve). All these ones were
based on computational works. For more understanding on
such computational results, analytical approach would be use-
ful. Mean-field theory has been developed for self-consistent
description of population dynamics in networks of simple
single neuron models (e.g., LIF neuron model), based on
the probability distribution function P(v, t ) for the membrane
potential (i.e., the probability of finding depolarization of a
randomly chosen neuron at the membrane potential v and
time t) [93–95]. Evolution of P(v, t ) may be described by
the Fokker-Plank equation [96]. Thanks to the mean-field ap-
proach, the response function (i.e., population-averaged MFR
versus population-averaged input) would be derived. Then,
the analytic results would be expected to give some insights
on our present computational results. We leave this kind of
mean-field analytic approach as a future work because it is
beyond the present computational work.

Here, we considered only the disynaptic inhibitory effect
of the MCs on the GCs (i.e., disynaptic inhibition from the
MCs to the GCs, mediated by the BC). However, we did not
take into consideration the disynaptic effect of the HIPP cells
on the GCs, mediated by the BCs (HIPP → BC → GC);
here, we considered only their direct inhibition to the GCs
(HIPP → GC). The HIPP cells may disinhibit the BC [55],
and then the inhibitory effect of the BC on the GCs becomes
decreased, which leads to increase in the activity of the GCs.
Thus, the disynaptic effect of the HIPP cells on the GCs,
mediated by the BC, tends to increase the activity of the GCs,
in contrast to the disynaptic inhibition from the MCs to the
GCs. Hence, in future work, to study the disynaptic effect
of the HIPP cells on the GCs in the DG network would be
interesting. Also, in the present work, we did not consider
lamellar organization for the HIPP cells [15], the direct EC
input to the MCs and the BCs [48,54], and the input from
the GCs to the HIPPs [54]. For more complete network for
the DG, it would be necessary to include the new lamellar
organization and synaptic connections in future work.

In the present work, we studied the effect of the MCs
on the WTA competition via their ablation. In this case,
their disynaptic-inhibition effect was more reduced than their
monosynaptic-excitation effect, and hence, with decreasing
FMC (i.e., fraction of the MCs), the activation degree Da of
the GCs was found to increase. As a future work, instead
of the MC ablation, it would be interesting to investigate
the WTA competition by changing the synaptic strength
K (BC,MC)

R (R = NMDA and AMPA) of the synapses from the
presynaptic MCs to the postsynaptic BC. The effect of de-
creasing K (BC,MC)

R would be expected to be similar to that of
reducing FMC because the synaptic inputs into the BCs are
reduced in both cases.

As a future work, it would also be interesting to study the
effect of imGCs on pattern separation, in addition to the effect

on the WTA competition. Based on our prior work on the
pattern separation [92], we just make brief discussion on the
orthogonalization degree O(X) between two patterns, repre-
senting their “dissimilarity” degree, for the mGC (X = m), the
imGC (X = im), and the whole GCs (X = w). This orthogo-
nalization degree O(X) may be obtained through calculation of
the Pearson’s correlation coefficient ρ (X), denoting the “simi-
larity” degree between the two patterns; O(X) = (1 − ρ (X))/2
[92]. When the synaptic connectivity fraction x was 1 (i.e.,
only considering high excitability of imGCs), O(m) of the
mGCs would be higher than O (orthogonalization degree
without imGCs) because of their sparser activation degree
D(m)

a (=1.0%) (less than Da (=6.0%) without imGCs), and
hence the mGCs would perform good pattern separation [56].
However, imGCs are highly active with D(im)

a (=45%), and
hence they would be expected to have very high Pearson’s
correlation coefficient ρ (im) (i.e., their orthogonalization de-
gree O(im) would be so low), which could lead to good pattern
integration (making associations between patterns). In this
way, for x = 1 the whole population of all the GCs would be
a heterogeneous one, composed of a (major) subpopulation of
mGCs (good pattern separator) and a (minor) subpopulation
of imGCs (good pattern integrator) [58–61]. Due to the effect
of imGCs, O(w) in the whole population would be less than O
(orthogonalization degree without imGCs).

We next consider the effect of low excitatory innervation
of imGCs. With decreasing the synaptic connectivity fraction
x from 1, D(im)

a of the imGCs decreases rapidly (i.e., their
firing activity becomes sparser), and hence their effect on
the mGCs becomes reduced (i.e., the heterogeneity degree in
the whole population is decreased). Then, O(m) of the mGCs
would slowly decrease due to their increased activation degree
D(m)

a (resulting from decreased feedback inhibition). However,
O(w) in the whole population would increase and approach
O(m), due to decreased effect of imGCs. In this way, low
excitatory innervation of imGCs could counteract the effect
of high excitability [57]. For clearer understanding, more in-
tensive work on the effect of imGCs on pattern separation is
necessary, which is left as a future work because it is beyond
the present work of WTA.
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APPENDIX A: LEAKY INTEGRATE-AND-FIRE SPIKING
NEURON MODELS

As elements of our DG spiking neural network, we choose
LIF spiking neuron models with additional AHP currents (de-
termining the refractory period), as in our prior studies in the
cerebellum [71,72]. The following equations govern evolution
of dynamical states of individual cells in the X population:

CX
dv

(X )
i (t )

dt
= −I (X )

L,i (t ) − I (X )
AHP,i(t ) + I (X )

ext − I (X )
syn,i(t ),

i = 1, · · · , NX , (A1)
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TABLE I. In the LIF spiking neuron models, parameter values
for the capacitance CX , the leaky current I (X )

L , and the AHP current
I (X )
AHP of the granule cell (GC) and the basket cell (BC) in the granular

layer and the mossy cell (MC) and the hilar perforant path-associated
(HIPP) cell in the hilus.

Granular layer Hilus

X population GC BC MC HIPP cell

CX 106.2 232.6 206.0 94.3

I (X )
L g(X )

L 3.4 23.2 5.0 2.7

V (X )
L −75.0 −62.0 −62.0 −65.0

I (X )
AHP ḡ(X )

AHP 10.4 76.9 78.0 52.0

τ
(X )
AHP 20.0 2.0 10.0 5.0

V (X )
AHP −80.0 −75.0 −80.0 −75.0

v
(X )
th −51.5 −52.5 −32.0 −9.4

where NX is the total number of neurons in the X population,
X = GC and BC in the granular layer and X = MC and
HIPP in the hilus. In Eq. (A1), CX (pF) denotes the membrane
capacitance of the cells in the X population, and the state of
the ith cell in the X population at a time t (ms) is characterized
by its membrane potential v

(X )
i (t ) (mV). The time evolution

of v
(X )
i (t ) is governed by four types of currents (pA) into the

ith cell in the X population; the leakage current I (X )
L,i (t ), the

AHP current I (X )
AHP,i(t ), the external constant current I (X )

ext,i, and

the synaptic current I (X )
syn,i(t ). Here, we consider a subthreshold

case of I (X )
ext = 0 for all X [19].

In Eq. (A1), the 1st type of leakage current I (X )
L,i (t ) for the

ith neuron in the X population is given by

I (X )
L,i (t ) = g(X )

L

(
v

(X )
i (t ) − V (X )

L

)
, (A2)

where g(X )
L and V (X )

L are conductance (nS) and reversal poten-
tial for the leakage current, respectively. When its membrane
potential v

(X )
i reaches a threshold v

(X )
th at a time t (X )

f ,i , the ith
neuron in the X population fires a spike. After spiking (i.e.,
t � t (X )

f ,i ), the second type of AHP current I (X )
AHP,i(t ) follows:

I (X )
AHP,i(t ) = g(X )

AHP(t )
(
v

(X )
i (t ) − V (X )

AHP

)
for t � t (X )

f ,i . (A3)

Here, V (X )
AHP is the reversal potential for the AHP current, and

the conductance g(X )
AHP(t ) is given by an exponential-decay

function:

g(X )
AHP(t ) = ḡ(X )

AHP e−(t−t (X )
f ,i )/τ (X )

AHP, (A4)

where ḡ(X )
AHP and τ

(X )
AHP are the maximum conductance and the

decay time constant for the AHP current. With increasing
τ

(X )
AHP, the refractory period becomes longer.

The parameter values for the capacitance CX , the leakage
current I (X )

L , and the AHP current I (X )
AHP of the GC, the BC, the

MC, and the HIPP cell are given in Table I. These values are
based on physiological properties of the GC, BC, MC, and
HIPP cell [19,49].

APPENDIX B: SYNAPTIC CURRENTS

In this Appendix, we consider the fourth type of synaptic
current I (X )

syn,i(t ) into the ith neuron in the X population in

Eq. (A1). The synaptic current I (X )
syn,i(t ) consists of the follow-

ing three kinds of synaptic currents:

I (X )
syn,i(t ) = I (X,Y )

AMPA,i(t ) + I (X,Y )
NMDA,i(t ) + I (X,Z )

GABA,i(t ). (B1)

Here, I (X,Y )
AMPA,i(t ) and I (X,Y )

NMDA,i(t ) are the excitatory AMPA
(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)
receptor-mediated and NMDA (N-methyl-D-aspartate)
receptor-mediated currents from the presynaptic source Y
population to the postsynaptic ith neuron in the target X
population. In contrast, I (X,Z )

GABA,i(t ) is the inhibitory GABAA

(γ -aminobutyric acid type A) receptor-mediated current from
the presynaptic source Z population to the postsynaptic ith
neuron in the target X population.

As in the case of the AHP current, the R (=AMPA, NMDA,
or GABA) receptor-mediated synaptic current I (T,S)

R,i (t ) from
the presynaptic source S population to the ith postsynaptic
neuron in the target T population is given by

I (T,S)
R,i (t ) = g(T,S)

R,i (t )
(
v

(T )
i (t ) − V (S)

R

)
, (B2)

where g(T,S)
(R,i) (t ) and V (S)

R are synaptic conductance and synaptic
reversal potential (determined by the type of the presynaptic
source S population), respectively. We obtain the synaptic
conductance g(T,S)

R,i (t ) from

g(T,S)
R,i (t ) = K (T,S)

R

NS∑

j=1

w
(T,S)
i j s(T,S)

j (t ), (B3)

where K (T,S)
R is the synaptic strength per synapse for the R-

mediated synaptic current from a presynaptic neuron in the
source S population to a postsynaptic neuron in the target
T population. The interpopulation synaptic connection from
the source S population (with Ns neurons) to the target T
population is given by the connection weight matrix W (T,S)

(= {w(T,S)
i j }) where w

(T,S)
i j = 1 if the jth neuron in the source

S population is presynaptic to the ith neuron in the target T
population; otherwise, w

(T,S)
i j = 0.

TABLE II. Parameters for the synaptic currents I (GC,S)
R (t ) into the

GC. The GCs receive the direct excitatory input from the entorhinal
cortex (EC) cells, the inhibitory input from the HIPP cells, the ex-
citatory input from the MCs, and the feedback inhibition from the
BCs.

Target cells (T ) GC

Source cells (S) EC cell HIPP cell MC BC

Receptor (R) AMPA NMDA GABA AMPA NMDA GABA

K (T,S)
R 0.89 0.15 0.12 0.05 0.01 25.0

τ
(T,S)
R,r 0.1 0.33 0.9 0.1 0.33 0.9

τ
(T,S)
R,d 2.5 50.0 6.8 2.5 50.0 6.8

τ
(T,S)
R,l 3.0 3.0 1.6 3.0 3.0 0.85

V (S)
R 0.0 0.0 −86.0 0.0 0.0 −86.0
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TABLE III. Parameters for the synaptic currents I (T,S)
R (t ) into the HIPP cell, MC, and BC. The HIPP cells receive the excitatory input from

the EC cells, the MCs receive the excitatory input from the GCs, and the BCs receive the excitatory inputs from both the GCs and the MCs.

Target cells (T ) HIPP cell MC BC

Source cells (S) EC cell GC GC MC

Receptor (R) AMPA NMDA AMPA NMDA AMPA NMDA AMPA NMDA

K (T,S)
R 12.0 3.04 6.84 1.22 0.38 0.02 3.23 0.19

τ
(T,S)
R,r 2.0 4.8 0.5 4.0 2.5 10.0 2.5 10.0

τ
(T,S)
R,d 11.0 110.0 6.2 100.0 3.5 130.0 3.5 130.0

τ
(T,S)
R,l 3.0 3.0 1.5 1.5 0.8 0.8 3.0 3.0

V (S)
R 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The postsynaptic ion channels are opened due to the
binding of neurotransmitters (emitted from the source S pop-
ulation) to receptors in the target T population. The fraction
of open ion channels at time t is denoted by s(T,S)(t ). The
time course of s(T,S)

j (t ) of the jth neuron in the source S
population is given by a sum of double exponential functions
E (T,S)

R (t − t ( j)
f − τ

(T,S)
R,l ):

s(T,S)
j (t ) =

F (S)
j∑

f =1

E (T,S)
R

(
t − t ( j)

f − τ
(T,S)
R,l

)
, (B4)

where t ( j)
f and F (S)

j are the f th spike time and the total num-
ber of spikes of the jth neuron in the source S population,
respectively. τ

(T,S)
R,l is the synaptic latency time constant for

R-mediated synaptic current. The exponential-decay function
E (T,S)

R (t ) (which corresponds to contribution of a presynaptic
spike occurring at t = 0 in the absence of synaptic latency) is
given by

E (T,S)
R (t ) = 1

τ
(T,S)
R,d − τ

(T,S)
R,r

(
e−t/τ (T,S)

R,d − e−t/τ (T,S)
R,r

)
�(t ), (B5)

where �(t ) is the Heaviside step function: �(t ) = 1 for t � 0
and 0 for t < 0. τ

(T,S)
R,r and τ

(T,S)
R,d are synaptic rising and decay

time constants of the R-mediated synaptic current, respec-
tively.

Here, Tables II and III show the parameter values for the
synaptic strength per synapse K (T,S)

R , the synaptic rising time
constant τ

(T,S)
R,r , synaptic decay time constant τ

(T,S)
R,d , synaptic

latency time constant τ
(T,S)
R,l , and the synaptic reversal poten-

tial V (S)
R for the synaptic currents into the GCs and for the

synaptic currents into the HIPP cells, the MCs and the BCs,

respectively. These parameter values are also based on the
physiological properties of the relevant cells [19,74–81].

APPENDIX C: INSTANTANEOUS POPULATION
SPIKE RATE

Population firing activity of the active cells may be well
visualized in the raster plot of spikes which is a collection
of spike trains of individual active cells. In a synchronized
case, synchronized spiking stripes (composed of spikes and
indicating population synchronization) appear successively,
while in a desynchronized case, spikes are completely scat-
tered without forming any synchronized spiking stripes.

As a population quantity showing collective firing behav-
iors, we employ an instantaneous population spike rate (IPSR)
which may be obtained from the raster plots of spikes [82–87].
To get a smooth IPSR, we use the kernel density estimation
(kernel smoother) [97]. Each spike in the raster plot is convo-
luted (or blurred) with a kernel function Kh(t ) to get a smooth
estimate of IPSR REC(t ):

REC(t ) = 1

Na

Na∑

i=1

ni∑

s=1

Kh
(
t − t (i)

s

)
, (C1)

where Na is the number of the active cells, t (i)
s is the sth spiking

time of the ith active cell, ni is the total number of spikes for
the ith active cell, and we use a Gaussian kernel function of
band width h:

Kh(t ) = 1√
2πh

e−t2/2h2
, −∞ < t < ∞. (C2)

Throughout the paper, the band width h of Kh(t ) is 20 ms.
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